A Fatou–Bieberbach domain in \mathbb{C}^2 which is not Runge

Erlend Fornæss Wold

Received: 7 February 2007 / Accepted: 8 May 2007 / Published online: 21 September 2007 © Springer-Verlag 2007

Abstract Since a paper by Rosay and Rudin (Trans. Am. Math. Soc. **310**, 47–86, 1988) there has been an open question whether all Fatou–Bieberbach domains are Runge. We give an example of a Fatou–Bieberbach domain Ω in \mathbb{C}^2 which is not Runge. The domain Ω provides (yet) a negative answer to a problem of Bremermann.

Mathematics Subject Classification (2000) 32E20 · 32E30 · 32H02

1 Introduction

We give a negative answer to the problem, initially posed by Rosay and Rudin [6] and later in [4], as to whether all Fatou–Bieberbach domains are Runge:

Theorem 1 There is a Fatou–Bieberbach domain Ω in $\mathbb{C}^* \times \mathbb{C}$ which is Runge in $\mathbb{C}^* \times \mathbb{C}$ but not in \mathbb{C}^2 .

A Fatou–Bieberbach domain is a proper subdomain of \mathbb{C}^n which is biholomorphic to \mathbb{C}^n , and a domain $\Omega \subset \mathbb{C}^n$ is said to be Runge (in \mathbb{C}^n) if any holomorphic function $f \in \mathcal{O}(\Omega)$ can be approximated uniformly on compacts in Ω by polynomials.

It should be noted that although the domain Ω is not Runge it still has the property that the intersection of Ω with any complex line *L* is simply connected: Let *V* be a connected component of $\Omega \cap L$, let $\Gamma \subset V$ be a simple closed curve, and let *D* denote the disk in *L* bounded by Γ . Since Γ is null-homotopic in Ω we have that *D* is contained in $\mathbb{C}^* \times \mathbb{C}$ and so the claim follows from the fact that Ω is Runge in $\mathbb{C}^* \times \mathbb{C}$.

E. F. Wold (🖂)

Supported by Schweizerische Nationalfonds grant 200021-116165/1.

Matematisk Institutt, Universitetet i Oslo, Postboks 1053 Blindern, 0316 Oslo, Norway e-mail: erlendfw@math.uio.no

By intersecting Ω with a suitable bounded subset of \mathbb{C}^2 this gives a negative answer to the problem of Bremermann: "Suppose that *D* is a Stein domain in \mathbb{C}^n such that for every complex line l in \mathbb{C}^n , $l \setminus D$ is connected. Is it true that *D* is Runge in \mathbb{C}^n ?". Negative answers to this problem have also recently been given in [1] and [5]. On can infact show, using an argument as above together with the argument principle, that if \mathcal{R} is a smoothly bounded planar domain and if $\varphi(\mathcal{R})$ is a holomorphic embedding of \mathcal{R} into \mathbb{C}^2 with $\varphi(\partial \mathcal{R}) \subset \Omega$, then $\varphi(\mathcal{R}) \subset \Omega$.

The idea of the proof is the following: Observe first that if Ω is a Fatou–Bieberbach domain in \mathbb{C}^2 which is Runge, then Ω has the property that if $Y \subset \Omega$ is compact then its polynomially convex hull

$$\widehat{Y} := \{ (z, w) \in \mathbb{C}^2; |P(z, w)| \le \|P\|_Y \quad \forall P \in \mathcal{P}(\mathbb{C}^2) \}$$

is contained in Ω . To prove the theorem we will construct a domain Ω such that $\widehat{Y} \setminus \Omega \neq \emptyset$ for a certain compact set Y. For a compact subset $Y \subset \mathbb{C}^* \times \mathbb{C}$ let \widehat{Y}_* denote the set

$$\widehat{Y}_* := \{ (z, w) \in \mathbb{C}^2; |P(z, w)| \le \|P\|_Y \quad \forall P \in \mathcal{O}(\mathbb{C}^* \times \mathbb{C}) \}.$$

We say that the set *Y* is holomorphically convex if $\widehat{Y}_* = Y$. We will first construct (a construction by Stolzenberg) a holomorphically convex compact set $Y \subset \mathbb{C}^* \times \mathbb{C}$ having the property that $\widehat{Y} \cap (\{0\} \times \mathbb{C}) \neq \emptyset$. *Y* is the disjoint union of two disks is $\mathbb{C}^* \times \mathbb{C}$. We will then use the fact that $\mathbb{C}^* \times \mathbb{C}$ has the *density property* to construct a Fatou–Bieberbach domain $\Omega \subset \mathbb{C}^* \times \mathbb{C}$ such that $Y \subset \Omega$. The domain Ω cannot be Runge.

A few words about the density property and approximation by automorphisms. As defined in [9], a complex manifold M is said to have the density property if every holomorphic vector field on M can be approximated locally uniformly by Lie combinations of complete vector fields on M. It was proved in [9] that $\mathbb{C}^* \times \mathbb{C}$ has the density property. In Andersén–Lempert theory the density property corresponds to the fact that in \mathbb{C}^n every entire vector field can be approximated by sums of complete vector fields. This has been studied also in [10].

Using the density property of $\mathbb{C}^* \times \mathbb{C}$ one gets as in [4] (by copying their arguments): Let Ω be an open set in $\mathbb{C}^* \times \mathbb{C}$. For every $t \in [0, 1]$, let φ_t be a biholomorphic map from Ω into $\mathbb{C}^* \times \mathbb{C}$, of class \mathcal{C}^2 in $(t, z) \in [0, 1] \times \Omega$. Assume that $\varphi_0 = \text{Id}$, and assume that each domain $\Omega_t = \varphi_t(\Omega)$ is Runge in $\mathbb{C}^* \times \mathbb{C}$. Then for every $t \in [0, 1]$ the map φ_t can be approximated on Ω by holomorphic automorphisms of $\mathbb{C}^* \times \mathbb{C}$. In the proof of Theorem 1 we will construct such an isotopy.

We will let π denote the projection onto the first coordinate in $\mathbb{C}^* \times \mathbb{C}$ and in \mathbb{C}^2 , and we will let $B_{\varepsilon}(p)$ denote the open ball of radius ε centered at a point p.

2 Construction of the set Y

We start by defining a certain rationally convex subset *Y* of \mathbb{C}^2 . The set will be a union of two disjoint polynomially convex disks in $\mathbb{C}^* \times \mathbb{C}$, but the polynomial hull of the

Fig. 1 Two smoothly bounded simply connected domains Ω_i with $\partial \Omega_1 \cap \partial \Omega_2 = \pm i$

union will contain the origin. This construction is taken from [8], page 392–396, and is due to Stolzenberg [7].

Let Ω_1 and Ω_2 be simply connected domains in \mathbb{C} , as in Fig. 1. above, with smooth boundary, such that if $I_+ = [1, \sqrt{3}]$, $I_- = [-\sqrt{3}, -1]$, then $I_+ \subset \partial \Omega_1$, $I_- \subset \partial \Omega_2$. Require that $\partial \Omega_1$ and $\partial \Omega_2$ meet only twice, that $I_- \subset \Omega_1$, $I_+ \subset \Omega_2$, and, finally, that $\partial \Omega_1 \cup \partial \Omega_2$ be the union of the boundary of the unbounded component of $\mathbb{C} \setminus (\partial \Omega_1 \cup \partial \Omega_2)$, together with the boundary of the component of this set that contains the origin. Let the intersections of the boundaries be the points *i* and -i.

We define

$$V_{1} = \{(z, w) \in \mathbb{C}^{2}; z^{2} - w \text{ is real and lies in } [0, 1]\},$$

$$V_{2} = \{(z, w) \in \mathbb{C}^{2}; w \text{ is real and lies in } [1, 2]\},$$

$$X_{1} = \{(z, w) \in V_{1}; z \in \partial \Omega_{2}\},$$

$$X_{2} = \{(z, w) \in V_{2}; z \in \partial \Omega_{1}\},$$

Note that X_1 and X_2 are totally real annuli, that they are disjoint, and that the origin is contained in the polynomial hull of X_1 . Next we want to remove pieces from X_1 and X_2 to create two disks.

Define

$$\begin{split} \tilde{V}_1 &= V_1 \cap \pi^{-1}(I_+), \\ \tilde{V}_2 &= V_2 \cap \pi^{-1}(I_-), \\ Y_1 &= \overline{X_1 \setminus \tilde{V}_2}, \\ Y_2 &= \overline{X_2 \setminus \tilde{V}_1}. \end{split}$$

Deringer

The set *Y* will be defined as $Y = Y_1 \cup Y_2$. Note that

(*)
$$\tilde{V}_1 \subset \hat{X}_1, \tilde{V}_2 \subset \hat{X}_2.$$

Let us describe what Y_1 and Y_2 looks like over I_- and I_+ , respectively. By the equations we see that these sets are contained in \mathbb{R}^2 . Let (x, y) denote the real parts of (z, w).

Over I_{-} we have that Y_{1} is the union of the two sets defined by

(a) $2 \le y \le x^2$ if $-\sqrt{3} \le x \le -\sqrt{2}$, (b) $x^2 - 1 \le y \le 1$ if $-\sqrt{2} \le x \le -1$.

Over I_+ we have that Y_2 is the union of the sets defined by

(c) $x^2 \le y \le 2$ if $1 \le x \le \sqrt{2}$, (d) $1 \le y \le x^2 - 1$ if $\sqrt{2} \le x \le \sqrt{3}$.

From these equations we see that Y_1 and Y_2 are disks.

We have that

(**)
$$\widehat{Y}$$
 contains the origin

because of the following: We already noted that the origin is contained in \widehat{X}_1 , so the claim follows from (*) and the following simpler version of Lemma 29.31, [8], p. 392: Let X_1 and X_2 be disjoint compact sets in \mathbb{C}^N , and let S_1 and S_2 be relatively open subsets of X_1 and X_2 , respectively such that $S_1 \subset \widehat{X}_2$, $S_2 \subset \widehat{X}_1$. Then $\widehat{X_1 \cup X_2} = (X_1 \setminus \widehat{S_1}) \cup (X_2 \setminus S_2)$. The reason for this, which was pointed out by the referee, is simply that neither S_1 nor S_2 can contain peak points for the algebra generated by the polynomials on $X_1 \cup X_2$.

3 Proof of Theorem 1

It is proved in [8] that the set Y is rationally convex, and that the sets Y_j are polynomially convex separately. For our construction we need to know that Y is holomorphically convex, so we prove the following:

Lemma 3.1 We have that Y is holomorphically convex in $\mathbb{C}^* \times \mathbb{C}$.

Proof For j = 1, 2, let Y_j^+ and Y_j^- denote the sets $Y_j \cap \{\text{Re}(z) \ge 0\}$ and $Y_j \cap \{\text{Re}(z) \le 0\}$, respectively. Let $Y^+ = Y_1^+ \cup Y_2^+$ and $Y^- = Y_1^- \cup Y_2^-$. Observe first that Y_j^+ and Y_j^- are polynomially convex separately: assume to get

Observe first that Y^+ and Y^- are polynomially convex separately: assume to get a contradiction that $\widehat{Y^-}$ contains nontrivial points. In that case there exists a graph G(f) of a bounded holomorphic function defined on the topological disk U bounded by $\pi(Y^-)$, such that $G(f) \subset \widehat{Y^-}$, and such that $(z, f(z)) \in Y^-$ for a.a. (in terms of radial limits if we regard U as a proper disk) $z \in \pi(Y^-)$ (Theorem 20.2. in [2], p. 172, holds by the discussion on p. 171 even though the fibers over $\pm i$ are not convex). Then for continuity reasons $\overline{G(f)}$ would have to contain nontrivial points of $\widehat{Y^-}$ in the fibers $\{\pm i\} \times \mathbb{C}$ —but as this clearly cannot be the case, we have our contradiction. The case of Y^+ is similar.

Next assume to get a contradiction that there is a point $(z_0, w_0) \in \widehat{Y}_* \setminus Y$ with $\operatorname{Re}(z_0) < 0$. The function f(z) defined to be (z + i)(z - i) on $\pi(Y^-) \cup \{z_0\}$ and zero on $\pi(Y^+)$ can be uniformly approximated on $\pi(Y) \cup \{z_0\}$ by polynomials in z and $\frac{1}{z}$, and so any representing Jensen measure (see [8], Chap. 2) for the functional $g \mapsto g(z_0, w_0)$ would have to be supported on Y^- . But then the point (z_0, w_0) would have to be in the hull of Y^- which is a contradiction. The corresponding conclusion holds for $\operatorname{Re}(z_0) > 0$.

Finally, Rossi's local maximum principle excludes the possibility of there being nontrivial points in the hull contained in $\{\pm i\} \times \mathbb{C}$.

Lemma 3.2 Let $p = (z_0, w_0) \in \mathbb{C}^* \times \mathbb{C}$ and let $\varepsilon > 0$. Then there exists an automorphism ψ of $\mathbb{C}^* \times \mathbb{C}$ such that $\psi(Y) \subset B_{\varepsilon}(p)$.

Proof We need to argue that there exists an isotopy as described in the introduction, and we content ourselves by demonstrating that there exist isotopies mapping Y_1 and Y_2 into separate arbitrarily small balls - the rest is trivial. Let $q_j \in Y_j$ be a point for j = 1, 2, and let $\delta > 0$. Since Y_j is a smooth disk there clearly exists a smooth map $f^j : [0, 1] \times Y_j \to Y_j$ such that for each fixed t the map $f_t^j : Y_j \to Y_j$ is a smooth diffeomorphism, such that f_0^j is the identity, and such that $f_1^j(Y_j) \subset B_{\delta}(q_j)$. Since Y_j is totally real there exists, by [3] Corollary 3.2, for each $\varepsilon > 0$ a real analytic map $\Phi^j : [0, 1] \times \mathbb{C}^2 \to \mathbb{C}^2$ such that $\Phi_t^j \in \text{Aut}_{\text{hol}}(\mathbb{C}^2)$ for each t, Φ_0^j is the identity, and $\|f^j - \Phi^j\|_{[0,1] \times Y_j} < \varepsilon$. For small enough ε we restrict Φ^j to a sufficiently small Runge neighborhood of Y_j .

Proof of Theorem 1 Let *G* be an automorphism of $\mathbb{C}^* \times \mathbb{C}$ with an attracting fixed point $p \in \mathbb{C}^* \times \mathbb{C}$. It is well known that the basin of attraction of the point *p* is a Fatou–Bieberbach domain. This domain is clearly contained in $\mathbb{C}^* \times \mathbb{C}$. Denote this domain by $\Omega(G)$. Let ε be a positive real number such that $B_{\varepsilon}(p) \subset \Omega(G)$. By Lemma 3.2 there is an automorphism ψ of $\mathbb{C}^* \times \mathbb{C}$ such that $\psi(Y) \subset B_{\varepsilon}(p)$. Then $Y \subset \psi^{-1}(\Omega(G))$. The set $\psi^{-1}(\Omega(G))$ is biholomorphic to \mathbb{C}^2 , and from (**) in Sect. 2 we have that \widehat{Y} contains the origin. On the other hand it is clear that $\Omega(G)$ is Runge in $\mathbb{C}^* \times \mathbb{C}$, and so $\psi^{-1}(\Omega(G))$ is Runge in $\mathbb{C}^* \times \mathbb{C}$.

Acknowledgments The author would like to thank the referee for comments; in particular for suggesting a simplified proof of Lemma 3.1.

References

- 1. Abe, M.: Polynomial convexity and strong disk property. J. Math. Anal. Appl. 321, 32-36 (2006)
- Alexander, H., Wermer, J.: Several Complex Variables and Banach Algebras, 3rd edn. Springer, New York (1998)
- Forstnerič, F.: Approximation by automorphisms on smooth sumbanifolds of Cⁿ. Math. Ann. 300, 719−738 (1994)
- Forstnerič, F., Rosay, J.P.: Approximation of biholomorphic mappings by autmorphisms of Cⁿ. Invent. Math. 112, 112–123 (1993)
- 5. Joita, C.: On a problem of Bremermann concerning Runge domains. Math. Ann. 337, 395–400 (2007)

- 6. Rosay, J.P., Rudin, W.: Holomorphic maps from \mathbb{C}^n to \mathbb{C}^n . Trans. Am. Math. Soc. **310**, 47–86 (1988)
- 7. Stolzenberg, G.: On the analytic part of a Runge hull. Math. Ann. 164, 286–290 (1966)
- 8. Stout, E.L.: The Theory of Uniform Algebras. Bogden and Quigly Inc. (1971)
- 9. Varolin, D.: The density property for complex manifolds and geometric structures. J. Geom. Anal. 11, 135–160 (2001)
- Varolin, D.: The density property for complex manifolds and geometric structures II. Int. J. Math. 11, 837–847 (2000)