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Abstract Since a paper by Rosay and Rudin (Trans. Am. Math. Soc. 310, 47–86,
1988) there has been an open question whether all Fatou–Bieberbach domains are
Runge. We give an example of a Fatou–Bieberbach domain � in C

2 which is not
Runge. The domain� provides (yet) a negative answer to a problem of Bremermann.
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1 Introduction

We give a negative answer to the problem, initially posed by Rosay and Rudin [6] and
later in [4], as to whether all Fatou–Bieberbach domains are Runge:

Theorem 1 There is a Fatou–Bieberbach domain � in C
∗ × C which is Runge in

C
∗ × C but not in C

2.

A Fatou–Bieberbach domain is a proper subdomain of C
n which is biholomorphic

to C
n , and a domain � ⊂ C

n is said to be Runge (in C
n) if any holomorphic function

f ∈ O(�) can be approximated uniformly on compacts in � by polynomials.
It should be noted that although the domain � is not Runge it still has the property

that the intersection of � with any complex line L is simply connected: Let V be
a connected component of � ∩ L , let � ⊂ V be a simple closed curve, and let D
denote the disk in L bounded by �. Since � is null-homotopic in� we have that D is
contained in C

∗ ×C and so the claim follows from the fact that� is Runge in C
∗ ×C.
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776 E. F. Wold

By intersecting � with a suitable bounded subset of C
2 this gives a negative answer

to the problem of Bremermann: “Suppose that D is a Stein domain in C
n such that

for every complex line l in C
n , l \ D is connected. Is it true that D is Runge in C

n?”.
Negative answers to this problem have also recently been given in [1] and [5]. On can
infact show, using an argument as above together with the argument principle, that if
R is a smoothly bounded planar domain and if ϕ(R) is a holomorphic embedding of
R into C

2 with ϕ(∂R) ⊂ �, then ϕ(R) ⊂ �.
The idea of the proof is the following: Observe first that if� is a Fatou–Bieberbach

domain in C
2 which is Runge, then � has the property that if Y ⊂ � is compact then

its polynomially convex hull

̂Y := {(z, w) ∈ C
2; |P(z, w)| ≤ ‖P‖Y ∀P ∈ P(C2)}

is contained in �. To prove the theorem we will construct a domain � such that
̂Y \ � �= ∅ for a certain compact set Y . For a compact subset Y ⊂ C

∗ × C let ̂Y∗
denote the set

̂Y∗ := {(z, w) ∈ C
2; |P(z, w)| ≤ ‖P‖Y ∀P ∈ O(C∗ × C)}.

We say that the set Y is holomorphically convex if ̂Y∗ = Y . We will first construct
(a construction by Stolzenberg) a holomorphically convex compact set Y ⊂ C

∗ × C

having the property that ̂Y ∩ ({0} × C) �= ∅. Y is the disjoint union of two disks is
C

∗ × C. We will then use the fact that C
∗ × C has the density property to construct a

Fatou–Bieberbach domain � ⊂ C
∗ × C such that Y ⊂ �. The domain � cannot be

Runge.
A few words about the density property and approximation by automorphisms. As

defined in [9], a complex manifold M is said to have the density property if every
holomorphic vector field on M can be approximated locally uniformly by Lie com-
binations of complete vector fields on M . It was proved in [9] that C

∗ × C has the
density property. In Andersén–Lempert theory the density property corresponds to the
fact that in C

n every entire vector field can be approximated by sums of complete
vector fields. This has been studied also in [10].

Using the density property of C
∗ × C one gets as in [4] (by copying their argu-

ments): Let� be an open set in C
∗ ×C. For every t ∈ [0, 1], let ϕt be a biholomorphic

map from� into C
∗ × C, of class C2 in (t, z) ∈ [0, 1]×�. Assume that ϕ0 = Id, and

assume that each domain �t = ϕt (�) is Runge in C
∗ × C. Then for every t ∈ [0, 1]

the map ϕt can be approximated on � by holomorphic automorphisms of C
∗ × C. In

the proof of Theorem 1 we will construct such an isotopy.
We will let π denote the projection onto the first coordinate in C

∗ × C and in C
2,

and we will let Bε(p) denote the open ball of radius ε centered at a point p.

2 Construction of the set Y

We start by defining a certain rationally convex subset Y of C
2. The set will be a union

of two disjoint polynomially convex disks in C
∗ × C, but the polynomial hull of the
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Fig. 1 Two smoothly bounded simply connected domains � j with ∂�1 ∩ ∂�2 = ±i

union will contain the origin. This construction is taken from [8], page 392–396, and
is due to Stolzenberg [7].

Let�1 and�2 be simply connected domains in C, as in Fig. 1. above, with smooth
boundary, such that if I+ = [1,√3], I− = [−√

3,−1], then I+ ⊂ ∂�1, I− ⊂
∂�2. Require that ∂�1 and ∂�2 meet only twice, that I− ⊂ �1, I+ ⊂ �2, and,
finally, that ∂�1 ∪ ∂�2 be the union of the boundary of the unbounded component of
C\(∂�1 ∪∂�2), together with the boundary of the component of this set that contains
the origin. Let the intersections of the boundaries be the points i and −i .

We define

V1 = {(z, w) ∈ C
2; z2 − w is real and lies in [0, 1]},

V2 = {(z, w) ∈ C
2;w is real and lies in [1, 2]},

X1 = {(z, w) ∈ V1; z ∈ ∂�2},
X2 = {(z, w) ∈ V2; z ∈ ∂�1},

Note that X1 and X2 are totally real annuli, that they are disjoint, and that the origin is
contained in the polynomial hull of X1. Next we want to remove pieces from X1 and
X2 to create two disks.

Define

Ṽ1 = V1 ∩ π−1(I+),

Ṽ2 = V2 ∩ π−1(I−),

Y1 = X1 \ Ṽ2,

Y2 = X2 \ Ṽ1.
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778 E. F. Wold

The set Y will be defined as Y = Y1 ∪ Y2. Note that

(∗) Ṽ1 ⊂ ̂X1, Ṽ2 ⊂ ̂X2.

Let us describe what Y1 and Y2 looks like over I− and I+, respectively. By the equa-
tions we see that these sets are contained in R

2. Let (x, y) denote the real parts of
(z, w).

Over I− we have that Y1 is the union of the two sets defined by

(a) 2 ≤ y ≤ x2 if − √
3 ≤ x ≤ −√

2,
(b) x2 − 1 ≤ y ≤ 1 if − √

2 ≤ x ≤ −1.

Over I+ we have that Y2 is the union of the sets defined by

(c) x2 ≤ y ≤ 2 if 1 ≤ x ≤ √
2,

(d) 1 ≤ y ≤ x2 − 1 if
√

2 ≤ x ≤ √
3.

From these equations we see that Y1 and Y2 are disks.
We have that

(∗∗) ̂Y contains the origin

because of the following: We already noted that the origin is contained in ̂X1, so
the claim follows from (∗) and the following simpler version of Lemma 29.31, [8],
p. 392: Let X1 and X2 be disjoint compact sets in C

N , and let S1 and S2 be rela-
tively open subsets of X1 and X2, respectively such that S1 ⊂ ̂X2, S2 ⊂ ̂X1. Then
X̂1 ∪ X2 = ̂(X1 \ S1) ∪ (X2 \ S2). The reason for this, which was pointed out by
the referee, is simply that neither S1 nor S2 can contain peak points for the algebra
generated by the polynomials on X1 ∪ X2.

3 Proof of Theorem 1

It is proved in [8] that the set Y is rationally convex, and that the sets Y j are polynomial-
ly convex separately. For our construction we need to know that Y is holomorphically
convex, so we prove the following:

Lemma 3.1 We have that Y is holomorphically convex in C
∗ × C.

Proof For j = 1, 2, let Y +
j and Y −

j denote the sets Y j∩{Re(z)≥ 0} and Y j∩{Re(z)≤ 0},
respectively. Let Y + = Y +

1 ∪ Y +
2 and Y − = Y −

1 ∪ Y −
2 .

Observe first that Y + and Y − are polynomially convex separately: assume to get
a contradiction that ̂Y − contains nontrivial points. In that case there exists a graph
G( f ) of a bounded holomorphic function defined on the topological disk U bounded
by π(Y −), such that G( f ) ⊂ ̂Y −, and such that (z, f (z)) ∈ Y − for a.a. (in terms of
radial limits if we regard U as a proper disk) z ∈ π(Y −) (Theorem 20.2. in [2], p. 172,
holds by the discussion on p. 171 even though the fibers over ±i are not convex).
Then for continuity reasons G( f ) would have to contain nontrivial points of ̂Y − in
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the fibers {±i}×C—but as this clearly cannot be the case, we have our contradiction.
The case of Y + is similar.

Next assume to get a contradiction that there is a point (z0, w0) ∈ ̂Y∗ \ Y with
Re(z0) < 0. The function f (z) defined to be (z + i)(z − i) on π(Y −) ∪ {z0} and
zero on π(Y +) can be uniformly approximated on π(Y ) ∪ {z0} by polynomials in z
and 1

z , and so any representing Jensen measure (see [8], Chap. 2) for the functional
g �→ g(z0, w0) would have to be supported on Y −. But then the point (z0, w0) would
have to be in the hull of Y − which is a contradiction. The corresponding conclusion
holds for Re(z0) > 0.

Finally, Rossi’s local maximum principle excludes the possibility of there being
nontrivial points in the hull contained in {±i} × C. ��
Lemma 3.2 Let p = (z0, w0) ∈ C

∗ × C and let ε > 0. Then there exists an auto-
morphism ψ of C

∗ × C such that ψ(Y ) ⊂ Bε(p).

Proof We need to argue that there exists an isotopy as described in the introduction,
and we content ourselves by demonstrating that there exist isotopies mapping Y1 and
Y2 into separate arbitrarily small balls - the rest is trivial. Let q j ∈ Y j be a point for
j = 1, 2, and let δ > 0. Since Y j is a smooth disk there clearly exists a smooth map

f j : [0, 1] × Y j → Y j such that for each fixed t the map f j
t : Y j → Y j is a smooth

diffeomorphism, such that f j
0 is the identity, and such that f j

1 (Y j ) ⊂ Bδ(q j ). Since
Y j is totally real there exists, by [3] Corollary 3.2, for each ε > 0 a real analytic map

	 j : [0, 1] × C
2 → C

2 such that 	 j
t ∈ Authol(C

2) for each t , 	 j
0 is the identity,

and ‖ f j −	 j‖[0,1]×Y j < ε. For small enough ε we restrict	 j to a sufficiently small
Runge neighborhood of Y j . ��
Proof of Theorem 1 Let G be an automorphism of C

∗ × C with an attracting fixed
point p ∈ C

∗ × C. It is well known that the basin of attraction of the point p is a
Fatou–Bieberbach domain. This domain is clearly contained in C

∗ × C. Denote this
domain by �(G). Let ε be a positive real number such that Bε(p) ⊂ �(G). By
Lemma 3.2 there is an automorphism ψ of C

∗ × C such that ψ(Y ) ⊂ Bε(p). Then
Y ⊂ ψ−1(�(G)). The set ψ−1(�(G)) is biholomorphic to C

2, and from (∗∗) in
Sect. 2 we have that ̂Y contains the origin. On the other hand it is clear that �(G) is
Runge in C

∗ × C, and so ψ−1(�(G)) is Runge in C
∗ × C. ��
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3. Forstnerič, F.: Approximation by automorphisms on smooth sumbanifolds of C

n . Math. Ann. 300,
719–738 (1994)
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