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Abstract Consider the problem of exact Nash Implementation of social choice
correspondences. Define a lottery mechanism as a mechanism in which the plan-
ner can randomize on alternatives out of equilibrium while pure alternatives are
always chosen in equilibrium. When preferences over alternatives are strict, we
show that Maskin monotonicity (Maskin in Rev Econ stud 66: 23–38, 1999) is
both necessary and sufficient for a social choice correspondence to be Nash im-
plementable. We discuss how to relax the assumption of strict preferences. Next,
we examine social choice correspondences with private components. Finally, we
apply our method to the issue of voluntary implementation (Jackon and Palfrey in
J Econ Theory 98: 1–25, 2001).

1 Introduction

The goal of implementation theory is to design institutions that eliminate strategic
manipulations, on the part of the agents, in order to implement desirable social
choice correspondences (henceforth SCCs). Maskin monotonicity (Maskin 1999)
is a necessary condition for (exact) Nash implementation. When there are at least
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three players, it is also sufficient if coupled with the assumption of no-veto power.1

In economic environments with a perfectly divisible good (e.g. money), where
there is typically conflict of interest, no-veto power is vacuously satisfied since
agents will never agree on a best alternative. For more general environments, the
gap between necessity and sufficiency was closed by Moore and Repullo (1990),
Sjöström (1991) and Danilov (1992), among others.2 The necessary and sufficient
condition is complex and may be hard to interpret.

We suggest closing the gap between necessity and sufficiency by looking at
a different class of mechanisms than the canonical one used in Maskin (1999).
We call it the class of lottery mechanisms. While equilibrium messages should
still deliver (pure) alternatives selected by the SCC, we allow the planner to use
non-degenerate lotteries out of equilibrium. We construct an alternative version of
the canonical mechanism in which agents can obtain a lottery on two alternatives
for some message profiles. Unlike in Maskin (1999), preferences of agents should
also be extended to preference over lotteries. A consequence is that, under some
assumptions on the environment, every Maskin monotonic SCC is Nash imple-
mentable by a lottery mechanism. The theorem closes the gap between Maskin
monotonicity and Nash implementability. It does not require agents to have pref-
erences satisfying the Von-Neumann and Morgenstern axioms.

In an independent study, Benoit and Ok (2004) address the same question. The
mechanism they use belongs to our class of lottery mechanisms. Using a domain
restriction weaker than ours called top-coincidence, they show that if there are at
least three agents, then any unanimous and Maskin monotonic SCC is implement-
able by a lottery mechanism.3

In the main theorem, for simplicity, we restrict our attention to linear order-
ings over (pure) alternatives. Next, we first discuss how we can easily relax the
assumption of strict preferences. The domain restriction we introduce is top strict
difference. It says that if an alternative is ranked top by at least (n − 1) agents,
then the set of top alternatives should be a singleton for at least two agents. More-
over, our result does not require that the SCC be unanimous. Second, we examine
cases where alternatives are vectors with private components.4 Finally, we consider
the case of voluntary implementation (Jackson and Palfrey 2001) and show that
their h-no-veto power axiom can also be dispensed with by considering a lottery
mechanism.

2 The set-up

There is a fixed finite set of agents N ≡ {1, . . . , n}, with n ≥ 3, and a fixed finite set
of alternatives A, with |A| ≡ � ≥ 2. Let L ≡ ��−1 be the set of lotteries over A.

1 No-veto power states that if at least n − 1 agents agree on a best alternative at a preference
profile, it should be selected by the SCC at that profile. This condition is restrictive. For example,
the individually rational SCC, both in problems of indivisible goods assignment and in voting
settings, fail to satisfy it.

2 Danilov (1992) derives an elegant necessary and sufficient condition for Nash implementation
in the case of linear orders on alternatives called essential monotonicity. In such an environment,
his condition is equivalent to the condition of Moore and Repullo (1990) or Sjöström (1991).

3 They also discuss implementation using mechanisms with awards and implementation with
a renegotation function.

4 E.g., the assignment of indivisible goods without monetary transfers, matching problems, etc.
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In lottery x = (xa)a∈A ∈ L, alternative a occurs with probability xa . Abusing
notation, we write a both for the pure alternative a ∈ A and for the lottery x ∈ L
with xa = 1. The support of a lottery x ∈ L is the set of pure alternatives receiving
a strictly positive probability in x : suppx ≡ {a ∈ A | xa > 0} .

The set of admissible preference profiles over A and over L are, respectively,
� and �. For any θ ∈ �, Ri (θ) stands for the (weak) preference of agent i ∈ N
over alternatives in A; that is, Ri (θ) is a complete and transitive binary relation. We
denote by Pi (θ) and Ii (θ) the associated strict and indifference binary relations,
respectively. Similarly, define for any γ ∈ �, Ri (γ ), Pi (γ ) and Ii (γ ) in the same
fashion. Given θ ∈ �, let �(θ) ⊆ � be the set of preference profiles over L that
agree on the ranking over A. We make two assumptions on preferences.

Strictness: For each θ ∈ �, each a, b ∈ A and each i ∈ N , if a Ri (θ)b, then
a Pi (θ)b or a = b.

Monotonicity in probabilities: Preferences over lotteries are monotonic in prob-
abilities, that is, shifts in probability to strictly preferred alternatives yield strictly
preferred lotteries. For each i ∈ N , and each k ∈ {1, . . . , �}, let pik : � � A be
defined by,

a ∈ pik (θ) ⇐⇒ |{b ∈ A | bRi (θ)a}| = k + | {b ∈ A, b �= a | bIi (θ)a} |.
That is, pi1 (θ) is the set of preferred alternatives of agent i at profile θ,

pi2 (θ) his set of second preferred alternative, etc.5 Define x pik (θ) ≡ ∑
a∈pik(θ) xa .

Then, if two lotteries x ≡ (xa)a∈A and y ≡ (ya)a∈A are such that for each
k∗ ∈ {1, . . . , �} ,

∑
k≤k∗ x pik (θ) ≥ ∑

k≤k∗ ypik(θ), then x Ri (γ )y for any γ ∈ �(θ),
and whenever at least one such inequality is strict, then x Pi (γ )y for all γ ∈ � (θ).6

Denote by LCi (θ, a) the lower contour set of agent i ∈ N at profile θ ∈ � and
alternative a ∈ A, i.e. LCi (θ, a) ≡ {b ∈ A : a Ri (θ)b}.

For each θ ∈ �, and each i ∈ N , let the set of top alternatives be defined by,

TOPi (θ) ≡ {a ∈ A : a Ri (θ)b for each b ∈ A} .

A social choice correspondence is a mapping f : � � A that associates to
each preference profile a non-empty subset of alternatives.

Unanimity: A SCC f is unanimous if and only if for each pair (a, θ) ∈ A × �,

[a Ri (θ)b for each i ∈ N and each b ∈ A] �⇒ [a ∈ f (θ)].
Notice that unanimity is implied by no-veto power, defined next.

No-Veto power: A SCC f satisfies no-veto power if and only if for each pair
(a, θ) ∈ A × �, and each i ∈ N ,

[a R j (θ)b for each j �= i and each b ∈ A] �⇒ [a ∈ f (θ)].
5 If preferences satisfy strictness, then any such pik(θ) is a singleton. However, we choose

this more general definition because we will relax strictness in Sect. 4 of the paper.
6 Note that this assumption implies that if for some i ∈ N and a, b ∈ A we have aIi (θ)b, then

agent i is also indifferent between any lottery over a and b.
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Maskin monotonicity: A SCC f is Maskin monotonic (Maskin 1999) if and only
if for each pair (θ, φ) ∈ �2 and each a ∈ f (θ),

[LCi (θ, a) ⊆ LCi (φ, a) for each i ∈ N ] �⇒ [a ∈ f (φ)] .

For each agent i ∈ N , each θ ∈ �, and each a ∈ A, define

Ci (θ, a) ≡
{

c ∈ LCi (θ, a) : for all φ ∈ �, if LCi (θ, a) ⊆ LCi (φ, c) and,
for each j �= i, LC j (φ, c) = A, then c ∈ f (φ).

}

Strong monotonicity: A SCC f is strongly monotonic if and only if for each pair
(θ, φ) ∈ �2 and a ∈ f (θ),

[Ci (θ, a) ⊆ LCi (φ, a) for each i ∈ N ] �⇒ [a ∈ f (φ)] .7

A deterministic mechanism (or game form) is a pair G= (M, g) where
M ≡ ×

i∈N
Mi , (Mi is the message space of agent i ∈ N ) and g : M → A is an

outcome function that associates an alternative to every profile of messages.
A mechanism G is a lottery mechanism if for each θ ∈ � and each m ∈ M ,

g(m) ∈ L. Hence, g : M → L. That is, any outcome of the mechanism is a
lottery–whether this lottery is degenerate or non-degenerate. Because our focus is
on exact implementation of deterministic SCCs, the Nash equilibrium outcomes
of the mechanism should be degenerate lotteries. Let G be the class of lottery
mechanisms.

A game for G is a pair (G, γ ) for some γ ∈ �. We will restrict our attention to
pure-strategy Nash equilibria of the game (G, γ ), denoted N E (G, γ ). A lottery
mechanism G = (M, g) is ordinal if the set of Nash equilibria only depends on
agents’ preferences over pure alternatives; that is, for each θ ∈ �, each m ∈ M
and all γ, δ ∈ �(θ), N E (G, γ ) = N E (G, δ). We confine our attention to ordinal
game forms. Therefore, abusing notation, for any γ ∈ � (θ) , let N E (G, θ) denote
the pure-strategy Nash equilibria of the game (G, γ ) .

A SCC f is Nash implementable via a lottery mechanism if there exists a mech-
anism G ∈ G such that the Nash equilibrium outcomes of each game coincides
with the outcomes chosen by f . That is, for each θ ∈ � and each γ ∈ � (θ),
f (θ) = g (N E (G, θ)).

3 Enlarging the class of mechanisms

To understand why enlarging the class of admissible mechanisms could help dis-
pense with the no-veto power assumption, it is useful to recall Maskin’s Theorem
3 (Maskin 1999) and his canonical mechanism. The necessity of Maskin monoto-
nicity for Nash implementation with deterministic mechanisms is omitted from the
Theorem statement because the sufficiency part is the focus of our paper.

Theorem 1 (Maskin 1999) If n ≥ 3, any Maskin monotonic SCC that satisfies
no-veto power is Nash implementable via a deterministic mechanism.

7 When strictness is satisfied, the essential monotonicity condition of Danilov (1992) coincides
with strong monotonicity.
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Proof For each i ∈ N , let Mi ≡ A × � × N. A typical message is mi ≡(
m1

i , m2
i , m3

i

) ≡ (a, θ, n). The outcome function is described as follows.

Rule 1 If mi = (a, θ, ·) for all i ∈ N and a ∈ f (θ), then g(m) = a.

Rule 2 If for some i ∈ N , m j = (a, θ, ·) for each j �= i , a ∈ f (θ) and mi =
(b, φ, ·) with (b, φ) �= (a, θ), then the outcome is

g(m) =
{

b if b ∈ LCi (θ, a)

a otherwise.

Rule 3 In all other cases, the outcome is m1
i∗ , where i∗ is defined as i∗ ≡

min
{
i ∈ N : ni ≥ n j ∀ j ∈ N

}
.

The proof of Theorem 1 is well-known, but we sketch it here for the sake of
completeness.

Suppose that the true state is θ ∈ �. We have different cases to consider.

1. g(m) is given by Rule 3.

Note that any agent j �= i∗ could obtain his top-ranked outcome by announc-
ing n j > ni∗ . If g(m) is a Nash equilibrium outcome of the mechanism, then
LCi (θ, g(m)) = A for each i ∈ N . By no-veto power, g(m) ∈ f (θ).

2. g(m) is given by Rule 2.

Note that any agent j �= i could deviate, trigger the integer game and obtain
his top-ranked outcome, say a, by announcing n j > nk for all k �= j . If g(m) is
a Nash equilibrium outcome, then LC j (θ, g(m)) = A for each j �= i . By no-veto
power, g(m) ∈ f (θ).

3. g(m) is given by Rule 1.

If θ is announced truthfully, then g(m) ∈ f (θ). So, suppose instead that mi =
(a, φ, ·) and a ∈ f (φ). Any agent i could deviate and obtain any alternative b such
that b ∈ LCi (φ, a). If g(m) is a Nash equilibrium outcome, then for each i ∈ N ,
a Ri (φ)b �⇒ a Ri (θ)b. By Maskin monotonicity, a ∈ f (θ).

To conclude the proof, suppose the true state is θ ∈ � and fix a ∈ f (θ). We
show that each agent i ∈ N reporting mi = (a, θ, 0) forms a Nash equilibrium
of the mechanism with respect to θ . Given m = (mi )i∈N , Rule 1 applies and
the outcome is a ∈ f (θ). Any agent j ∈ N can trigger rule 2 by announcing
m j = (b, φ, ·) and obtain b ∈ LC j (θ, a). By the definition of the lower contour
set, such a deviation cannot be profitable. Therefore, m is a Nash equilibrium. ��

Note that in the proof, no-veto power is in fact used only to rule out undesir-
able equilibria in Rule 2. In Rule 3, only unanimity–obviously implied by no-veto
power–is needed. What happens if no-veto power is not satisfied?8 Suppose that
the true state is θ and that messages reported are for each j �= i , m j = (a, φ, ·)
with a ∈ f (φ) , and mi = (c, θ, ·) with c ∈ LCi (φ, a). The outcome is g(m) = c
given by Rule 2. If no-veto power is not satisfied and (c, θ) �= (a, φ), it could be the

8 A similar discussion can be found in the excellent survey of Maskin and Sjöström (2002,
Sect. 3.3). We follow here their terminology.
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case that for each j �= i , LC j (θ, c) = A, LCi (φ, a) ⊆ LCi (θ, c) and c /∈ f (θ).
In such a case, no profitable deviations from m are possible: any agent j �= i could
trigger the integer game but c is top-ranked for any such agent. Furthermore, by
changing his message, agent i can only obtain an outcome in LCi (φ, a), which
can be no better than c according to Ri (θ). Thus, message m is a Nash equilibrium.
Using the terminology of Maskin and Sjöström (2002), c is an awkward outcome
for agent i in LCi (φ, a). In the canonical mechanism, given message m ∈ M
with mi = (a, θ, ·) for all i ∈ N and a ∈ f (θ), the attainable set from Rule 1
is LCi (θ, a) for each i ∈ N . When f violates no-veto power, the planner should
restrict the attainable sets by removing awkward alternatives. For all i ∈ N , the
(personalized) attainable sets Ci (θ, a), as defined in Sect. 3, should be constructed.
In Rule 2, for each θ ∈ � and each a ∈ f (θ), one should replace LCi (θ, a) by
Ci (θ, a) for each i ∈ N . In the environment considered by Maskin, a necessary
and sufficient condition for Nash implementation via a deterministic mechanism
is strong monotonicity.9 Indeed, strong monotonicity implies Maskin monotonicity
but the converse is not true. However, Maskin monotonicity together with no-veto
power imply strong monotonicity.

By considering a larger class of mechanisms that we call lottery mechanisms,
each agent i’s attainable set need only be LCi (θ, a). The planner does not need to
construct personalized attainable sets by removing every awkward outcome.

To illustrate our approach, we consider an important example from Maskin
(1985, 1999) of a SCC that is Maskin monotonic, but does not satisfy no-veto
power. We use it here to show that this particular SCC is implementable in Nash
equilibrium if the planner uses a lottery mechanism. Thus, checking whether the
SCC satisfies Maskin monotonicity is enough to know if it is Nash implementable.

Example 1 (Maskin 1985, 1999):
N ≡ {1, 2, 3}, � ≡ {θ, φ} and A ≡ {a, b, c}. The preferences are described

below.

θ φ
1 2 3 1 2 3
b a a b c c
a c c c a a
c b b a b b

The SCC is described as follows. Given θ ′ ∈ �, (i) a ∈ f (θ ′) if and only if
a majority prefers a to b; (i i) b ∈ f

(
θ ′) if and only if a majority prefers b to a;

and (i i i) c ∈ f (θ ′) if and only if LCi
(
θ ′, c

) = A for each i ∈ N . This SCC is
Maskin monotonic but does not satisfy no-veto power. It is thus not Nash imple-
mentable by Maskin’s mechanism. In this example, f (θ) = {a} = f (φ). Observe
that LC1(θ, a) = LC1(φ, c) = {a, c} and LCi (φ, c) = A for each i ∈ N \ {1}.
Hence, alternative c is an awkward outcome in LC1(θ, a). In Maskin’s mechanism,
if the true state is φ, then the profile of messages m ∈ M , with m j = (a, θ, ·) for
j �= 1 and m1 = (c, φ, ·) is a Nash equilibrium. Rule 2 prescribes the outcome
c /∈ f (φ).

Clearly, what needs to be modified is Rule 2. Instead of the outcome being c,
suppose Rule 2 gives a lottery (1 − ε) a + εc, with ε ∈ (0, 1). By monotonicity

9 See Maskin and Sjöström (2002) for a more detailed discussion of strong monotonicity.
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in probabilities, when the true state is φ, agents 2 and 3 would rather get c with
probability one than a lottery on a and c. Therefore, when the true state is φ, the
profile m ∈ M , with m j = (a, θ, ·) for j �= 1 and m1 = (c, φ, ·) is no longer a
Nash equilibrium.

We have just informally shown that we can, on the one hand, dispense with
no-veto power, and on the other hand, that we do not need to construct restricted
attainable sets. In fact, when strictness is satisfied, we only need to check whether
a SCC is Maskin monotonic to know if it is Nash implementable. Having possibly
non-degenerate lotteries in Rule 2 eliminates the need for no-veto power. Moreover,
in the necessary and sufficient condition for Nash implementation, only Maskin
monotonicity will have bite.10

Before stating the main result, it may be worth mentioning that the next theorem
can be understood using the necessary and sufficient conditions for Nash imple-
mentation applied to the feasible set L. Notice that no completely mixed lottery
in the probability simplex can be awkward because (n − 1) players cannot have
a top alternative there. The only difference between the attainable sets being LCi
or Ci is only on the boundary of the simplex. But then continuity of preferences
implies the equivalence between strong monotonicity and Maskin monotonicity.
We are now ready to state our result.

Theorem 2 If n ≥ 3 and preferences satisfy strictness and monotonicity in prob-
abilities, any SCC is implementable in Nash equilibrium by a lottery mechanism if
and only if it is Maskin monotonic.11

Proof We first prove the necessity part of the theorem. If f is implementable in
Nash equilibrium by a lottery mechanism, there exists a mechanism (M, g) that
implements it. Consider θ ∈ � and a ∈ f (θ). Since f is implemented, there is
m ∈ N E(G, θ) such that g(m) = a. Hence, for each i ∈ N , a Ri (γ )g(m′

i , m−i ) for
all m′

i ∈ Mi and for all γ ∈ � (θ). Because the equilibrium condition should hold
for all γ ∈ � (θ), it follows that for each i ∈ N , for each m′

i �= mi , a Ri (θ) b for all
b ∈ suppg(m′

i , m−i ). Suppose there exists φ ∈ � with a /∈ f (φ). Implementation
of f requires m /∈ N E(G, φ). Hence, there is i ∈ N and m′

i ∈ Mi such that
g(m′

i , m−i )Pi (γ )a for some γ ∈ �(φ). By monotonicity in probabilities, there
exists at least one b ∈ suppg(m′

i , m−i ) such that bPi (φ)a. Therefore, f is Maskin
monotonic.

We now prove the sufficiency part. We construct the following (ordinal) lottery
mechanism.12 The message space of each agent i ∈ N is Mi ≡ A × � × A × N.

10 It is clear from the proof of Theorem 1 that unanimity is needed in Rule 3 of Maskin’s
mechanism. In Theorem 2, we show that unanimity can also be dropped by modifying Rule 3 of
Maskin’s mechanism.

11 Alternatively, we could also drop the restriction to ordinal game forms. By dropping this
assumption, one can look at a richer set of SCCs that uses cardinal information; i.e. f : � � L.
In that case, any cardinal SCC is implementable in Nash equilibrium by a lottery mechanism if
and only if it is Maskin monotonic (in the simplex).

12 The mechanism uses an integer game. This has been the object of many criticisms–see for
instance Jackson (1991). The device in Rule 3 works because the set of profitable deviations is
open. If such constructions are to be avoided, then the theorem may hold only for unanimous
SCCs. Moreover, Jackson (1991) shows that restricting the class of mechanisms may have a
severe impact on the class of implementable SCCs. There is no presumption that the sufficiency
result here or in Maskin (1999) can be replicated using “ well-behaved” mechanisms.
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A typical message is mi ≡ (
m1

i , m2
i , m3

i , m4
i

) ≡ (x, θ, a, ni ). Fix a number ε ∈
(0, 1).

Rule 1 If mi = (
x̄, θ̄ , ā, .

)
for all i ∈ N and x̄ ∈ f (θ̄), then g(m) = x̄ .

Rule 2 If m j = (
x̄, θ̄ , ā, ·) for each j �= i , x̄ ∈ f (θ̄) and mi = (c, φ, b, ·) with

(c, φ, b) �= (
x̄, θ̄ , ā

)
, then the outcome is

g(m) =
{

(1 − ε)x̄ + εb if b ∈ LCi (θ̄ , x̄)

x̄ otherwise

Rule 3 In all other cases, the outcome is (1− 1
1+ni∗ )a+ 1

1+ni∗ b if mi∗ = (a, ·, b, ni∗),

where i∗ = min
{
i ∈ N : ni ≥ n j ∀ j ∈ N

}
, and a �= b. Otherwise if a = b, the

outcome is the lottery that assigns equal weights on all the alternatives in A.

We show that this game form Nash implements any SCC f that is Maskin
monotonic.

First, suppose that the true profile is θ and that x ∈ f (θ). The message profile
m ∈ M with mi = (x, θ, x, 0) for each i ∈ N is a Nash Equilibrium of G. By
unilaterally deviating, an agent i ∈ N can only trigger Rule 2 and obtain either
x with probability 1 or a lottery on x and another alternative b ∈ LCi (θ, x). In
that case, the deviation decreases the probability of x ∈ f (θ) and increases the
probability of a worse alternative b ∈ A. By monotonicity in probabilities, this
deviation is not profitable. Therefore, m is a Nash equilibrium.

Second, suppose the true state is θ ∈ �. We now show that for each γ ∈ �(θ),
g(N E(G, θ)) ⊆ f (θ). We have three cases to consider.

1. g(m) is given by Rule 3.

We show that there is no equilibrium. If a �= b, the outcome is g(m) =(
1 − 1

(1+ni∗ )

)
a + 1

1+ni∗ b. By strictness and monotonicity in probabilities, even
if agents agree on the ranking of a and b–with a being top-ranked–any agent i ∈ N
could announce m′

i = (a, ·, b, n′
i ) with n′

i > ni∗ in order to give more weight to
a and relatively less weight to b. Next, if the outcome g(m) is the uniform distri-
bution over alternatives, again by strictness and monotonicity in probabilities, any
agent i ∈ N would deviate to m′

i = (
a, ·, b, n′

i

)
, with a �= b, n′

i > ni∗ , a Pi (θ)b
and bPi (θ)c for each c �= a, in order to obtain a lottery restricted to his two best
alternatives.

2. g(m) is given by Rule 2

If g(m) is obtained by Rule 2, note that any agent j �= i could deviate by
announcing m′

j with (m1′
j , m2′

j , m3′
j ) �= (

x̄, θ̄ , ā
)

and n′
j > nk for all k �= j , trigger

Rule 3 and obtain a lottery on his two top alternatives under θ .
We have two cases to consider. In the first case, g(m) ∈ L and supp(g(m)), is

not a singleton. Because preferences are strict, for each agent, any non-degenerate
lottery is dominated by a lottery on the two top alternatives with sufficiently high
weight placed on the top alternative. Under Rule 3, for any j �= i this is obtained by
reporting a sufficiently large n′

j . Hence, g(m) is not a Nash equilibrium outcome.
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In the second case, g(m) = x̄ is a degenerate lottery. Suppose that x̄ is a Nash
equilibrium outcome for θ chosen by Rule 2. Agent i can profitably deviate by
reporting

(
c′, φ′, b′, ·) �= (

x̄, θ̄ , ā
)

if b′ ∈ LCi (θ̄ , x̄) and
(
(1 − ε)x̄ + εb′) Pi (γ )x̄

for some γ ∈ �(θ). Because preferences over lotteries are monotone in probabil-
ities, such a profitable deviation does not exist if x̄ Ri (θ)b′ for all b′ ∈ LCi (θ̄ , x̄).
Thus, LCi (θ̄ , x̄) ⊆ LCi (θ, x̄). Moreover, if no agent j �= i has a profitable devia-
tion, then LC j (θ, x̄) = A. Thus, LC j (θ̄ , x̄) ⊆ LC j (θ, x̄) for all j �= i . By Maskin
monotonicity, x̄ ∈ f (θ).

3. g(m) is given by Rule 1.

If θ is announced truthfully, then the outcome lies in f (θ) by Rule 1. Suppose
instead that each i ∈ N announces mi = (x, φ, a, ·) with φ �= θ and x ∈ f (φ).
To complete the proof, it is sufficient to show that LCi (φ, x) ⊆ LCi (θ, x) for all
i ∈ N because it would then follow from Maskin monotonicity that x ∈ f (θ).

On the contrary, suppose that there exists an i ∈ N and b ∈ LCi (φ, x) such
that bPi (θ)x . By deviating, agent i can obtain (1 − ε)x + εb. In order for this
deviation not to be profitable, it must be the case that x Ri (γ )((1 − ε)x + εb) for
all γ ∈ � (θ). By monotonicity in probabilities, this contradicts the assumption
that bPi (θ)x . Thus, x ∈ f (θ). ��

Remark Given the results on virtual implementation in Abreu and Sen (1990) or
Abreu and Matsushima (1992), one could hope that the use of lotteries would relax
the necessary condition for Nash implementation. Theorem 2 shows that enlarging
the range of the mechanism from A to L closes the gap between Maskin monoto-
nicity and Nash implementability, provided that preferences satisfy strictness and
monotonicity in probabilities. Since the focus is not on approximate but on exact
Nash implementation, Maskin monotonicity remains necessary.

Abreu and Matsushima (1994) show that any stochastic social choice function
can be exactly implemented in iteratively weakly undominated strategies. However,
the existence of small fines that can be levied on players and their assumption that
agents have a finite set of preferences satisfying the Von-Neumann Morgenstern
axioms are crucial to their result.

4 Discussion

4.1 Relaxing strictness of preferences

If strictness is not satisfied, the mechanism used to establish Theorem 2 may
generate bad equilibria. For instance, suppose that in Rule 3, the outcome is(

1 − 1
1+ni∗

)
a + 1

1+ni∗ b and alternatives a and b are both top-ranked for every

agent. Since f is deterministic,
(

1 − 1
ni∗

)
a +

(
1

ni∗

)
b would be an undesirable

equilibrium outcome. The same thing happens if the outcome is (1 − ε)x̄ + εb
determined by Rule 2.

In order to circumvent this problem, we need an additional restriction on the
environment. One such restriction is the following.
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Top strict difference: For each θ ∈ �, and for each a ∈ A such that LCi (θ, a) =
A for at least (n − 1) agents i ∈ N , there exist j, k ∈ N for whom TOP j (θ) =
TOPk(θ) = {a}.

This rules out the undesirable equilibrium outcomes in Rule 2 and Rule 3 of
the mechanism used in Theorem 2. To illustrate why this is so, suppose that θ ∈ �
is the true state, and that (1 − ε)x + εb is the outcome of the game following the
report of the message profile m ∈ M . If LC j (θ, b) = A for each j but possibly
i ∈ N , top strict difference guarantees that for at least one such j, TOP j (θ) = {b},
and therefore guarantees that a profitable deviation exists: agent j can trigger the
integer game by announcing the highest integer and obtain a preferred lottery.
Moreover, if an outcome is determined by Rule 3, again top strict difference rules
it out as an equilibrium outcome: there, it is enough to have one agent for whom
the set of top alternatives is a singleton.

By assuming top strict difference, we can establish the following proposition.

Proposition 1 If n ≥ 3 and preferences satisfy top strict difference and monoto-
nicity in probabilities, any SCC is Nash implementable if and only if it is Maskin
monotonic.

4.2 SCCs with private components

SCCs with private components violating no-veto power include–among others–
the core correspondence, the individually rational correspondence (henceforth the
IR correspondence) in the assignment of indivisible goods and the stable rule in
matching problems. For all these rules, Theorem 1 does not allow one to check
whether or not they are Nash implementable.

The message of Theorem 2 and the discussion that followed is that, given some
mild domain restrictions, any Maskin monotonic SCC is Nash implementable by a
lottery mechanism. When strictness is satisfied, this result extends to environments
where alternatives are vectors with private components.13 However, when indiffer-
ences are introduced, it is important to note that the lottery mechanism constructed
in Theorem 2 will not work. First, top strict difference needs to be redefined. From
now on, for each a ∈ A, let a = (a1, . . . , an).

Top strict difference for private components: For each θ ∈ �, and each a ∈ A
such that ai ∈ TOPi (θ) for at least (n − 1) agents, there exists j, k ∈ N for whom

TOP j (θ) =
{

a′ : a′
j = a j

}
and TOPk(θ) = {

a′ : a′
k = ak

}
.

If top strict difference for private components is satisfied and preferences sat-
isfy monotonicity in probabilities, then when there are private components, Maskin
monotonic SCCs are not implementable by the lottery mechanism we have con-
structed in Theorem 2. To see this, let us look at an example for the assignment of
indivisible goods without monetary transfers.

Example 2 Assignment of indivisible objects and the individually rational rule.

13 Notice that in Rule 2 the requirement b ∈ LCi (θ, a) should be read as bi ∈ LCi (θ, ai ). In
Rule 3, the requirement a �= b should be read as ai∗ �= bi∗ .
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N ≡ {1, 2, 3, 4}. There are four objects a1, a2, a3 and a4. The initial endow-
ment ωi of each agent i ∈ N is the object ai . An allocation is an assignment
of indivisible objects, one to each agent. Formally, an assignment is a bijection
σ : N → A. Let Z be the set of assignments. The IR rule is a correspondence such
that for each θ ∈ �, f (θ) = {σ ∈ Z : σi Ri (θ)ωi for each i ∈ N }. Consider the
following preferences over objects.

θ φ

1 2 3 4 1 2 3 4
a1 a2 a3a4 a3a4 a1 a2 a1 a3
a2 a1 a1 a2 a2 a1 a3a2 a4
a3 a3 a2 a1 a4 a3 a4 a1
a4 a4 a3 a4 a3

The selection operated by f is f (θ) = {(a1, a2, a3, a4) , (a1, a2, a4, a3)}, and
f (φ) = {(a1, a2, a3, a4)}. Notice that f violates no-veto power because the allo-
cation (a1, a2, a4, a3) is excluded when the state is φ. Moreover, f is not Nash
implementable by a version of the mechanism in Theorem 2 even though top
strict difference for private components is satisfied. Let a = (a1, a2, a3, a4) and
a′ = (a1, a2, a4, a3). Consider the case where the true state is θ and the message m
with m j = (a, φ, a′, ·) for j = 2, 3, 4 and m1 = (·, θ, a′, ·) has been reported. The
outcome is g(m) = (1 − ε) a + εa′. By monotonicity in probabilities, individuals
3 and 4 are indifferent between g(m) and both a and a′. Thus, g(m) is a Nash
equilibrium outcome under θ , in contradiction with the Nash implementation of f .
The problem does not come from the violation of no-veto power but merely from
the fact that top strict difference is vacuous. Agents 1 and 2 meet the restriction
imposed by top strict difference for private components but they receive the same
object in both allocations. Observe that it is crucial that the number of agents be at
least four. With three agents, this problem is never encountered.

As a consequence, the mechanism has to be further complicated. For instance,
in Rule 2, if g(m) ∈ L, then among the (n − 1) agents j �= i , it should be the case
that at least one is not indifferent between both components he receives.14

Rule 2.1 If m j = (
x̄, θ̄ , ā, .

)
for each j �= i , x̄ ∈ f (θ̄) and mi = (c, φ, b, ·) with

(c, φ, b) �= (
x̄, θ̄ , ā

)
, then the outcome is g(m) = (1 − ε)x̄ + εb if

{
1) bi �= x̄i , bi ∈ LCi (θ̄ , x̄i ) and
2) there is j �= i such that

{
x̄ j , b j

}
� T O Pj (φ)

Otherwise, g(m) = x̄ .
Using this modified form of the canonical mechanism, we can establish the

following proposition.

14 Rule 3 has to be modified in a similar fashion. One such modification is the following:

Rule 3.1 In all other cases, the outcome is
(

1 − 1
1+ni∗

)
a + 1

1+ni∗ b if mi∗ = (a, ·, b, ni∗ ), where

i∗ = min
{
i ∈ N : ni ≥ n j ∀ j ∈ N

}
, ai∗ �= bi∗ and a j �= b j for each j �= i∗. Otherwise, the

outcome is the lottery that assigns equal weights on all the alternatives in A.
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Proposition 2 If n ≥ 3 and preferences satisfy top strict difference for private
components and monotonicity in probabilities, any SCC with private components
is Nash implementable by a lottery mechanism if and only it is Maskin monotonic.

Once specific forms of indifferences are allowed, lottery mechanisms become
more complex. In Rule 2.1, the attainable set of agent i is restricted because some
alternatives may be removed from LCi (θ, xi ). Because of top strict difference for
private components, this restriction imposes no constraints on deviations.

5 Application: voluntary implementation

Our approach is not restricted only to Maskin’s Theorem. In a recent article, Jackson
and Palfrey (2001) consider voluntary implementation. The problem related to the
enforceability of the outcome function out of equilibrium is studied. Agents are not
forced to accept the outcome of the mechanism, and can veto some subset of the
set of alternatives. For instance, a state-contingent participation constraint defines
a mapping from outcomes vetoed by agents into individually rational outcomes.

First, we need to introduce some additional definitions.15 Let F be the set of
all social choice functions over A. A reversion function is a mapping h : � → A
that indicates what the outcome is in the case of a veto by at least one individual.
A reversion function h induces a mapping H : A × � × F by

H(a, θ, h) =
{

a if a Ri (θ)h(θ) for each i ∈ N
h(θ) otherwise.

Given a game form (M, g), a message profile m is an h-Nash equilibrium of (M, g)
at θ if for each agent i ∈ N ,

H(g(m), θ, h)Ri (θ)H(g(m′
i , m−i ), θ, h) ∀m′

i ∈ Mi .

A SCC f is h-Nash implementable if there exists a mechanism (M, g) such that,
for all θ ∈ �:

1. For each a ∈ f (θ), there exists an h-Nash equilibrium m ∈ M such that
H(g(m), θ, h) = a.

2. If m ∈ M is an h-Nash equilibrium at θ , then H(g(m), θ, h) ∈ f (θ).

An analog to Maskin monotonicity is derived. A SCC f is reversion-monotonic
relative to h if for each θ ∈ � and each a ∈ f (θ), there exists z ∈ A such that

1. H(z, θ, h) = a.
2. For all φ ∈ � such that H(z, φ, h) /∈ f (φ), there exists y ∈ A and i ∈ N such

that H(z, θ, h)Ri (θ)H(y, θ, h) and H(y, φ, h)Pi (φ)H(z, φ, h).

Reversion monotonicity is indeed necessary for h-Nash implementation. Cou-
pled with h-no-veto power, defined next, it is also sufficient provided that n ≥ 3.

A SCC f satisfies h-no-veto power if for each (a, θ) ∈ A×�, and each i ∈ N ,

[H(a, θ, h)R j (θ)H(b, θ, h) for each j �= i and each b ∈ A]
�⇒ [H(a, θ, h) ∈ f (θ)].

15 We follow the notation introduced by Jackson and Palfrey (2001).
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A SCC f satisfies h-unanimity if for each (a, θ) ∈ A × �,

[H(a, θ, h)Ri (θ) H(b, θ, h) for each i ∈ N and each b ∈ A]
�⇒ [H(a, θ, h) ∈ f (θ)].

Again, h-no-veto power is not necessary for h-Nash implementation. An inter-
esting feature of the voluntary implementation approach is that it is possible to
construct non-Maskin monotonic SCCs that are, given h, reversion-monotonic rel-
ative to h. We construct an example of such a SCC that also violates h-no-veto
power. It is a variant of an example of Jackson and Palfrey (2001).16 The example
is as follows:

Example 3 N ≡ {1, 2, 3}, A ≡ {a, b, c, d} and � ≡ {θ, φ}. The status-quo is c.
The reversion function is constant across states and equal to the status-quo, that is
h(θ) = c for each θ ∈ �. The function H maps outcomes that are not individually
rational to the status-quo. Hence, we want to perform IR-Nash implementation.
The preferences over alternatives are described as follows.

θ φ
1 2 3 1 2 3
a b d d b d
d d a a d a
b a c b a b
c c b c c c

Consider the non-Maskin monotonic SCC f , with f (θ) = {a, d} and f (φ) =
{a}. This SCC is reversion-monotonic relative to h. We show that agent 2 experi-
ences a preference reversal relative to h when going from θ to φ. Since alternative
d is individually rational for every agent, H(d, θ, h) = H(d, φ, h) = d . How-
ever, for alternative b, by cP3(θ)b, we obtain that H(b, θ, h) = c. Moreover,
H(b, φ, h) = b. Thus,

H(d, θ, h)R2(θ)H(b, θ, h) and H(b, φ, h)P2(φ)H(d, φ, h);

or, equivalently,

d R2(θ)c and bP2(φ)d .

Finally, it is easy to see that f does not satisfy h-no-veto power. For agents 1
and 3, LC1(φ, H(d, φ, h)) = LC3(φ, H(d, φ, h)) = A but H(d, φ, h) = d /∈
f (φ).

We can state the following theorem.

Theorem 3 If n ≥ 3 and preferences satisfy strictness and monotonicity in proba-
bilities, any SCC satisfying h-unanimity is h-implementable by a lottery mechanism
if and only if it is reversion monotonic relative to h.

16 The SCC in their example satisfies h-no-veto power.
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Proof The necessity part is omitted and can be adapted from Jackson and Palfrey
(2001).

For the sufficiency part, we construct the following mechanism. The message
space of each agent i ∈ N is Mi ≡ A × � × A × N. A typical message will be
denoted mi ≡ (

m1
i , m2

i , m3
i , m4

i

) ≡ (x, θ, a, ni ). Fix a number ε ∈ (0, 1). The
outcome function is described as follows:

Rule 1 If mi = (
x̄, θ̄ , ā, .

)
for all i ∈ N , H(x̄, θ̄ , h) ∈ f (θ̄) and x̄ satisfies (2) in

the definition of reversion monotonicity, then g(m) = x̄ .

Rule 2 If m j = (
x̄, θ̄ , ā, .

)
for each j �= i , H(x̄, θ̄ , h) ∈ f (θ̄), x̄ satisfies (2)

in the definition of reversion monotonicity and mi = (c, φ, b, ·) with (c, φ, b) �=(
x̄, θ̄ , ā

)
, then the outcome is

g(m) =
{

(1 − ε)x̄ + εb if H(b, θ̄ , h) ∈ LCi (θ̄ , H(x̄, θ̄ , h))
x̄ otherwise.

Rule 3 In all other cases, the outcome is a determined by mi∗ = (a, ·, ·, ni∗),
where i∗ = min

{
i ∈ N : ni ≥ n j ∀ j ∈ N

}
.

The proof is similar to the proof of Theorem 2 and is therefore omitted. ��
The assumption of strict preferences can be relaxed, as before. If the SCC is

on alternatives with private components, the discussion in Section 4.2 applies.

6 Concluding remarks

1. Extending the class of admissible mechanisms is useful for (exact) Nash imple-
mentation. Theorem 2 closes the gap between Maskin monotonicity and Nash
implementability provided that preferences are strict and satisfy monotonic-
ity in probabilities. Moreover, no restriction on the attainable sets has to be
constructed.

2. Theorem 2 extends to environments where strictness is relaxed to top strict
difference. Nevertheless, for environments with private consumption sets or in
matching problems, top strict difference for private components is vacuous. In
such a case, restricted attainable sets may have to be constructed for each agent.
But as seen in Proposition 2, this imposes no further constraints.

3. Lottery mechanisms can also be useful for alternative implementation approaches.
Vartiainen (2003) shows that if preferences are strict, one can randomize out
of equilibrium and drop the assumption of no-veto power from the theorem of
Abreu and Sen (1990).17 We conjecture that similar results could be obtained in
incomplete information settings, for instance with Bayesian implementation.18

4. A possible extension of this work would be to design simple lottery mechanisms
to implement SCCs violating no-veto power.

17 I thank an anonymous referee for pointing out this paper.
18 See, for instance, Jackson (1991) for a discussion of Bayesian implementation.
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