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Abstract Consider exchange economies in which preferences are continuous,
convex and strongly monotonic. It is well known that the Walrasian correspondence is
not Nash implementable: Maskin monotonicity (Maskin in Rev Econ Stud 66:23–38,
1999) is violated for Walrasian allocations on the boundary of the feasible set. We
derive an impossibility result showing that the Walrasian correspondence is in fact
not implementable in any of the solution concepts considered in the implementation
literature. Next, imposing an additional domain restriction, we construct a sequential
mechanism that doubly implements the Walrasian correspondence in subgame perfect
and strong subgame perfect equilibrium. The mechanism is based on price-allocation
announcements, and it fits the very description of Walrasian equilibrium. We thus
take care of the boundary problem that was prominent in the Nash implementation
literature.
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302 O. Bochet

1 Introduction

The question of the implementation of the Walrasian correspondence has received
much attention over the past decades. While the Walrasian correspondence satisfies
desirable requirements—e.g. efficiency, individual rationality—its strategic proper-
ties are much less appealing. Hurwicz (1972) shows that agents would not find it in
their interest to honestly report their preferences or demand functions to the so-called
auctioneer: the Walrasian correspondence is not strategy-proof. The news is not better
even if agents have complete information about one another and behave according to
the Nash equilibrium criterion. Hurwicz et al. (1995) show that Maskin monotonicity
(Maskin 1999; first version dated 1977), a necessary condition for implementation of
a social choice correspondence (henceforth, SCC) in Nash equilibrium, is violated by
the Walrasian correspondence for allocations that are at the boundary of the feasible
set. The Walrasian correspondence is badly behaved because it also depends on the
shape of preferences outside of the feasible set. This is what generates the so-called
boundary problem.

Two early papers in the literature on Nash implementation of the Walrasian cor-
respondence, Hurwicz (1979) and Schmeidler (1980), go around the violation of
Maskin monotonicity by constructing mechanisms in which allocations obtained
off the equilibrium path may award unfeasible bundles with negative quantities to
some agents.1 Giraud and Rochon (2001) construct an alternative mechanism that
respects feasibility but rules out Walrasian allocations on the boundary. Alternati-
vely, the literature also paid attention to the Nash implementation of the constrained
Walrasian correspondence—see for instance Postlewaite and Wettstein (1989), Dutta
et al. (1995), Tian (1992), Tian (2000), or Sotskov (2003).2 Consistent with the notion
of Walrasian equilibrium, in each of these papers, strategy sets include announce-
ments of allocations and prices. In a different literature, papers on non-cooperative
bargaining such as Gale (1986a,b), or more recently Kunimoto and Serrano (2004)
provide implementation in subgame perfect equilibrium of the Walrasian correspon-
dence for economies with a continuum of agents. However, Walrasian allocations on
the boundary of the feasible sets are also ruled out. Finally, Yildiz (2003) considers a
bargaining procedure that covers only the two-player case, and uses assumptions such
as uniqueness and interiority of Walrasian allocations. To the best of our knowledge,
the papers on non-cooperative bargaining are the only one in this literature that use
sequential mechanisms.

We know that the class of implementable SCCs considerably expands when one
considers refinements of Nash equilibrium as solution concepts. For instance, in their
seminal papers, Moore and Repullo (1988) (MR in the sequel) and Abreu and Sen

1 In Hurwicz (1979) and Schmeidler (1980), the consumption set of agents is implicitly R
� instead of

the usual non-negative orthant. Although a feasible bundle is always preferred by agents to one that gives
negative quantities of some of the goods, the unfeasibility of some bundles off-the-equilibrium path allows
to go around the violation of Maskin monotonicity on the boundary of the feasible set.
2 The constrained Walrasian correspondence is a supercorrespondence of the Walrasian correspondence.
Thomson (1999) shows that it is the minimal monotonic extension of the Walrasian correspondence. For
domains in which preferences are convex and Walrasian allocations are interior, the two correspondences
coincide.
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Implementation of the Walrasian correspondence: the boundary problem 303

(1990) (henceforth AS) show that Maskin monotonicity is no longer necessary for
implementation in subgame perfect equilibrium. In MR, it is claimed that the Walrasian
Correspondence is implementable in subgame perfect equilibrium when preferences
are continuous, convex, and monotonic. In contradiction with their claim, we first show
that, without further restrictions, the boundary problem generates an impossibility.
Indeed, the Walrasian correspondence defined over this class of economies is in fact
not implementable in any responsive game theoretic solution concept—and therefore
not implementable in any of the solution concepts commonly studied in the literature.3

Next, we show that, by excluding non-differentiable preferences, the Walrasian
correspondence is implementable in subgame perfect equilibrium.4 We then proceed
to solve the boundary problem. Because MR and AS construct a canonical mechanism
for the entire class of SCCs that are implementable in subgame perfect equilibrium, we
could simply rely on their construction.5 Nevertheless, once a specific SCC of interest
has been identified, this mechanism is not very appealing. It involves each agent
reporting preference profiles, which are infinite-dimensional objects. Also, since this
mechanism is not designed for any particular SCC, it does not capture the specific
characteristics of the Walrasian correspondence.

However, for Nash implementation, Saijo (1988) and McKelvey (1989) show
that the size of strategy sets in general mechanisms can be reduced. In particular,
McKelvey (1989) shows that announcements of preference profiles are not necessary.
While such reduction remains an open question for implementation in subgame per-
fect equilibrium, it is possible to follow a similar approach for specific SCCs and
use tailor-made strategy sets—see for instance Serrano and Vohra (2002) who, in the
context of exchange economies, provide a mechanism to implement the bargaining
set in subgame perfect equilibrium.

Our position is that a mechanism is appealing if (i) in equilibrium, agents always
get what they asked for, (ii) announcements of preference profiles are not part of the
strategy sets of agents, and (iii) the mechanism corresponds closely to the description
of the correspondence studied.

Our mechanism is simple, appealing, and it doubly implements the Walrasian
correspondence in subgame perfect and strong subgame perfect equilibrium. Impor-
tantly, our construction is based on the notion of allocations, prices, and moves along
price hyperplanes, which are central in the story behind the Walrasian correspondence.
Recall that a pair composed of a feasible allocation and a price vector is a Walrasian
equilibrium if each agent gets, at that allocation, the best bundle he can obtain in
his budget set: no agent wants to “move” to obtain a different bundle on his budget
hyperplane. This fundamental property is problematic for allocations that are on the
boundary of the feasible set: moves along price hyperplanes can lead to bundles that
are unfeasible. The mechanism we construct allows a better understanding of the stra-
tegic issues at stake when solving the boundary problem. Interestingly, in contrast to

3 See Sect. 2.2 for a formal definition of a responsive game theoretic solution concept.
4 Obviously, even with differentiability, the Walrasian correspondence is not Nash implementable as long
as boundary allocations are not excluded.
5 Suppose we are interested in implementation of SCCs in subgame perfect equilibrium. Loosely speaking,
we say that a mechanism is canonical if it is constructed for the implementation of entire classes of SCCs.
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304 O. Bochet

implementation in Nash equilibrium, a change in the property of a boundary alloca-
tion when going from one preference profile to another—from Walrasian to not being
Walrasian—is revealed through differences in the upper contour sets at that allocation.

The plan of the paper is as follows. In Sect. 2, we present the set-up. In Sect. 3, we
prove our impossibility result. In Sect. 4, we present the mechanism and the imple-
mentation result. We provide some final comments in Sect. 5.

2 The set-up

2.1 Economic environments

There is a set N ≡ {1, . . . , n}, n ≥ 2, of agents, and a set L ≡ {1, . . . , �} of infinitely
divisible goods. For each i ∈ N , let R

�+ be agent i’s consumption set. For each i ∈ N ,
let Ri be a complete and transitive binary relation on R

�+ indicating (weak) preferences.
Let the associated strict preference and indifference relations be Pi and Ii . For each
i ∈ N , let Ri be agent i’s set of possible preferences. Let R = ∏

i Ri be the set of
preference profiles. A typical preference profile is a list R = (Ri )i∈N ∈ R. For each
i ∈ N , let ωi ∈ R

�+ \ {0} be i’s individual endowment. The aggregate endowment
is ω̄ = ∑

ωi � 0.6 Each i ∈ N is fully characterized by Ri and ωi . The only
characteristics of agents unknown to the planner are the preferences. An economy is
thus a preference profile.

We consider the following two domains of economies.
RC (classical domain): For each i ∈ N , each Ri ∈ RC

i is continuous, convex and
strongly monotonic.7

RD (differentiable domain): For each i ∈ N , each Ri ∈ RD
i is convex, strongly

monotonic and representable by a differentiable utility function.
A feasible allocation is a list of bundles (xi )i∈N ∈ R

�n+ such that
∑

xi ≤ ω̄. Given
i ∈ N , let xil ∈ R+ be the lth coordinate of xi .

Let A ≡ {x ∈ R
�n+ : ∑

xi ≤ ω̄} be the set of feasible allocations.
Let ∂ A ≡ {x ∈ A : for some i ∈ N and some l, m ∈ L , xil = ω̄l , xim > 0} be the

(upper) boundary of A . Likewise, let A◦ = A \ ∂ A ≡ {x ∈ A : for each i ∈ N and
l ∈ L , either 0 ≤ xil < ω̄l , or xil = ω̄l implies that for each m �= l, xim = 0} be the
interior of A.8

For each i ∈ N , let Ai , ∂ Ai , and A◦
i be the projections of A, ∂ A and A◦ onto agent

i ’s consumption set.
For each x ∈ ∂ A, let J (x) ≡ {i ∈ N : xi ∈ ∂ Ai } be the set of agents who receive

a bundle xi on the boundary of the feasible set.
Let F ≡ {x ∈ R

�n+ : ∑
xi = ω̄} be the set of balanced allocations.

6 We order vectors with the usual conventions, �, >, ≥.
7 A preference relation Ri defined over R

�+ is convex if, for each {xi , yi } ⊂ R
�+ such that xi Pi yi , we

have that for each λ ∈ (0, 1], λxi + (1 − λ)yi Pi yi .
A preference relation Ri defined over R

�+ is strongly monotonic if, for each {xi , yi } ⊂ R
�+, xi > yi

implies that xi Pi yi .
8 Notice that our definition of interiority is not strictly speaking the interior of A since some corners of the
Edgeworth box may be included in A◦. We nevertheless stick to this terminology for convenience.
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Implementation of the Walrasian correspondence: the boundary problem 305

A price vector is p ∈ R
�+ such that

∑
pl = 1. Let � ≡ {p ∈ R

�+ : ∑
pl = 1} be

the price simplex and �+ ≡ {p ∈ R
�++ : ∑

pl = 1} the set of strictly positive price
vector.

For each i ∈ N , each zi ∈ Ai , and each p ∈ �, let Bi (p, zi ) ≡{
xi ∈ R

�+ : p · xi ≤ p · zi
}

be the budget set of agent i at price p and bundle zi ,
and Bi (p, zi ) ∩ Ai ≡ {xi ∈ Ai : p · xi ≤ p · zi } his constrained budget set at price p
and bundle zi .

For each x ∈ ∂ A, each p ∈ �+ and each i ∈ J (x), let Ti (p, x) ≡ {p′ ∈ �+ \{p} :
there exists yi ∈ Ai \ {xi } such that p′ · yi = p′ · xi and p · yi > p · ωi } be the set
of prices at which i can attain bundles yi ∈ Bi (p′, xi ) ∩ Ai that are not affordable in
Bi (p, ωi ) ∩ Ai .9

For each i ∈ N , each Ri ∈ Ri , and each xi ∈ R
�+, let UC(Ri , xi ) ≡

{
yi ∈ R

�+ : yi Ri xi
}

be the upper contour set of Ri at xi ; LC(Ri , xi ) ≡
{

yi ∈ R
�+ : xi Ri yi

}
be the lower contour set of Ri at xi ; SUC(Ri , xi ) ≡

{
yi ∈ R

�+ : yi Pi xi
}

be the strict upper contour set of Ri at xi ; and I C(Ri , xi ) ≡
{

yi ∈ R
�+ : xi Ii yi

}
be the indifference curve of Ri through xi .

Given R ∈ R, x ∈ A is a Walrasian allocation for R if there is p ∈ � such that for
each i ∈ N , xi ∈ Bi (p, ωi ), and for each yi ∈ Bi (p, ωi ), xi Ri yi . For each R ∈ R,
let W (R) be the set of these allocations.

Likewise, Given R ∈ R, (x, p) ∈ A × � is a Walrasian equilibrium for R if for
each i ∈ N , xi ∈ Bi (p, ωi ), and for each yi ∈ Bi (p, ωi ), xi Ri yi .10 For each R ∈ R,
let W E(R) be the set of these allocation-price pairs.

A social choice correspondence is a mapping f : R � A that associates to each
preference profile a non-empty subset of feasible allocations.

The Walrasian correspondence W : R � A associates to each economy R ∈ R
its set of Walrasian allocations W (R).

To conclude, we recall the definition of Maskin monotonicity and the necessary
condition C for subgame perfect implementation introduced in MR.

Maskin monotonicity: For each {R, R′} ⊂ R and each a ∈ f (R),

[For each i ∈ N , LC (Ri , ai ) ∩ Ai ⊆ LC(R′
i , ai ) ∩ Ai ] �⇒ [ a ∈ f (R′)].

Condition C: For each {R, R′} ⊂ R and each a ∈ f (R) \ f (R′), there exists a finite
sequence (al)k+1

l=1 of elements of A such that,

a) For each l = 0, . . . , k − 1, there exists j ∈ N for whom,

al
j R j al+1

j .

b) There is j ∈ N for whom R j �= R′
j and,

ak
j R j ak+1

j and ak+1
j P ′

j ak
j .

9 This definition will be explained in Sect. 4 and Fig. 3.
10 Notice that, both in RC and RD , preferences are strongly montonic. Thus, for each Walrasian equili-
brium (x, p), we have p ∈ �+.
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2.2 Game-form: definitions and notation

Let T be a game tree. Let S be the set of nodes of T , s0 the initial node, and Z the set
of terminal nodes. For each i ∈ N , let Mi be the set of (pure) strategies, and for each
s ∈ S, let Ms

i be the set of strategies available to i at node s ∈ S. Let M ≡ ∏
i Mi be the

set of strategy profiles. As is common in the implementation literature, we confine our
attention to pure strategies. Let g, the outcome function, be a function that associates
a feasible allocation with each path of play. An extensive mechanism � ≡ (N , T, g)

—or extensive game form—is a game with possibly simultaneous moves.11

Let m ∈ M . Let g(m) be the allocation prescribed by the path induced by m, and
gi (m) the ith component of g(m). Let g(m, s) be the allocation corresponding to m
starting at node s. Let G be the set of mechanisms.

Let � ∈ G. Given R ∈ R, � defines a non-cooperative game in extensive form
(�, R). For each R ∈ R, a game-theoretic solution concept E (henceforth solution
concept) describes a set of predictions on how � will be played, as a function of the
agents’ preferences. It is a mapping E : G × R � 2M . For each R ∈ R, let E(�, R)

and EO(�, R) be the set of E-equilibrium and E-equilibrium outcomes of (�, R). The
definition of solution concepts is indeed very broad and encompasses many concepts
in which agents do not behave “strategically”. In order to narrow the definition, we
introduce a minimal requirement on solution concepts.

Responsiveness: E is responsive with respect to � ∈ G if for each {R, R′} ⊂ R and
each x ∈ EO(�, R) \ EO(�, R′), there exist i ∈ N and {yi , zi } ⊂ Ai such that,

yi Ri zi and zi P ′
i yi .

Observe that all the solution concepts commonly studied in the implementation
literature—such as Nash equilibrium and any of its refinements—are responsive.

We define next the solution concepts that we consider in the paper. Let R ∈ R and
� ∈ G.

A subgame perfect equilibrium of (�, R) is m∗ ∈ M such that for each s ∈ S \ Z ,
each i ∈ N , and each mi ∈ Mi ,

gi (m
∗, s) Ri gi

(
mi , m∗−i , s

)
.

Let S P E(�, R) and S P EO(�, R) be the set of subgame perfect equilibrium and
subgame perfect equilibrium outcomes of (�, R) .

A strong equilibrium of (�, R) is m∗ ∈ M such that for each H ⊆ N , each m′ �= m
with, for each i ∈ N \ H , mi = m′

i , then there is j ∈ H for whom,

gi (m
∗) Ri gi (m

′).

11 The definition we give encompasses both static and sequential mechanisms: a static mechanism can
always be represented via an extensive mechanism with simultaneous moves.

123



Implementation of the Walrasian correspondence: the boundary problem 307

A strong subgame perfect equilibrium of (�, R) is m∗ ∈ M such that for each
proper subgame, m∗ is a strong equilibrium in that subgame. Let SS P E(�, R) and
SS P EO(�, R) be the set of strong subgame perfect equilibrium and strong subgame
perfect equilibrium outcomes of (�, R) .

A SCC f is implemented by � in E if for each R ∈ R, we have EO (�, R) = f (R).

A SCC f is doubly implemented by � in subgame perfect and strong subgame
perfect equilibrium if for each R ∈ R we have, SS P EO(�, R) = S P EO(�, R) =
f (R).

We define next the more general notion of implementability of a SCC f .

Implementability: There exist � and a solution concept E, responsive with respect
to �, such that f is implemented by � in E .

We need to introduce one last piece of notation. For each i ∈ N , let εi ∈ R
�+ \

{0} be such that ωi − εi ∈ R
�+ \ {0}. Such an εi exists since we assumed that for

each i ∈ N , ωi > 0. Let P be the set of one-to-one functions—permutations—
from N into itself, and let Pn be the set of permutation profiles. For each i ∈ N ,
let π i ∈ P be a permutation and π ≡ (π i )i∈N . For each π ∈ Pn, let f (π) ≡
π1(π2(. . . (π i . . . (πn)) . . .) be the ordered composition of the permutations in π . We
call f (π) a protocol. For each π ∈ Pn , let fi (π) be the ith agent in f (π)—i.e. f1(π)

is the first agent, fn(π) the last agent in the protocol etc.
For each i ∈ N and each π ∈ Pn , we use the notation (π ′i , π−i ) to indicate that i

uses π ′i , instead of π i , while each j ∈ N \ {i} uses π j . Since we confine our attention
to pure strategies, notice that, for each i ∈ N and each {π, π∗} ⊂ Pn, there exists
π ′i �= π i such that f (π ′i , π−i ) = f (π∗). Permutations will be used as components
of strategy sets and will play a role similar to integer devices found in many of the
mechanisms used in the literature. However, unlike integer devices, P is a finite set
which allows us to have finite strategy sets in the mechanism we construct in Sect. 4.12

Permutations capture here an idea of anonymity of the mechanism –equilibria
should be independent of protocols—and work as a “king-maker” process because
protocols will determine who will lead the game if it goes beyond Stage 1 of our
mechanism. A similar device was used in Serrano and Vohra (1997). Permutations
were used first as components of strategy spaces in the context of implementation, but
in a different fashion, in Thomson (2005, first version dated 1995).

3 An impossibility Result

Given any responsive solution concept, implementability of a SCC requires the follo-
wing property to be satisfied.

Justified sensitivity: For each {R, R′} ⊂ R and each a ∈ f (R) \ f (R′), there exist
i ∈ N and {xi , yi } ⊂ Ai such that,

xi Ri yi and yi P ′
i xi .

12 See Jackson (1992) for a criticism of integer games.
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Justified sensitivity is a basic necessary condition for a SCC to be implemented in
some responsive solution concept.13 Suppose there exist {R, R′} ⊂ R and z ∈ A such
that z ∈ f (R) \ f (R′). If f satisfies implementability, there exist a mechanism �

and a solution concept E, responsive with respect to �, such that f is implemented
by � in E . Precisely, there exists m ∈ E(�, R) that gives g(m) = z. Assume that
there does not exist i ∈ N and {xi , yi } ⊂ Ai such that xi Ri yi and yi P ′

i xi . Since
f is implemented by � in E , then z /∈ EO(�, R′). But this is in contradiction with
E being responsive. In fact, f cannot be implemented by � in E : it is not possible to
check information on allocations that are not feasible.14

When the domain of preference profiles is RC , the Walrasian correspondence
violates justified sensitivity, and hence violates implementability.15 The problem we
underline here also applies to public good economies and the Lindhal correspondence.
Proposition 1 below can be adapted to that case.

Proposition 1 Suppose the domain is RC and n ≥ 2. Then the Walrasian correspon-
dence violates implementability.

Proof Let � = n = 2. Let R ⊂ RC , R1 = {R1, R′
1}, R2 = {R2}, R = (R1, R2),

R′ = (R′
1, R′

2) with R′
2 = R2 and W : R � A. Let R1, R′

1 and R2 be respectively
represented by the following functions:

u1(x1, y1) = min

{

x1 + y1; x1 + 1

3
y1 + 8

3

}

, u′
1(x1, y1) = x1 + y1, and

u2(x2, y2; R2) = 2x2 + y2.

The individual endowments are ω1 = ω2 = (2, 2).
Let z∗ = ((1, 4); (3, 0)) and p∗ = ( 2

3 , 1
3

)
. Observe that z∗ ∈ W (R) with supporting

price p∗. The situation is depicted in Fig. 1.
Since z∗ /∈ W (R′), implementability requires justified sensitivity. However, there

does not exist i ∈ N and {xi , yi } ⊂ Ai such that xi Ri yi and yi P ′
i xi . It is easy to see

that the proof can be extended to any n and �.16 ��

13 The reader may have noticed that a preference change from R to R′ could also simply imply the existence
of i ∈ N and {xi , yi } ⊂ Ai such that xi Pi yi and yi I ′

i xi . By continuity and strong monotonicity of
preferences, this implies that there exists {wi , zi } ⊂ Ai such that wi Ri zi and zi P ′

i wi . Therefore, whenever
R �= R′, the structure of the model and the assumptions on preferences guarantee that, if preferences change
within A, there always exists a “real” preference reversal in A.
14 Therefore, when a SCC f violates justified sensitivity, the only hope to have f implemented is to use
some non-responsive solution concepts. For instance, let T ruth be the truthtelling solution concept—i.e.
agents always report truthfully—and � be the direct mechanism in which g = f and, for each i ∈ N ,
Mi = Ri . Trivially, for each R ∈ R, T ruthO(�, R) = f (R).
15 The violation of justified sensitivity implies that the Walrasian correspondence cannot be virtually im-
plemented in any responsive solution concept. See Abreu and Sen (1991) for a definition of virtual Nash
implementation.
16 It is clear that the domain R ⊂ RC of preferences does not have to be a cartesian product for the proof
to go through.
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Implementation of the Walrasian correspondence: the boundary problem 309

Fig. 1 An impossibility

Fig. 2 Excluding kinked
indifference curves

By considering the domain RD , the pathologies uncovered in Proposition 1 disap-
pear.17 Differentiability of preferences guarantees that local information around z∗
can be used to construct a sequence (al)k+1

l=1 of elements of A as required by condition
C . To see this, consider {R, R′} ⊂ RD and z∗ ∈ W (R) \ W (R′) as shown in Fig. 2.

17 Obviously, even with this domain restriction, the Walrasian correspondence is not Nash implementable
since corner Walrasian allocations are not excluded.

123



310 O. Bochet

We can now identify {z∗, x, y} ⊂ A such that,

z∗
1 R1 x1 R1 y1 and y1 P ′

1 x1.

When differentiability is imposed, I C(R1, z∗
1) ∩ A1 and I C(R′

1, z∗
1) ∩ A1 have to

differ around z∗
1 if z∗ /∈ W (R′). Excluding non-differentiable preference relations

from the domain, we do not need further restrictions to implement the Walrasian
correspondence in subgame perfect equilibrium.

4 Taking care of the boundary problem

We now work with the differentiable domain RD . The mechanism we construct has
three stages. At stage 1, agents simultaneously announce an allocation, a price and a
permutation. First, for each R ∈ RD , and each (x, p) ∈ A◦ × �+, the information
contained locally in prices is enough to determine whether (x, p) ∈ W E(R). If
(x, p) /∈ W E(R), there exist i ∈ N and yi ∈ Bi (p, ωi ) ∩ Ai such that yi Pi xi .18

The possibility of moves along budget hyperplanes is an important feature of our
construction.19 Accordingly, our mechanism always stops at Stage 1 if announced
allocations are in A◦.

However, when x ∈ ∂ A, this device does not work anymore because moves along
price hyperplanes can lead to infeasible bundles. To circumvent this problem, we still
rely on the information contained locally in prices, but we use an alternative idea of
retrading. This is where sequentiality comes into play. To see this, let us look at Fig. 3.
There is {R, R′} ⊂ RD and (z∗, p∗) ∈ ∂ A × �+ such that (z∗, p∗) ∈ W E(R) \
W E(R′). Observe that (i) z∗

1 ∈ ∂ A1 and (i i) p′ is such that there exists y1 ∈ A1 with
p′ · y1 = p′ · z∗

1 and p∗ · y1 > p∗ · ω1. Hence, 1 ∈ J (z∗) and p′ ∈ T1(p∗, z∗). When
agent 1 has preferences R1, there exists y1 ∈ (B1

(
p′, z∗

1

) ∩ A1) \ B1(p, ω1) such that
y1 P1 z∗

1. Notice that we use a new constrained budget set B1
(

p′, z∗
1

) ∩ A1 where z∗
1

plays the role of agent 1’s endowment—hence the idea of retrading. But when agent 1
has preferences R′

1, there does not exist y1 ∈ B1
(

p′, z∗
1

)∩ A1 such that y1 P1 z∗
1. Thus

(z∗, p∗) /∈ W E(R′). For if (z∗, p∗) ∈ W E(R′), each p′ ∈ T1(p, z∗) would create
profitable retrading opportunities for agent 1 in B1

(
p′, z∗

1

) ∩ A1.
Whenever agents agree on an allocation x ∈ ∂ A, the game continues to Stage 2

and agent f1(π) is given the opportunity to reveal whether x is Walrasian for the true
preference profile. The revelation is made possible because, for each {R, R′} ⊂ RD

and each (x, p) ∈ ∂ A × �+ such that (x, p) ∈ W E(R) \ W E(R′), there exist
i ∈ J (x) and p′ �= p such that SUC(Ri , xi ) ∩ {yi ∈ Ai : p′ · yi = p′ · xi } �= ∅
while UC(R′

i , xi ) ∩ {yi ∈ Ai : p′ · yi = p′ · xi } = ∅. Interestingly, in contrast
to implementation in Nash equilibrium, for the boundary problem, a change in the
property of an allocation x ∈ ∂ A when going from one preference profile R to another

18 The assumption of convexity of preferences cannot be relaxed. Thomson (1999) showed that with non-
convex preferences, the Walrasian correspondence violates Maskin monotonicity even for allocations that
are in A◦.
19 This idea was already used, for instance, in Dutta et al. (1995) or Sotskov (2003).
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Fig. 3 Dealing with boundary
allocations

R′ –from being Walrasian to not being Walrasian—is revealed through differences in
the upper contour sets at that allocation.

We now present formally our mechanism. It is defined for n ≥ 3 agents. For each
i ∈ N , select an εi ∈ R

�+ \ {0} such that ωi − εi ∈ R
�+ \ {0}.20

Mechanism �:

Stage 1 Agents simultaneously choose
(
m1

i

)n
i=1 with m1

i =(
xi , pi , π i

)∈ F ×�+×P
such that, for each i ∈ N and each j �= i , pi · xi

j = pi · ω j .

(1) If for each i ∈ N ,
(
xi , pi

) = (x̄, p̄) and x̄ ∈ A◦, the game stops and the outcome
is x̄ .

(2) If for each i ∈ N ,
(
xi , pi

) = (x̄, p̄) and x̄ ∈ ∂ A, then go to Stage 2.
(3) If for each j ∈ N \ {i}, (

x j , p j
) = (x̄, p̄), i �= fn(π), and mi = (x ′, p′) �=

(x̄, p̄), then (i) if p̄ · x ′
i = p̄ · ωi , agent i gets x ′

i , each j ∈ N \ {i, fn(π)} gets
ω̄−x ′

i
n−2 , and fn(π) gets the 0 bundle, or (ii) if p̄ · x ′

i �= p̄ ·ωi , then each j ∈ N gets
his endowment ω j .

(4) In all other cases, the game stops, f1(π) gets ω f1(π) + ε fn(π), each j ∈ N \
{ f1(π), fn (π)} gets ω j , and fn(π) gets ω fn(π) − ε fn(π).

Stage 2 Agent f1(π) chooses m2
f1(π) = (k, p′) ∈ N \ { f1(π)} × �+.

(1) if x̄k ∈ ∂ Ak and p′ ∈ Tk( p̄, x̄), go to Stage 3.21

(2) In all other cases, the game stops and the outcome is x̄ .

Stage 3 Agent k chooses m3
k = yk ∈ {y′

k ∈ Ak : p′ ·y′
k = p′ · x̄k , p̄·yk > p̄·ωk}∪{x̄k}.

20 Individual epsilons are parameters of this mechanism.
21 That is, p′ ∈ �+ is such that there exist feasible bundles yk �= x̄k , with p̄·yk = p̄·ωk and p′ ·yk < p′ ·x̄k .
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(1) If he chooses yk = x̄k , he gets it and agent f1(π) gets x̄ f1(π) + 1
n−2 (ω̄ − x̄k −

x̄ f1(π)). If k ∈ N \ { fn(π)}, then each j ∈ N \ { f1(π), k, fn(π)} gets 1
n−2 (ω̄ −

x̄k − x̄ f1(π)), and fn(π) gets the 0 bundle. Otherwise, if k = fn(π), then each
j ∈ N \ { f1(π), k, fn−1(π)} gets 1

n−2 (ω̄ − x̄k − x̄ f1(π)) and agent fn−1(π) gets
the 0 bundle.

(2) If he chooses yk �= x̄k , he gets it. Agent f1(π) gets the 0 bundle and each
j ∈ N \ { f1(π), k} gets ω̄−yk

n−2 .

We can now proceed to the main theorem of the paper.

Theorem 1 Suppose the domain is RD and that n ≥ 3. Then, the Walrasian corres-
pondence is doubly implemented by � in subgame perfect and strong subgame perfect
equilibrium.

Proof Let R ∈ RD . The proof is divided into two parts.
First part: S P EO(�, R) ⊆ W (R).22

Let m ∈ S P E(�, R) with m1
i = (xi , pi , π i ). We show that g(m) ∈ W (R). The

proof is divided in several lemma.

Lemma 1 There exists (x̄, p̄) such that, for each i ∈ N,
(
xi , pi

) = (x̄, p̄)

Proof The proof is by contradiction. There are two cases.

Case 1 There exist (x̄, p̄) ∈ A × �+ and i ∈ N \ { fn(π)} such that for each j �= i ,(
x j , p j

) = (x̄, p̄), and (xi , pi ) �= (x̄, p̄).
First, if p̄ · x ′

i = p̄ · ωi , the game stops and g fn(π)(m) = 0. Let k ≡ fn(π).
Let m′1

k = (x ′k, p′k, π ′k) be such that k = f1(π
′k, π−k), and (x ′k, p′k) �= (x̄, p̄).

Then gk(m′
k, m−k) = ωk + ε fn(π ′k ,π−k ). Since preferences are strongly monotonic,

ωk > 0, and for each j ∈ N , ε j > 0, this is a profitable deviation for agent k. Thus,
m /∈ S P E(�, R).

Next, if p̄ · x ′
i �= p̄ · ωi , the game stops and each j ∈ N gets g j (m) = ω j .

Let k ∈ N \ {i}. Let m′1
k = (x ′k, p′k, π ′k) be such that k = f1(π

′k, π−k), and
(x ′k, p′k) �= (x̄, p̄). Then gk(m′

k, m−k) = ωk + ε fn(π ′k ,π−k ). Since preferences are
strongly monotonic, ωk > 0, and for each j ∈ N , ε j > 0, this is a profitable deviation
for agent k. Thus m /∈ S P E(�, R).

Case 2 Either (i) There exist (x̄, p̄) ∈ A × �+ and k ≡ fn(π) such that for each
j ∈ N \ { fn(π)}, (

x j , p j
) = (x̄, p̄), and (xk, pk) �= (x̄, p̄); or (ii) There exists

{i, j, k} ⊂ N such that
(
xi , pi

) �= (
x j , p j

) �= (
xk, pk

)
.

In either case, the game stops, each j ∈ N \ { f1(π), fn(π)} gets g j (m) = ω j , and
g fn(π)(m) = ω fn(π) − ε fn(π). Let k ∈ N \ { f1(π), fn(π)}. Let m′1

k = (xk, pk, π ′k)
be such that k = f1(π

′k, π−k) and fn(π ′k, π−k) = fn(π). Then gk(m′
k, m−k) =

ωk + ε fn(π ′k ,π−k ). Since preferences are strongly monotonic, ωk > 0, and for each
j ∈ N , ε j > 0, this is a profitable deviation for agent k. Thus, m /∈ S P E(�, R). ��

22 Since SS P E(�, R) ⊆ S P E(�, R), it is enough, for the first part of the proof, to show that
S P EO(�, R) ⊆ W E(R).
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Lemma 2 Let x̄ ∈ A◦. Then (x̄, p̄) ∈ W E(R)

Proof Suppose not. The game stops at Stage 1 with g(m) = x̄ ∈ A◦ but (x̄, p̄) /∈
W E(R).

By definition of a Walrasian equilibrium, convexity of preferences and the fact that
x̄ ∈ A◦, there exist k ∈ N and x ′

k ∈ Ak such that p̄ · x ′
k = p̄ · ωk and x ′

k Pk x̄k . Let

m′1
k = (x ′, p̄, π ′k)be such that k = f1(π

′k, π−k), and for each j ∈ N\{k}, x ′
j = ω̄−x ′

k
n−1 .

Then gk(m′
k, m−k) = x ′

k . Since x ′
k Pk x̄k by construction, this is a profitable deviation

for agent k. Thus, m /∈ S P E(�, R). ��
Lemma 3 Let x̄ ∈ ∂ A. Then the game stops at Stage 2 with x̄ as outcome

Proof Suppose not. There exist i ∈ N and l, m ∈ L such that x̄il = ω̄l , x̄im > 0, and
the game goes beyond Stage 2.

Given the rules of the game, there is k ∈ { f1(π), fn(π), fn−1(π)} who gets
gk(m) = 0. Let m′1

k = (x̄, p̄, π ′k) be such that k = f1(π
′k, π−k) and m′2

k =
( f2(π

′k, π−k), p̄). The game stops with g(m′
k, m−k) = x̄ as outcome.

Remember that for each j ∈ N , x̄ j > 0 since ω j > 0, p̄ · x̄ j = p̄ ·ω j and p̄ ∈ �+.
Hence, by deviating, agent k gets x̄k > 0. By strong monotonicity of preferences, this
is a profitable deviation for agent k. Thus, m /∈ S P E(�, R). ��
Lemma 4 Let x̄ ∈ ∂ A. Then (x̄, p̄) ∈ W E(R)

Proof Suppose not. The game stops at stage 2 with g(m) = x̄ ∈ ∂ A but (x̄, p̄) /∈
W E(R). There are two cases to consider.

Case 1 g(m) = x̄ but there exists i ∈ N for whom,

(Bi ( p̄, ωi ) ∩ Ai ) ∩ SUC(Ri , x̄i ) �= ∅.

Let k ≡ i . Let m′1
k = (x ′, p̄, π ′k) be such that k = f1(π

′k, πk), x ′
k ∈ (Bk( p̄, ωk) ∩

Ak) ∩ SUC(Rk, x̄k), p̄ · x ′
k = p̄ · ωk, and for each j ∈ N \ {k}, x ′

j = ω̄−x ′
k

n−1 . The
game stops at Stage 1 and gk(m′

k, m−k) = x ′
k . Since x ′

k Pk x̄k by construction, this is
a profitable deviation for agent k. Thus, m /∈ S P E(�, R).

Case 2 g(m) = x̄ but there exists i ∈ N for whom,

Bi ( p̄, ωi ) ∩ SUC(Ri , x̄i ) �= ∅.

Since Case 1 is ruled out, we have that if x ′
i ∈ Bi ( p̄, ωi ) ∩ SUC(Ri , x̄i ), then for

some l ∈ L , x ′
il > ω̄l . Note that x̄i ∈ ∂ Ai . Let k ∈ N \ {i}. Let m′1

k = (x̄, p̄, π ′k)
be such that k = f1(π

′k, πk), and m′2
k = ( f j (π), p′) be such that i = f j (π),

p′ ∈ Ti ( p̄, x̄), and (Bi (p′, x̄i )∩ Ai )∩UC(Ri , x̄i ) = {x̄i }. By construction, the unique
best response of i at Stage 3 is x̄i . Hence, gk(m′

k, m−k) = x̄k + 1
n−2 (ω̄− x̄i − x̄k). Since

for each j ∈ N , x̄ j > 0, and preferences are strongly monotonic, this is a profitable
deviation for agent k. Thus, m /∈ S P E(�, R). ��
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Second part: W (R) ⊆ SS P EO(�, R).
Let (x, p) ∈ W E(R). Then the following profile of strategy supports x as SSPE

outcome of (�, R).

(i) At Stage 1, each i ∈ N announces m1
i = (x, p, π I ), where π I is the identity

permutation.
Let (x̄, p̄) be the unanimously agreed price-allocation pair. Let C ≡ {i ∈
J (x̄) \ { f1(π)} : (a) (Bi ( p̄, ωi )∩ Ai )∩ SUC(Ri , x̄i ) = ∅, and (b) there is x ′

i ∈
Bi ( p̄, ωi ) ∩ SUC(Ri , x̄i ) with x ′

il > ω̄l for some l ∈ L}.
(ii) At Stage 2, agent f1 (π) makes the following announcement:

Case 1: C �= ∅
If |C | = 1, m2

f1(π) = (k, p′) ∈ C × Tk( p̄, x̄) such that (Bk(p′, x̄k) ∩ Ak) ∩
UC(Rk, x̄k) = {x̄k} and (Bk(p′, x̄k) ∩ Ak) ∩ SUC(Rk, x̄k) = ∅.
If |C | > 1, m2

f1(π) = (k, p′) ∈ C × Tk( p̄, x̄) such that for each j ∈ C \ {k},
x̄k ≤ x̄ j , (Bk(p′, x̄k) ∩ Ak) ∩ UCk(Rk, x̄k) = {x̄k}, and (Bk(p′, x̄k) ∩ Ak) ∩
SUCk(Rk, x̄k) = ∅.23

Case 2: C = ∅
Then, m2

f1(π) = ( f2(π), p̄).
(iii) Following the choice of agent k by f1 (π) and the announcement of p, at Stage 3,

then m3
k = yk such that,

{
yk �= x̄k if there exists yk∈

{
y′

k ∈ Ak : yk Pk x̄k, p′ · yk = p′ · x̄k , p̄ · yk>p̄ · ωk
}
,

yk = x̄k otherwise.

It is clear that agent k is playing a best response at Stage 3. Agent k chooses
the bundle he prefers between x̄k and every possible yk on the budget hyperplane of
Bk(p′, x̄k). In case of indifference, he favors agent f1(π) and chooses x̄k .24 Given
(x̄, p̄) agreed upon at Stage 1 and the protocol f (π), notice that f1(π) is also playing
a best response at Stage 2. He announces p′ �= p̄ only if there exists k ∈ N \ { f1(π)}
for whom x̄ fk (π) ∈ ∂ Ak , (Bk( p̄, ωk)∩ Ak)∩UCk(Rk, x̄k) = {x̄k}, and such that there
is x ′

k ∈ Bk( p̄, ωk) ∩ SUCk(Rk, x̄k) and l ∈ L with x ′
kl > ω̄l . By doing so, agent

f1(π) obtains x̄ f1(π) + 1
n−2 (ω̄ − x̄k − x̄ f1(π)) > x̄ f1(π). Whenever this condition is

not satisfied, one of the best response of f1(π) is to announce p′ = p̄ and to choose
f2 (π). Moreover, observe that a joint deviation by f1(π) and k cannot make both
agents better off at Stage 3.

Finally, recall that for each Walrasian equilibrium (x, p), allocation x is individually
rational, efficient, and such that for each i ∈ N , Bi (p, ωi )∩ SUCi (Ri , xi ) = ∅. Thus,
each deviation by a coalition H ⊆ N results in the same outcome—for instance if
agents modify the permutation they each announce—or in an outcome at which not
all members of H are strictly better-off than at the Walrasian allocation. Therefore,
the profile of strategies described is a strong subgame perfect equilibrium of (�, R).

23 Since the outcome that f1 (π) gets at stage 3 can depend on the bundle that k gets, the optimal choice
for f1 (π) is to choose k ∈ C who is awarded the smallest bundle at x̄ .
24 This situation could happen off the equilibrium path.
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Hence, on the equilibrium path, each i ∈ N announces
(
xi , pi

) = (x, p) ∈
W E(R). If x ∈ A◦, the game stops at Stage 1 and g(m) = x . Otherwise, it goes
to Stage 2 where m2

f1(π) = ( f2(π), p). The game stops at Stage 2 and g(m) = x . ��
Remark 1 In the previous section, we underlined that the issue raised in Proposition 1
applies to the Lindhal correspondence. The mechanism we use here can be adapted to
the public goods case to implement the Lindhal correspondence.

5 Conclusion

We have shown that, without differentiability of preferences, the Walrasian correspon-
dence is not implementable in any of the game theoretical solution concepts commonly
considered in the implementation literature. The boundary problem generates an im-
possibility result. Imposing differentiability of preferences, we constructed a mecha-
nism that takes care of the boundary problem and doubly implements the Walrasian
correspondence in subgame perfect and strong subgame perfect equilibrium. Our me-
chanism is based on price-allocation announcements and corresponds closely to the
description of Walrasian equilibrium: moves along price hyperplanes are at the heart of
the Walrasian equilibrium concept. The mechanism allows for a better understanding
of the strategic issues attached to the boundary problem.

Finally, our mechanism can be extended to incomplete information settings by
incorporating announcements of types at Stage 1 as well as state-contingent prices and
allocations. An interesting issue would be to analyze the information transmission that
occurs across stages and to characterize an extension of the Walrasian correspondence
to incomplete information settings. Bochet (2007) follows a similar approach using a
static mechanism. He finds ambiguous connections between Walrasian and Rational
Expectations equilibria.
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