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Letters to the Editor

RE: “NEED FOR MORE INDIVIDUAL-LEVEL META-ANALYSES IN SOCIAL EPIDEMIOLOGY: EXAMPLE OF JOB
STRAIN AND CORONARY HEART DISEASE”

In their article on meta-analyses in social epidemiology,
Kivimiki and Kawachi (1) make a strong case for systemati-
cally pooling data from observational studies in the social
epidemiology field, and Kivimiki et al.’s demonstration of
publication bias in the literature on job strain and coronary
heart disease risk is compelling (2). However, we take issue
with the analogy between individual-level meta-analyses in
social epidemiology and the success of meta-analyses in the
field of genetic epidemiology. As Kivimiki and Kawachi point
out, the profusion of nonreplicable candidate gene associations
(3) has now been replaced by the identification of reliable and
definite associations from large collaborative studies. The
situation for studies of germ-line genetic variation is based
upon the fact that, with basic precautions being taken to avoid
population stratification, there is little confounding (4),
no reverse causation (the early stages of a disease process
influencing the apparent exposure), and lower risk of several
other biases that plague observational epidemiology (5). In
genetic epidemiology, therefore, low statistical power and the
selective publication of false-positive associations are the
major concerns.

The situation is fundamentally different in meta-analyses
of nongenetic epidemiology, where confounding and bias are
the major issue with respect to a causal interpretation of asso-
ciations (6). Here the pooling of data from several observational
studies may hamper appropriate confounder adjustment, due
to the need to work with a lowest common denominator after
“harmonizing” the data across studies. This is illustrated by
the meta-analysis of studies of job strain and coronary heart
disease (2) that motivated Kiviméki and Kawachi’s commen-
tary (1). The assessment of socioeconomic status was based
on occupational titles (in 1 study on education), and socio-
economic status was categorized into low, intermediate, and
high. Tobacco smoking and alcohol consumption were simi-
larly crudely categorized, despite the fact that many of the
individual studies had collected detailed information on these
variables. Therefore, it is not surprising that many precisely
estimated effects from meta-analyses of observational studies
are of no causal relevance (6). Investigation of such associa-
tions requires different techniques, such as studies in settings
where confounding structures differ (7), the use of negative
control outcomes or exposures (8—10), Mendelian randomi-
zation (11), and other instrumental variable approaches. In
this regard, it is important to note that non-germ-line genomic
measures, such as epigenetic profiles, suffer from the usual
limitations of observational epidemiology (12, 13) and would
also be served badly by simply pooling data across different
studies.
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The use of large-scale individual participant data meta-
analyses of observational studies was pioneered by the Pro-
spective Studies Collaboration (14) and the Emerging Risk
Factors Collaboration (15). These initiatives predated by a
decade the recognition of the value of pooling to increase
power to detect small effect sizes in genetic epidemiology.
In areas where randomized trial data have already confirmed
that the “exposure”-outcome association is causal, observa-
tional data can be pooled to examine the range and general-
izability of the causal association, as is the case with high
blood pressure and cardiovascular disease. In areas where no
randomized trials exist—for example, C-reactive protein and
cardiovascular disease—the pooling of large volumes of data
to create very precise estimates with very small P values has
not proven helpful in making causal inferences (15). Indeed,
a separate C-reactive protein coronary disease genetics
consortium was established to test the C-reactive protein
hypothesis using a Mendelian randomization design (16).
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