Laminated currents

JOHN ERIK FORNÆSS[†], YINXIA WANG[‡] and ERLEND FORNÆSS WOLD§

† Mathematics Department, The University of Michigan, East Hall, Ann Arbor, MI 48109, USA

(e-mail: fornaess@umich.edu)

‡ Department of Mathematics, Henan Polytechnic University, Jiaozuo, 454000, China (e-mail: yinxiawang@gmail.com)

§ Mathematisches Institut, Universität Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland (e-mail: erlendfw@math.uio.no)

(Received 9 March 2007 and accepted in revised form 26 October 2007)

Abstract. In this paper we prove the equivalence of two definitions of laminated currents.

1. Introduction

Let *K* be a relatively-closed subset of the bidisc $\Delta^2(z, w) = \{(z, w); |z|, |w| < 1\}$. We suppose that *K* is a disjoint union of holomorphic graphs, $w = f_{\alpha}(z)$, where f_{α} is a holomorphic function on the unit disc with $f_{\alpha}(0) = \alpha$ and $|f_{\alpha}(z)| < 1$. We let \mathcal{L} denote the lamination of *K*.

There are two notions of laminated currents that we will discuss. Let T be a positive closed (1, 1)-current supported on K. We assume that T is the restriction of a positive closed current defined on a neighborhood of $\overline{\Delta}^2$. We denote by $[V_{\alpha}]$ the current of integration along the graph of f_{α} . Let λ denote a continuous (1, 0)-form which at $(z, f_{\alpha}(z))$ equals a non-zero multiple of $dw - f'_{\alpha}(z) dz$.

Definition 1. We say that T is a laminated current directed by \mathcal{L} if $\lambda \wedge T = 0$ for any such λ .

These are the same as Sullivan's *structure currents* [10]. The present terminology was introduced by Berndtsson and Sibony in [1], and such currents were treated further in [4]. In accordance with Dujardin [3] we also define the following.

Definition 2. We say that T is a laminated current subordinate to \mathcal{L} if there is a positive measure μ such that $T = \int_{\alpha} [V_{\alpha}] d\mu(\alpha)$.

Our main result is the following.

MAIN THEOREM. The current T is subordinate to \mathcal{L} if and only if it is directed by \mathcal{L} .

We note that this is a result by Sullivan in the case of the lamination being smooth, i.e. the graphs vary smoothly with α [10]. In the continuous setting Dujardin has shown that if a current *T* is dominated by a current subordinate to \mathcal{L} then *T* is subordinate to \mathcal{L} .

The part of Sullivan's proof that does not go through automatically in the non-smooth case is a certain approximation step, and so in the present article we are concerned with approximation of partially-smooth functions. In [5] the authors proved such an approximation theorem in the case of laminations in \mathbb{R}^2 and in \mathbb{R}^3 . In the last section we show that the main theorem breaks down for Riemann-surface laminations in higher dimension.

For related material on laminated currents the reader may consult the paper of Bedford *et al* [2].

2. Holomorphic motions and preliminary estimates for slopes of holomorphic graphs

We need to know how the lamination \mathcal{L} defined above varies with the parameter λ , and we use the fact that it defines a holomorphic motion. Let $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ denote the unit disc in \mathbb{C} . A holomorphic motion is a subset *E* of the complex plane \mathbb{C} (or the Riemann sphere $\widehat{\mathbb{C}}$) and a map $f : \Delta \times E \to \mathbb{C}$ (or $\widehat{\mathbb{C}}$) such that $f(0, \cdot) = \operatorname{id}, f(\lambda, \cdot)$ is injective for each λ , and $f(\cdot, z)$ is holomorphic for each *z*. The lamination \mathcal{L} defines a holomorphic motion.

Let us briefly recall some facts. It is known [9] that any holomorphic motion has an extension to a holomorphic motion $f : \Delta \times \mathbb{C} \to \mathbb{C}$. This means that we may regard K as a subset of a lamination of $\Delta \times \mathbb{C}$. From [8] we have that f is automatically jointly continuous in (λ, z) ; in fact the map $(\lambda, z) \mapsto (\lambda, f_{\lambda}(z))$ is a homeomorphism onto $\Delta \times \mathbb{C}$. Moreover, $f(\lambda, \cdot)$ is quasi-conformal for each λ , and $f(\lambda, \cdot)$ distorts cross-ratios by a bounded amount depending on $|\lambda|$. In particular we have the following. If C is compact in \mathbb{C}^* and x, y, z are three distinct points in \mathbb{C} with $c_0 = (x - y)/(z - y) \in C$, then $(f_{\lambda}(x) - f_{\lambda}(y))/(f_{\lambda}(z) - f_{\lambda}(y))$ is close to c_0 depending only on $|\lambda|$ (for a fixed C). To see this one can consider the map $\lambda \mapsto (f_{\lambda}(x) - f_{\lambda}(y))/(f_{\lambda}(z) - f_{\lambda}(y))$, a map from the unit disk to $\mathbb{C} \setminus \{0, 1\}$, and use the fact that it has to be distance-decreasing in the Poincaré metric. Finally we recall that $f(\lambda, \cdot)$ is Hölder continuous with exponent $1 + \epsilon(|\lambda|)$.

Next we need a basic estimate on slopes of the graphs. For the benefit of the reader we include the details of this well-known fact. We denote by $\mathcal{O}(\Omega)$ the space of holomorphic functions on Ω . Let $\|\cdot\|_{\infty}$ denote the sup norm. Set

$$H^{\infty} = H^{\infty}(\Delta) = \{ f \in \mathcal{O}(\Delta) : \| f \|_{\infty} < \infty \}.$$

Also, if $0 < C < \infty$ we set

$$H_C^{\infty} = H_C^{\infty}(\Delta) = \{ f \in \mathcal{O}(\Delta) : \| f \|_{\infty} < C \}.$$

LEMMA 1. If $f \in H_1^{\infty}(\Delta)$ and $f(z) \neq 0$ for all $z \in \Delta$, then

 $|f'(0)| \le 2|f(0)|\log(1/|f(0)|).$

Proof. Pick a holomorphic function f(z) on the unit disc such that $0 \neq |f(z)| < 1$ for all $z \in \Delta$. We can replace f(z) by $e^{i\theta} f(z)$ for any real θ . This does not change |f(0)| or |f'(0)|. Hence we can assume that f(0) > 0.

We set $h(z) := \log f(z)$. Then h(z) is a holomorphic function on the unit disc and $\operatorname{Re}(h(z)) < 0$. We can also choose a branch of the logarithm so that $\log(f(0)) = -a < 0$. If k(z) = h(z)/a, then k(z) is a holomorphic function on the unit disc and k(0) = -1, Re(k(z)) < 0. We define L(w) = (w+1)/(w-1). Then L(-1) = 0 and if Re(w) < 0then |L(w)| < 1. Then $\Gamma(z) := L(k(z))$ is a holomorphic function from the unit disc to the unit disc. Moreover $\Gamma(0) = L(k(0)) = L(-1) = 0$. Since $\Gamma(0) = 0$ and $|\Gamma(z)| < 1$ we can apply the Schwarz lemma. So we can conclude that $|\Gamma'(0)| \leq 1$. By the chain rule, $\Gamma'(0) = L'(k(0))k'(0) = L'(-1)k'(0)$. Since $L'(w) = -2/(w-1)^2$ we get $\Gamma'(0) = -2/(w-1)^2$ $-2/(-1-1)^2 k'(0)$ and therefore $k'(0) = -2\Gamma'(0)$. Hence we get $|k'(0)| \le 2$. Since k(z) = h(z)/a, we can conclude next that |k'(0)| = |h'(0)|/a. Hence $|h'(0)| = a|k'(0)| \le a$ $a \cdot 2$, so |h'(0)| < 2a. Next recall that $h(z) = \log f(z)$, so $f(z) = e^{h(z)}$. Hence $f'(z) = e^{h(z)}$. $e^{h(z)}h'(z)$. Therefore $f'(0) = e^{h(0)}h'(0) = f(0)h'(0)$. Hence $|f'(0)| \le |f(0)||h'(0)|$. This implies that |f'(0)| < 2a|f(0)|. Now recall that $\log f(0) = -a$. But we have set this up so that $\log f(0) = \log |f(0)| + i \arg f(0)$ is real-valued. So $\log |f(0)| = -a$, i.e. $\log(1/|f(0)|) = a$. Therefore $|f'(0)| \le 2a|f(0)| = 2|f(0)|\log(1/|f(0)|)$. This concludes the proof of the lemma.

COROLLARY 1. Suppose that we have two functions f and g holomorphic on the unit disc with $f - g \in H_1^{\infty}(\Delta)$. Suppose that $f(z) \neq g(z)$ for each $z \in \Delta$. We then have the estimate $|f'(z) - g'(z)| \le 4|f(z) - g(z)| \log(1/|f(z) - g(z)|)$ for all $z \in \Delta$, |z| < 1/2.

Proof. Pick z, |z| < 1/2. We define G(w) = f(z + w/2) - g(z + w/2). Then G(w) satisfies the conditions of Lemma 1. Hence $|G'(0)| \le 2|G(0)| \log (1/|G(0)|)$. Therefore,

$$\frac{1}{2}|f'(z) - g'(z)| \le 2|f(z) - g(z)|\log\frac{1}{|f(z) - g(z)|}.$$

3. Approximation for complex curves in \mathbb{C}^2

We assume that for every $c = (a, b) = (a + ib) \in \mathbb{C}$ we have a holomorphic graph Γ_c given by $w = y_1 + iy_2 = f_c(z), z = x_1 + ix_2 \in \Delta$. We assume that all surfaces are disjoint and that there is a surface through every point in $\Delta \times \mathbb{C}$. We assume that $f_c(0) = c$.

Let $\pi : \Delta \times \mathbb{C} \to \mathbb{C}$ be defined by $\pi(z, f_c(z)) = c$. By the discussion in the previous section the function π is continuous.

Fix a positive constant *R*. By Corollary 1 there exists a positive real number $\delta_0 > 0$ such that if $z \in (1/2)\Delta$ and if $c, c' \in R\Delta$ with $|c - c'| < \delta_0$ then

$$\left|\frac{\partial}{\partial z}f_{c'}(z) - \frac{\partial}{\partial z}f_c(z)\right| \le 4 \cdot |f_{c'}(z) - f_c(z)| \log \frac{1}{|f_{c'}(z) - f_c(z)|}.$$
(1)

We define a class of partially-smooth functions:

$$\begin{aligned} \mathcal{A} &:= \left\{ \phi \in \mathcal{C}(\Delta \times \mathbb{C}) : \phi(z, f_c(z)) \in \mathcal{C}^1(\Gamma_c), \\ \Phi(x_1, x_2, w) &:= \frac{\partial}{\partial x_1} \phi(x_1, x_2, f_c(x_1, x_2)), w = f_c(x_1, x_2) \in \mathcal{C}(\Delta \times \mathbb{C}), \\ \Psi(x_1, x_2, w) &:= \frac{\partial}{\partial x_2} \phi(x_1, x_2, f_c(x_1, x_2)), w = f_c(x_1, x_2) \in \mathcal{C}(\Delta \times \mathbb{C}) \right\}. \end{aligned}$$

THEOREM 1. Let $\phi \in A$, let R be a positive real number and let $\epsilon > 0$. Then there exists a function $\psi \in C^1(\Delta \times R\Delta)$ such that for every point $(x_1, x_2, w) = (x_1, x_2, f_c(x_1, x_2)) \in \Delta \times R\Delta$:

$$\begin{aligned} |\psi(x_1, x_2, w) - \phi(x_1, x_2, w)| &< \epsilon, \\ \left| \frac{\partial}{\partial x_1} [\psi(x_1, x_2, f_c(x_1, x_2))] - \frac{\partial}{\partial x_1} [\phi(x_1, x_2, f_c(x_1, x_2))] \right| &< \epsilon, \\ \left| \frac{\partial}{\partial x_2} [\psi(x_1, x_2, f_c(x_1, x_2))] - \frac{\partial}{\partial x_2} [\phi(x_1, x_2, f_c(x_1, x_2))] \right| &< \epsilon. \end{aligned}$$

We will prove the theorem using the following result.

PROPOSITION 1. Let $g \in A$, $g(x_1, x_2, f_{a+ib}(x_1, x_2)) = a$, and let R be a positive real number. There exists a positive real number t_0 such that the following holds. For all $\epsilon > 0$ there exists a function $h \in C^1(t_0\Delta \times R\Delta)$ such that for every point $(x_1, x_2, w) = (x_1, x_2, f_c(x_1, x_2)) \in t_0\Delta \times R\Delta$:

$$\begin{aligned} |h(x_1, x_2, w) - g(x_1, x_2, w)| &< \epsilon, \\ \left| \frac{\partial}{\partial x_1} [h(x_1, x_2, f_c(x_1, x_2))] \right| &< \epsilon, \\ \left| \frac{\partial}{\partial x_2} [h(x_1, x_2, f_c(x_1, x_2))] \right| &< \epsilon. \end{aligned}$$

The same result holds if we replace a by b in the definition of g.

Proof of Theorem 1 from Proposition 1.

LEMMA 2. Let $p \in \Delta$ be a point, and let R, t_0 be positive real numbers such that $\Delta_{t_0}(p) \subset \subset \Delta$. Consider the lamination restricted to $\Delta_{t_0}(p) \times \mathbb{C}$. If the conclusion of Proposition 1 holds on $\Delta_{t_0}(p) \times R\Delta$ (with respect to projection onto $\{p\} \times \mathbb{C}$), then the conclusion of Theorem 1 holds on $\Delta_{t_0}(p) \times R\Delta$.

Proof. Let $\pi = (\pi_1, \pi_2)$ denote the projection onto $\{p\} \times \mathbb{C}$. For each $j, k \in \mathbb{Z}$ and $\delta > 0$ we let $c^{\delta}(j, k)$ denote the point $(p, j\delta + k\delta i)$. Let Λ_j^{δ} denote the C^1 -smooth function defined by $\Lambda_j^{\delta}(t) = \cos^2[\pi/2\delta(t-j\delta)]$ when $(j-1)\delta \le t \le (j+1)\delta$ and 0 otherwise. For each $c^{\delta}(j, k)$ we first define a function

$$\psi_{jk}^{\delta}(z) := \phi(z, f_{c^{\delta}(j,k)}(z)),$$

and then we define a preliminary approximation

$$\psi^{\delta}(z,w) = \sum_{j,k} \psi^{\delta}_{jk}(z) \Lambda_j(\pi_1(z,w)) \Lambda_k(\pi_2(z,w)).$$

Let $(z_0, w_0) \in \Delta_{t_0}(p) \times R\Delta$. Then $\pi(z_0, w_0)$ is contained in a square with corners $c^{\delta}(j, k), c^{\delta}(j+1, k), c^{\delta}(j, k+1)$ and $c^{\delta}(j+1, k+1)$, and

$$\psi^{\delta}(z_0, w_0) = \sum_{m=j, j+1, n=k, k+1} \psi^{\delta}_{mn}(z_0) \Lambda_m(\pi_1(z_0, w_0)) \Lambda_n(\pi_2(z_0, w_0)).$$

We have

$$\begin{aligned} |\psi^{\delta}(z_0, w_0) - \phi(z_0, w_0)| &= \left| \sum_{m=j, j+1, n=k, k+1} [\psi^{\delta}_{mn}(z_0) - \phi(z_0, w_0)] \right. \\ &\left. \times \Lambda^{\delta}_m(\pi_1(z_0, w_0)) \cdot \Lambda^{\delta}_n(\pi_2(z_0, w_0)) \right| \\ &\leq \max_{m=j, j+1, n=k, k+1} |\psi^{\delta}_{mn}(z_0) - \phi(z_0, w_0)| \end{aligned}$$

Since the map from $\overline{\Delta}_{t_0}(p) \times \mathbb{C}$ defined by $(z, \alpha) \mapsto (z, f_{\alpha}(z))$ is a homeomorphism it follows that $\psi^{\delta} \to \phi$ uniformly as $\delta \to 0$.

Next we approximate derivatives along leaves. Let α be such that $(z_0, w_0) = (z_0, f_{\alpha}(z_0))$. Since the functions $\Lambda_i^{\delta} \circ \pi_i$ are constant along leaves,

$$\begin{aligned} \left| \frac{\partial}{\partial x_i} [\psi^{\delta}(z_0, f_{\alpha}(z_0)) - \phi(z_0, f_{\alpha}(z_0))] \right| \\ &= \left| \sum_{m=j, j+1, n=k, k+1} \left[\frac{\partial}{\partial x_i} [\psi^{\delta}_{mn}(z_0) - \phi(z_0, f_{\alpha}(z_0))] \right] \right. \\ &\times \left. \Lambda^{\delta}_m(\pi_1(z_0, f_{\alpha}(z_0))) \cdot \Lambda^{\delta}_n(\pi_2(z_0, f_{\alpha}(z_0))) \right| \\ &\leq \max_{m=j, j+1, n=k, k+1} \left| \frac{\partial}{\partial x_i} [\psi^{\delta}_{mn}(z_0) - \phi(z_0, f_{\alpha}(z_0))] \right|. \end{aligned}$$

It follows that $\psi^{\delta} \to \phi$ also in \mathcal{C}^1 -norm on leaves.

Now the conclusion of Lemma 2 follows because the functions π_j can be approximated uniformly and in \mathcal{C}^1 -norm on leaves.

For each point $p \in \Delta$ there exists by Proposition 1 a positive real number t_p such that constant approximation is possible on $\Delta_{t_p}(p) \times R\Delta$. Hence by Lemma 2 approximation of functions in A is possible.

We may then choose a locally-finite cover $\{U_{\alpha}\}_{\alpha \in \mathbb{N}}$ of Δ by disks such that approximation by functions in \mathcal{A} is possible on each $U_{\alpha} \times R \Delta$. Let $\{\varphi_{\alpha}\}$ be a partition of unity subordinate to $\{U_{\alpha}\}$. For each α let $C_{\alpha} = \|\nabla \varphi_{\alpha}\|$.

For a given ϵ_{α} let $g_{\epsilon_{\alpha}}$ be an ϵ_{α} -approximating function of ϕ on $U_{\alpha} \times R \triangle$. We will show that there is a sequence $\{\epsilon_{\alpha}\}$ such that the function

$$\psi = \sum_{\alpha} \varphi_{\alpha} \cdot g_{\epsilon_{\alpha}}$$

satisfies the claims of the theorem.

Let $z_0 \in U_{\alpha}$, and let $\{\alpha_1, \ldots, \alpha_m\}$ be the finite set of α 's, such that the support of ϕ_{α} intersects U_{α} . Then

$$\psi(z, f_c(z)) = \sum_{i=1}^m \varphi_{\alpha_i}(z) \cdot g_{\epsilon_{\alpha_i}}(z, f_c(z)),$$

for all z near z_0 . Then

$$\begin{aligned} |\psi(z_0, f_c(z_0)) - \phi(z_0, f_c(z_0))| \\ &= \left| \left[\sum_{i=1}^m \varphi_{\alpha_i}(z_0) \cdot g_{\epsilon_{\alpha_i}}(z_0, f_c(z_0)) \right] - \phi(z_0, f_c(z_0)) \right| \\ &\leq \sum_{i=1}^m \varphi_{\alpha_i}(z_0) \cdot |g_{\epsilon_{\alpha_i}}(z_0, f_c(z_0)) - \phi(z_0, f_c(z_0))| \\ &\leq \max\{\epsilon_{\alpha_i}\}. \end{aligned}$$

Further

$$\begin{aligned} \left| \frac{\partial}{\partial x_1} [\psi(z_0, f_c(z_0)) - \phi(z_0, f_c(z_0))] \right| \\ &= \left| \frac{\partial}{\partial x_1} \left[\left[\sum_{i=1}^m \varphi_{\alpha_i}(z) \cdot g_{\epsilon_{\alpha_i}}(z_0, f_c(z_0)) \right] - \phi(z_0, f_c(z_0)) \right] \right| \\ &= \left| \sum_{i=1}^m \frac{\partial}{\partial x_1} [\varphi_{\alpha_i}(z_0) \cdot (g_{\epsilon_{\alpha_i}}(z_0, f_c(z_0)) - \phi(z_0, f(z_0)))] \right| \\ &= \left| \sum_{i=1}^m \frac{\partial}{\partial x_1} [\varphi_{\alpha_i}(z_0)] \cdot (g_{\epsilon_{\alpha_i}}(z_0, f_c(z_0))) - (\phi(z_0, f(z_0))) \right| \\ &+ \sum_{i=1}^m \varphi_{\alpha_i}(z_0) \cdot \frac{\partial}{\partial x_1} [g_{\epsilon_{\alpha_i}}(z_0, f_c(z_0)) - \phi(z_0, f(z_0))] \right| \\ &\leq m \cdot \max\{C_{\alpha_i}\} \cdot \max\{\epsilon_{\alpha_i}\} + \max\{\epsilon_{\alpha_i}\}. \end{aligned}$$

Similarly we get that

$$\left|\frac{\partial}{\partial x_2}[\psi(z_0, f_c(z_0)) - \phi(z, f_c(z_0))]\right| \le m \cdot \max\{C_{\alpha_i}\} \cdot \max\{\epsilon_{\alpha_i}\} + \max\{\epsilon_{\alpha_i}\}.$$

It is clear that we may choose ϵ_{α_i} for i = 1, ..., m to get the desired estimate for all points $z_0 \in U_\alpha$ for this particular α . Running through all α we find that any particular α_i will only come under consideration a finite number of times. Hence we may choose the sequence $\{\epsilon_\alpha\}$.

We proceed to prove the proposition.

Fix δ_0 to get the estimate (1) (in the beginning of §3) for all $|c - c'| < \delta_0$ with $|c|, |c'| \le 2R$. For any δ with $0 < \delta < \delta_0$ we let $c^{\delta}(j, k) = (j + k \cdot i) \cdot \delta$ for $j, k \in \mathbb{Z}$. Let $\chi : [0, 1] \to \mathbb{R}$ be a smooth function such that $\chi(t) = 0$ for $0 \le t \le 1/4$ and $\chi(t) = 1$ for $3/4 \le t \le 1$. Let *C* be a constant such that $|\chi'(t)| \le C$ for all $t \in [0, 1]$.

We first define a function h_{δ} on the surfaces $\Gamma_{c^{\delta}(j,k)}$ simply by $h_{\delta}|_{\Gamma_{c^{\delta}(j,k)}} \equiv j\delta$. We want to interpolate this function between the surfaces.

For a fixed z consider the sets of points

$$Q_{c^{\delta}(j,k)}(z) := \{ f_{c^{\delta}(j,k)}(z), f_{c^{\delta}(j+1,k)}(z), f_{c^{\delta}(j,k+1)}(z), f_{c^{\delta}(j+1,k+1)}(z) \}.$$

We first show that these sets move nicely with z for small enough |z| and independent of δ . In particular we want to know that we may define quadrilateral regions $R_{\delta,j,k}(z)$, with straight edges and corners $Q_{c^{\delta}(j,k)}(z)$, and that these sets have disjoint interior.

1470

We make the change of coordinates in the w variable, by setting

$$\tilde{w}(z, w) = \tilde{w}_{jk}(z, w) = \frac{w - f_{c^{\delta}(j,k)}(z)}{f_{c^{\delta}(j+1,k)} - f_{c^{\delta}(j,k)}(z)}.$$

We get

$$\begin{split} \tilde{w}(z, f_{c^{\delta}(j,k)}(z)) &\equiv 0, \\ \tilde{w}(z, f_{c^{\delta}(j+1,k)}(z)) &\equiv 1. \end{split}$$

From the discussion on holomorphic motions in §2 we get the following.

LEMMA 3. Fix N. Then there exists a real number $t_0 > 0$ independent of δ such that if |l|, |m| < N then $|\tilde{w}_{jk}(z, f_{c^{\delta}(j+l,k+m)}(z)) - \tilde{w}_{jk}(z, f_{c^{\delta}(j+l,k+m)}(0))| < 1/10$ for all $|z| < t_0$ and any j, k.

From now on we assume that $|z| \le t_0$.

LEMMA 4. The quadrilaterals have disjoint interiors.

Proof. Pick (j, k). We use the linear change of coordinates in the w direction for fixed z:

$$\tilde{w}_{jk}(z, w) = \frac{w - f_{c^{\delta}(j,k)}(z)}{f_{c^{\delta}(j+1,k)}(z) - f_{c^{\delta}(j,k)}(z)}$$

This sends $f_{c^{\delta}(j+l,k+m)}(z)$ close to (j+l,k+m) on a small disc in the *z* direction for uniformly bounded (l,m). Hence it is clear that the quadrilaterals are disjoint.

Next we define preliminary functions h_{jk}^{δ} on the respective quadrilaterals. First we define a function $t_z(y_1, y_2)$ to be constant equal to 0 on the line between $f_{c^{\delta}(j,k)}(z)$ and $f_{c^{\delta}(j,k+1)}(z)$, and constant equal to 1 on the line between $f_{c^{\delta}(j+1,k)}(z)$ and $f_{c^{\delta}(j+1,k+1)}(z)$. We extend t_z continuously to be affine on the two other edges, and then we extend t_z to be constant equal to v on the line between $f_{c^{\delta}(j,k)}(z) + v \cdot (f_{c^{\delta}(j+1,k+1)}(z) - f_{c^{\delta}(j,k+1)}(z))$ and $f_{c^{\delta}(j,k+1)}(z) + v \cdot (f_{c^{\delta}(j+1,k+1)}(z) - f_{c^{\delta}(j,k+1)}(z))$. Finally we define h_{jk}^{δ} by

$$h_{jk}^{\delta}(z, y_1, y_2) = j\delta + \delta \cdot (\chi \circ t_z) (y_1, y_2)$$

The h_{jk}^{δ} patch up smoothly along the vertical sides of the quadrilaterals where the functions are constant. To be able to patch them together in the 'horizontal' directions we first extend each h_{jk}^{δ} across the 'horizontal' edges.

To do this we use the coordinates defined by \tilde{w} . Consider the normalization

$$\tilde{w}_{jk}(z, w) = \frac{w - f_{c^{\delta}(j,k)}(z)}{f_{c^{\delta}(j+1,k)}(z) - f_{c^{\delta}(j,k)}(z)}$$

Let \tilde{h}_{jk}^{δ} be defined by $\tilde{h}_{jk}^{\delta} \circ \tilde{w} = h_{jk}^{\delta}$. We want to glue together the two functions on the quadrilaterals sharing (in the new coordinates) the line segment γ between (0, 0) and (1, 0), i.e. the function \tilde{h}_{jk}^{δ} defined above γ and the function $\tilde{h}_{j(k-1)}^{\delta}$ below γ .

We start by extending the function \tilde{h}_{jk}^{δ} . Note first that by Lemma 3 the quadrilaterals $R_{\delta, j,k}$ and $R_{\delta, j,k-1}$ in the new coordinates – henceforth denoted $\tilde{R}_{\delta, j,k}$ and

 $\tilde{R}_{\delta,j,k-1}$ – have corners within (1/10)-distance from the points (l, m) for $l, m \in \{0, 1, -1\}$. Note also that if we define a function $\tilde{t}_z(\tilde{y}_1, \tilde{y}_2)$ ($\tilde{w} = \tilde{y}_1 + i \tilde{y}_2$) along lines in the quadrilateral $\tilde{R}_{\delta,j,k}(z)$ in the new coordinates as we did when we defined $t_z(y_1, y_2)$ above, then $h_{jk}^{\delta} = (j\delta + \delta(\chi \circ \tilde{t})) \circ \tilde{w}$. Because of the placing of the corners we see that there exists a constant *K* independent of δ , *j*, *k* such that $\|\nabla_{\tilde{w}}(j\delta + \delta(\chi \circ \tilde{t}))\| \leq K\delta$.

Continue the lines in $\tilde{R}_{\delta,j,k}$ that pass through the interval [(1/8), 1 - (1/8)] and extend \tilde{h}_{jk}^{δ} to be constant on these lines. By the placing of the corners there is a constant μ – independent of δ and j, k – such that these lines can be extended to the line between $(0, -\mu)$ and $(1, -\mu)$. Let $\tilde{P}_{\delta,j,k}$ denote the extended set $\tilde{R}_{\delta,j,k} \cup (\tilde{R}_{\delta,j,k-1} \cap \{y_2 \ge -\mu\})$; we see that \tilde{h}_{jk}^{δ} extends to be constant on the part of $\tilde{P}_{\delta,j,k}$ where it is not already defined. Extend $\tilde{h}_{i(k-1)}^{\delta}$ similarly in the other direction.

To glue the functions together we choose a smooth function $\varphi(z, \tilde{y}_1, \tilde{y}_2) = \varphi(\tilde{y}_2)$ such that $\varphi(\tilde{y}_2) = 1$ if $y_2 \ge \mu$ and such that $\varphi(\tilde{y}_2) = 0$ if $y_2 \le -\mu$. We define our final function

$$h_{\delta}(z, w) := (\varphi \circ \tilde{w}_{jk}) (z, w) \cdot h_{jk}^{\delta}(z, w) + (1 - \varphi \circ \tilde{w}_{jk}) (z, w) \cdot h_{j(k-1)}^{\delta}(z, w).$$
(2)

Fix a constant M such that $\|\partial \varphi / \partial \tilde{y}_2\| = M$.

LEMMA 5. There are constants N_1 and N_2 such that for each j, k, δ we have $h_{jk}^{\delta}(z, w) = j\delta$ if $|w - f_{c^{\delta}(j,k)}(z)| \le N_1 |f_{c^{\delta}(j+1,k)}(z) - f_{c^{\delta}(j,k)}(z)|$. Moreover there is a smooth function $\tilde{g}_{jk}^{\delta}(z, \tilde{y}_1, \tilde{y}_2)$ such that $h_{jk}^{\delta} = \tilde{g}_{jk}^{\delta} \circ \tilde{w}$ and $\|\nabla_{\tilde{w}} \tilde{g}_{jk}^{\delta}\| \le N_2 \delta$.

Proof. The existence of the constant N_1 can be seen by our description of the function in local coordinates where we used Lemma 3. To see the rest let us give the function \tilde{g}_{jk}^{δ} explicitly.

Fix z. Let (a_1, a_2) denote the corner of $\tilde{R}_{j,k}^{\delta}$ that is close to (0, 1), and define a map $A_z(\tilde{y}_1, \tilde{y}_2) := (\tilde{y}_1 - \tilde{y}_2(a_1/a_2), \tilde{y}_2(1/a_2))$. Then A_z changes smoothly with z and $||A_z|| < 2$ for all the possibilities of (a_1, a_2) we are considering.

Next we define a function \hat{t} on the quadrilateral $A_z(\tilde{R}_{j,k}^{\delta})$ along lines as above. Let (b_1, b_2) denote the corner close to (1, 1) and fix $\hat{y} = (\hat{y}_1, \hat{y}_2)$. We have that the two vertical sides of $A_z(\tilde{R}_{j,k}^{\delta})$ meet at the point (0, -L) where $L = b_2/(b_1 - 1)$. Calculating the slope of the line from the point \hat{y} to the point $(\hat{t}(\hat{y}), 0)$, we get that $\hat{y}_1/(L + \hat{y}_2) = \tilde{t}(y)/L$, which gives us

$$\widehat{t}(\widehat{y}) = \frac{\widehat{y}_1 \cdot L}{L + \widehat{y}_2} = \frac{\widehat{y}_1 \cdot b_2}{b_2 + \widehat{y}_2(b_1 - 1)}.$$

We have that \hat{t} varies smoothly with (b_1, b_2) and we see that \hat{t} has bounded derivatives for the cases of (b_1, b_2) we are considering. Define \tilde{g}_{jk}^{δ} by

$$\tilde{g}_{jk}^{\delta} = j\delta + \delta(\chi \circ \hat{t} \circ A_z),$$

and the function h_{jk}^{δ} is given by $h_{jk}^{\delta} = \tilde{g}_{jk}^{\delta} \circ \tilde{w}$.

LEMMA 6. $h_{\delta} \rightarrow g$ in sup norm on $\Delta_{t_0} \times R\Delta$.

Proof. It is clear that $h_{\delta}(0, \cdot) \to g(0, \cdot)$ uniformly. The claim then follows from Lemma 8 below.

LEMMA 7. If t_0 and δ are small enough, then $|f_{c^{\delta}(j,k)}(z) - f_{c^{\delta}(j+1,k)}(z)| \ge \delta^2$ for all z with $|z| \le t_0$ and all j, k such that $|c^{\delta}(j,k)| \le 2R$.

Proof. This follows from the Hölder continuity of the holomorphic motion.

LEMMA 8. Let $c \in R\overline{\Delta}$. The function $h_{\delta}(z, f_c(z))$ is small in C^1 -norm along the graph Γ_c .

Proof. We need to estimate the derivatives of the function $h_{\delta}(z, f_c(z))$ at an arbitrary point $(z_0, f_c(z_0))$, and this point is contained in some extended quadrilateral $P_{\delta,j,k}$. We estimate $\partial/\partial x = \partial/\partial x_1$ – the case of $\partial/\partial x_2$ is similar. Since we are working on lines we use the notation (x, y_1, y_2) for coordinates.

If the point is close to the vertical edges, then the function h_{δ} is locally constant, so we are done. We can assume that also $(z_0, f_c(z_0)) \in P_{\delta,j,k} \setminus P_{\delta,j,k+1}$. We divide the proof into two cases. Assume first that $(z_0, f_c(z_0))$ is not in $P_{\delta,j,k-1}$. Then the function h_{δ} is simply equal to the function $h_{j_k}^{\delta}$ (see (2)).

We have that

$$\frac{\partial}{\partial x}(h_{jk}^{\delta}(x, f(x))) = \left(\frac{\partial h_{jk}^{\delta}}{\partial x}, \frac{\partial h_{jk}^{\delta}}{\partial y_{1}}, \frac{\partial h_{jk}^{\delta}}{\partial y_{2}}\right)(x, f(x)) \cdot \left(1, \frac{\partial f_{1}}{\partial x}, \frac{\partial f_{2}}{\partial x}\right)(x) \\
= \frac{\partial h_{jk}^{\delta}}{\partial x}(x, f(x)) + \left(\frac{\partial h_{jk}^{\delta}}{\partial y_{1}}, \frac{\partial h_{jk}^{\delta}}{\partial y_{2}}\right)(x, f(x)) \cdot \left(\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{2}}{\partial x}\right)(x).$$
(3)

For fixed *s*, *v* we may define a curve (x, g(x)):

$$g(x) = (1 - s) [(1 - v) f_{c^{\delta}(j,k)}(x) + v f_{c^{\delta}(j+1,k)}(x)] + s[(1 - v) f_{c^{\delta}(j,k+1)}(x) + v f_{c^{\delta}(j+1,k+1)}(x)].$$

Then $h_{jk}^{\delta}(x, g(x)) \equiv j\delta + \chi(v)\delta$. Choose *s* and *v* so that $(x_0, g(x_0)) = (x_0, f_c(x_0))$. We get that

$$0 = \frac{\partial}{\partial x} (h_{jk}^{\delta}(x, g(x)))$$

= $\frac{\partial h_{jk}^{\delta}}{\partial x} (x, g(x)) + \left(\frac{\partial h_{jk}^{\delta}}{\partial y_1}, \frac{\partial h_{jk}^{\delta}}{\partial y_2}\right) (x, g(x)) \cdot \left(\frac{\partial g_1}{\partial x}, \frac{\partial g_2}{\partial x}\right) (x),$ (4)

and so substracting (4) from (3) we get

$$\frac{\partial}{\partial x}(h_{jk}^{\delta}(x_0, f(x_0))) = \left(\frac{\partial h_{jk}^{\delta}}{\partial y_1}, \frac{\partial h_{jk}^{\delta}}{\partial y_2}\right)(x_0, g(x_0)) \cdot \left(\frac{\partial f_1}{\partial x} - \frac{\partial g_1}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial g_2}{\partial x}\right)(x_0).$$

Using Lemma 3 we see that $||f_c(x_0) - f_{c^{\delta}(j+l,k+m)}(x_0)|| \le 2||f_{c^{\delta}(j+1,k)}(x_0) - f_{c^{\delta}(j,k)}(x_0)||$ for $l, m \in \{0, 1\}$, and so

$$\begin{split} \left\| \frac{\partial}{\partial x} (f_c - f_{c^{\delta}(j+l,k+m)})(x_0) \right\| \\ &\leq 4 \| (f_c - f_{c^{\delta}(j+l,(k+m))})(x_0)) \| \log \frac{1}{\| (f_c - f_{c^{\delta}(j+l,k+m)})(x_0) \|} \\ &\leq 8 \| (f_{c^{\delta}(j+1,k)} - f_{c^{\delta}(j,k)})(x_0) \| \log \frac{1}{2 \| (f_{c^{\delta}(j+1,k)} - f_{c^{\delta}(j,k)})(x_0) \|}. \end{split}$$

It follows that

$$\begin{split} \left\| \frac{\partial}{\partial x} (h_{\delta}(x, f(x))) \right\| &\leq 8 \cdot \left\| \left(\frac{\partial h_{\delta}}{\partial y_1}, \frac{\partial h_{\delta}}{\partial y_2} \right) \right\| \cdot \left\| (f_{c^{\delta}(j+1,k)} - f_{c^{\delta}(j,k)}) (x_0) \right\| \\ & \times \log \frac{1}{2 \| (f_{c^{\delta}(j+1,k)} - f_{c^{\delta}(j,k)}) (x_0) \|}. \end{split}$$

We proceed to estimate $\|(\partial h_{\delta}/\partial y_1, \partial h_{\delta}/\partial y_2)\|$. We change coordinates according to Lemma 5 and write h_{δ} as a composition $\tilde{g}_{\delta} \circ \tilde{w}(y)$. We get $||D_w \tilde{w}|| = 1/(||f_{c^{\delta}(i+1,k)}(x_0) - i|)$ $f_{c^{\delta}(i,k)}(x_0) \|$), and we have that $\|\nabla_{\tilde{w}} \tilde{g}_{\delta}\| \leq N_2 \delta$. This shows that

$$\left\| \left(\frac{\partial h_{\delta}}{\partial y_1}, \frac{\partial h_{\delta}}{\partial y_2} \right) \right\| \le N_2 \delta \frac{1}{\|f_{c^{\delta}(j+1,k)}(x_0) - f_{c^{\delta}(j,k)}(x_0)\|}$$

This gives

$$\left\|\frac{\partial}{\partial x}(h_{\delta}(x, f(x)))\right\| \le 8N_2\delta\log\frac{1}{\|f_{c^{\delta}(j+1,k)}(x_0) - f_{c^{\delta}(j,k)}(x_0)\|}.$$

We have by Lemma 7 that $||f_{c^{\delta}(i+1,k)}(x_0) - f_{c^{\delta}(i,k)}(x_0)|| \ge \delta^2$, and so

$$\left\|\frac{\partial}{\partial x}(h_{\delta}(x_0, f(x_0)))\right\| \le 8N_2\delta \log \frac{1}{2\delta^2} \to 0 \quad \text{as } \delta \to 0.$$

The other case we have to consider is when $(z_0, f_c(z_0))$ is contained in an overlap where we glued our functions together. In that case we may assume that $(z_0, f_c(z_0))$ is also contained in $P_{j(k-1)}^{\delta}$ (see (2)). Let \vec{v} denote the vector $\vec{v} = \partial/\partial x(x_0, f_c(x_0))$. We have that

$$\begin{aligned} \nabla h_{\delta}(x_{0}, f_{c}(x_{0})) \cdot \vec{v} &= \nabla [\varphi \circ \tilde{w} \cdot h_{jk}^{\delta}] (x_{0}, f_{c}(x_{0})) \cdot \vec{v} \\ &+ \nabla [(1 - \varphi) \circ \tilde{w} \cdot h_{j(k-1)}^{\delta}] (x_{0}, f_{c}(x_{0})) \cdot \vec{v} \\ &= h_{jk}^{\delta}(x_{0}, f_{c}(x_{0})) \cdot \nabla [\varphi \circ \tilde{w}] (x, f_{c}(x_{0})) \cdot \vec{v} \\ &+ (\varphi \circ \tilde{w}) (x_{0}, f_{c}(x_{0})) \cdot \nabla [h_{jk}^{\delta}] (x_{0}, f_{c}(x_{0})) \cdot \vec{v} \\ &+ h_{j(k-1)}^{\delta}(x_{0}, f_{c}(x_{0})) \cdot \nabla [(1 - \varphi) \circ \tilde{w}] (x, f_{c}(x_{0})) \cdot \vec{v} \\ &+ ((1 - \varphi) \circ \tilde{w}) (x_{0}, f_{c}(x_{0})) \cdot \nabla [h_{j(k-1)}^{\delta}] (x_{0}, f_{c}(x_{0})) \cdot \vec{v}.\end{aligned}$$

By the above calculations we need not worry about the second and fourth term in this sum so we have to check that

$$(h_{jk}^{\delta}(x_0, f_c(x_0)) - h_{j(k-1)}^{\delta}(x_0, f_c(x_0))) \cdot \nabla[\varphi \circ \tilde{w}] (x_0, f_c(x_0)) \cdot \vec{v} \to 0$$

as $\delta \rightarrow 0$.

First of all we have that $|h_{jk}^{\delta}(x_0, f_c(x_0)) - h_{j(k-1)}^{\delta}(x_0, f_c(x_0))| \le 2\delta$. Further, $|\nabla[\varphi \circ \tilde{w}](x_0, f_c(x_0)) \cdot \vec{v}| \le M \cdot \|D[\tilde{w}](x_0, f_c(x_0)) (\vec{v})\|$. Now

$$D[\tilde{w}](x_0, f_c(x_0))(\vec{v}) = \frac{\partial}{\partial x} \left[\left(x, \frac{f_c(x) - f_{c^{\delta}(j,k)}(x)}{f_{c^{\delta}(j+1,k)}(x) - f_{c^{\delta}(j,k)}(x)} \right) \right] (x_0).$$

Ignoring the constant term (it gets killed by δ), we get that

$$\begin{split} \|D[\tilde{w}](x_{0}, f_{c}(x_{0}))(\vec{v})\| &\leq \frac{|f_{c}'(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|}{|f_{c^{\delta}(j+1,k)}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|} \\ &+ \frac{|f_{c}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})| \cdot |f_{c^{\delta}(j+1,k)}'(x_{0}) - f_{c^{\delta}(j,k)}'(x_{0})|}{|f_{c^{\delta}(j+1,k)}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|^{2}} \\ &\leq \frac{|f_{c}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|}{|f_{c^{\delta}(j+1,k)}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|} \log \frac{1}{|f_{c}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|} \\ &+ \frac{|f_{c}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})| \cdot |f_{c^{\delta}(j+1,k)}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|}{|f_{c^{\delta}(j+1,k)}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|^{2}} \\ &\times \log \frac{1}{|f_{c^{\delta}(j+1,k)}(x_{0}) - f_{c^{\delta}(j,k)}(x_{0})|}. \end{split}$$

By Lemma 3, $|f_c(x_0) - f_{c^{\delta}(j,k)}(x_0)| / |f_{c^{\delta}(j+1,k)}(x_0) - f_{c^{\delta}(j,k)}(x_0)| \le 2$, and so

$$\begin{split} \|D[\tilde{w}](x_0, f_c(x_0))(\vec{v})\| &\leq 2 \cdot \log \frac{1}{|f_{c^{\delta}(j+1,k)}(x_0) - f_{c^{\delta}(j,k)}(x_0)|} \\ &+ 2\log \frac{1}{|f_c(x_0) - f_{c^{\delta}(j,k)}(x_0)|}. \end{split}$$

By Lemma 5, our function is constant unless $|f_c(x_0) - f_{c^{\delta}(j,k)}(x_0)| \ge N_1 |f_{c^{\delta}(j+1,k)}(x_0) - f_{c^{\delta}(j,k)}(x_0)| \ge N_1 \delta^2$ (by Lemma 7), and so we may assume that

$$\|D[\tilde{w}](x_0, f_c(x_0))(\vec{v})\| \le 2\log \frac{1}{\delta^2} + 2\log \frac{1}{N_1\delta^2}.$$

All in all:

$$\begin{aligned} &|(h_{jk}^{\delta}(x_0, f_c(x_0)) - h_{j(k-1)}^{\delta}(x_0, f_c(x_0))) \cdot \nabla[\varphi \circ \tilde{w}] (x_0, f_c(x_0)) \cdot \vec{v}| \\ &\leq 4M\delta \left(\log \frac{1}{\delta^2} + \log \frac{1}{N_1 \delta^2} \right) \to 0 \quad \text{as } \delta \to 0. \end{aligned}$$

4. *Proof of the main theorem*

We are ready to prove the main theorem. As pointed out in §2, by the theorem of Slodkowski [9, 11], we can assume that \mathcal{L} is a lamination of $\Delta \times \mathbb{C}$ as in the previous section.

Proof of the main theorem. Suppose that T is a positive closed (1, 1)-current on $\Delta^2(0, 1)$, supported on the laminated set K described in the introduction. We assume that T is subordinate to the lamination \mathcal{L} of K. Hence there is a positive measure μ such that $T = \int [V_{\alpha}] d\mu(\alpha)$. Suppose that $\lambda = dw - f'_{\alpha}(z) dz$. We want to show that $\lambda \wedge T = 0$. Let ϕ be any smooth (1, 0) test form. We need to show that $\langle \lambda \wedge T, \phi \rangle = 0$. This follows since

$$\begin{split} \langle \lambda \wedge T, \phi \rangle &= \int (\lambda \wedge T) \wedge \phi \\ &= \int T \wedge (\lambda \wedge \phi) \\ &= \int_{\alpha} \left(\int_{V_{\alpha}} \lambda \wedge \phi \right) d\mu(\alpha) \\ &= \int_{\alpha} 0 = 0. \end{split}$$

Assume next that *T* is directed by \mathcal{L} . Since \mathcal{L} is a lamination of $\Delta \times \mathbb{C}$ we may invoke the approximation result from the previous section. With the approximation result at hand the implication follows from Sullivan's proof of the smooth case [10]. We include the proof for the benefit of the reader.

Step 1 is to show that there exists a family of probability measures σ_{α} such that σ_{α} is supported on Γ_{α} , and a measure μ' on the α -plane such that for all test forms ω ,

$$T(\omega) = \int \left(\int_{\Gamma_{\alpha}} \omega \, d\sigma_{\alpha} \right) d\mu'.$$

Let ω be a (1, 1) test form and let $\lambda(z, w) = dw - f'_{\alpha}(z) dz$ for $w = f_{\alpha}(z)$. Let $\vec{v_1}(z, w) = (1, f'_{\alpha}(z))$ and let $\vec{v_2}(z, w) = (i, i \cdot f'_{\alpha}(z))$ for $w = f_{\alpha}(z)$, and define the 2-tangent field $v(z, w) = (\vec{v_1}(z, w), \vec{v_2}(z, w))$.

Switching basis,

$$\omega = \psi_1 \, dz \wedge d\overline{z} + \psi_2 \, dz \wedge \overline{\lambda} + \psi_3 \, d\overline{z} \wedge \lambda + \psi_4 \lambda \wedge \overline{\lambda},$$

for some functions ψ_i , and by assumption, $T(\omega) = T(\psi_1 dz \wedge d\overline{z})$. The function ψ_1 is given by $\psi_1 = (1/2i)\omega(v)$, and so

$$T(\omega) = T\left(\frac{1}{2i}\omega(v)\,dz \wedge d\overline{z}\right).$$

On the other hand we may use T to define a linear functional L on $C_0(\Delta \times \mathbb{C})$ by $L(\psi) = T(\psi \, dz \wedge d\overline{z})$, and so by the Riesz representation theorem there is a measure ν such that

$$L(\psi) = \int \psi \, d\nu.$$

This means that

$$T(\omega) = \int \frac{1}{2i} \omega(v) \, dv.$$

Now the measure ν disintegrates [6]: there exists a family of probability measures σ_{α} such that σ_{α} is supported on Γ_{α} , and a measure μ' on the α -plane such that for all $\psi \in C_0(\Delta \times \mathbb{C})$,

$$\int \psi \, d\nu = \int \left(\int_{\Gamma_{\alpha}} \psi \, d\sigma_{\alpha} \right) d\mu'.$$

We define currents T_{α} by $T_{\alpha}(\omega) = \int_{\Gamma_{\alpha}} (1/2i)\omega(v) d\sigma_{\alpha}$, and we get that

$$T(\omega) = \int T_{\alpha}(\omega) \, d\mu'.$$

The next step is to show that T_{α} is closed for μ' -almost all α . Let $\{\omega_j\}$ be a dense set of \mathcal{C}^1 -smooth (0, 1) test forms and fix a $j \in \mathbb{N}$. Let g be a continuous function in the α -variable and extend g constantly along leaves. We want to show that

$$\int g \cdot T_{\alpha}(\partial \omega) \, d\mu' = 0,$$

because this would imply that $\partial T_{\alpha} = 0$ for μ' -almost all α (since g is arbitrary).

By Theorem 1 there exists a sequence g_i of smooth functions such that $g_i \rightarrow g$ uniformly and in C^1 -norm on leaves. Since *T* is closed,

$$0 = \int T_{\alpha}(\partial(g\omega_j)) \, d\mu' = \int T_{\alpha}(\partial g_i \wedge \omega_j) \, d\mu' + \int g_i \cdot T_{\alpha}(\partial \omega_j) \, d\mu'.$$

Since $T_{\alpha}(\partial g_i \wedge \omega) \to 0$ we get that

$$\int g \cdot T_{\alpha}(\partial \omega_j) \, d\mu' = \lim_{i \to \infty} \int g_i \cdot T_{\alpha}(\partial \omega_j) \, d\mu' = 0.$$

Running through all ω_j we see that T_{α} is closed for μ' -almost all α . The only possibility then is that the measures σ_{α} are constant multiples of $dz \wedge d\overline{z}$, i.e. $\sigma_{\alpha} = \varphi(\alpha) dz \wedge d\overline{z}$ where φ is a measurable function [7]. Define $\mu := \varphi \cdot \mu'$.

5. Two counterexamples

In [5] the authors proved versions of the main theorem for real laminations in \mathbb{R}^2 and \mathbb{R}^3 . In those results we added an extra slope condition on the laminations which is analogous to the estimate in Corollary 1. We give here a simple example of a lamination of curves in \mathbb{R}^2 where the slope condition is not satisfied. Also, the conclusion of the main theorem fails. The analogue of Theorem 1, i.e. approximation of partially-smooth functions, fails as well.

For each $t \in \mathbb{R}$, we let γ_t be the curve $y = f_t(x) = (x - t)^3$ in \mathbb{R}^2 . Clearly this gives a continuous lamination of \mathbb{R}^2 by curves. The curves are all tangent to the *x*-axis. This implies that the current of integration of the *x*-axis is annihilated by the 1-form λ defined by $dy - f'_t(x) dx$ on γ_t . However, this current is not an integral of currents $[\gamma_t]$. We also observe that the function a(x, y) defined by $a(x, f_t(x)) = t$ cannot be approximated by C^1 functions, because any such approximation will have to have a small derivative along the *x*-axis.

We can also modify this example so that we have a Riemann surface lamination in \mathbb{C}^3 . For $t \in \mathbb{C}$, let γ_t be the complex curve $\gamma_t(s) = (z, w, \tau) = (s, (s - t)^2, (s - t)^3)$. These curves laminate \mathbb{C}^3 , and γ_t is tangent to the z-axis at (t, 0, 0). Hence the z-axis is annihilated by any continuous 1-forms defining the lamination. Hence the current of integration of the z-axis is directed. But clearly it is not subordinate to the lamination. Again the function $a(z, w, \tau)$ defined by $a|_{\gamma_t} = t$ cannot be approximated by C^1 functions. *Acknowledgements.* The first author is supported by an NSF grant. The third author is supported by Schweizerische Nationalfonds grant 200021-116165/1.

REFERENCES

- B. Berndtsson and N. Sibony. The *a*-equation on a positive closed current. *Invent. Math.* 147 (2002), 371–428.
- [2] E. Bedford, M. Lyubich and J. Smillie. Polynomial diffeomorphisms of C², IV. Invent. Math. 112 (1993), 77–125.
- [3] R. Dujardin. Approximation des fonctions lisses sur certaines laminations. Indiana Univ. Math. J. 55 (2006), 579–592.
- [4] J. E. Fornæss and N. Sibony. Harmonic currents and finite energy of laminations. *Geom. Funct. Anal.* 15 (2005), 962–1003.
- [5] J. E. Fornæss, Y. Wang and E. F. Wold. Approximation of partially smooth functions. *Proceedings of Qikeng Lu Conference (June 2006). Sci. China A: Math.* 51 (4) (2008), 553–561.
- [6] P. R. Halmos. *Measure Theory*. Van Nostrand, New York, 1950.
- [7] P. Lelong. Fonctions Plurisubharmoniques et Formes Différentielles Positives. Gordon and Breach, Paris, London, New York, 1968.
- [8] P. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps. Ann. Sci. École Norm. Sup. 16 (1983), 193–217.
- [9] Z. Słodkowski. Holomorphic motions and polynomial hulls. *Proc. Amer. Math. Soc.* 111 (1991), 347–355.
- [10] D. Sullivan. Cycles for the dynamical study of foliated manifolds and complex manifolds. *Invent. Math.* 36 (1976), 225–255.
- [11] K. Astala and G. J. Martin. Holomorphic motions. Papers on Analysis (A volume dedicated to Olli Martio on the occasion of his 60th birthday). *Report*, No. 83, University of Jyväskylä, Jyväskylä, 2001, pp. 27–40.