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Data assimilation methods used for transient atmospheric state estimations in paleoclimatology such as 
covariance-based approaches, analogue techniques and nudging are briefly introduced. With applications 
differing widely, a plurality of approaches appears to be the logical way forward.

Reliable estimations of past climate states 
are the foundations of paleoclimatology. 

Traditionally, statistical reconstruction tech-
niques have been used, but recent develop-
ments bring data assimilation techniques 
to the doorstep of paleoclimatology. Here 
we give a short overview of transient atmo-
spheric state estimation in paleoclimatology 
using data assimilation. An introduction to 
data assimilation as well as applications for 
equilibrium state estimation and parameter 
estimation are given in the companion pa-
pers to this special section (see also Wunsch 
and Heimbach 2013).

Data assimilation combines information 
from observations with numerical models 
to obtain a physically consistent estimate 
(termed “analysis”) of the climate state. It 
has been hugely successful in generating 
three-dimensional atmospheric data sets 
of the past few decades. The “Twentieth 
Century Reanalysis Project” (Compo et al. 
2011) extended the approach as far back as 
1871, but there is a limit to further extension, 
because conventional data assimilation re-
lies on the availability of state observations. 
Paleoclimate proxies do not capture atmo-
spheric states, but time-integrated functions 
of states, such as averages, in the simplest 
case. Therefore, for assimilating proxies, other 
methods are required than those applied in 
atmospheric sciences. We briefly present be-
low, three groups of assimilation methods 
for transient atmospheric state estimation 
in paleoclimatology: “Classical” covariance-
based approaches such as the Kalman Filter 
or variational techniques; approaches based 
on analogues such as Particle Filters; and 
nudging techniques. A schematic view of 
these methods is given in Figure 1. Note that 
other methods may be used for the ocean 
(see Gebbie 2012).

Covariance-based approaches
The assimilation problem can be formulated 
as a cost function J, assuming Gaussian prob-
ability distributions:

J(x) = (x-xb)T B-1 (x-xb) + (y-H[x])T R-1 (y-H[x])    (1)

where x is the analysis, xb is a model forecast, 
y are the observations (or proxies), H is the 
observation operator that mimics the obser-
vation (or proxy) in the model space, B is the 
background error covariance matrix and R is 
the observation error covariance matrix (of-
ten assumed to be diagonal). The solution to 
(1) in the classical Kalman form is:

x = xb + BHT(R+HBHT)-1 (y-Hxb)	 (2)

where H is the Jacobian of H. Variational ap-
proaches can be used to approximate the so-
lution. In the Ensemble Kalman Filter (EnKF), 
B can be estimated from the ensemble, 
and each member is updated individually. 
Normally x is a state vector. However, Dirren 
and Hakim (2005) have successfully extended 
the concept to time averages. 

Data assimilation entails that x serves as 
an initial condition for the next forecast step. 

Focusing on the seasonal scale, Bhend et al. 
(2012) use the EnKF without updating the 
initial conditions (termed EKF here), which 
are no longer important on this scale (rather, 
predictability comes from the boundary 
conditions, including sea-surface tempera-
tures). This conveniently allows one to use 
pre-computed simulations. Because x does 
not serve as new initial condition, it can be 
small and can be a vector of averaged model 
states (e.g. all monthly averages of a season 
for three variables). H can be a simple proxy 
forward model, i.e. a time-integrated function 
of elements of x. 

Covariance-based approaches are pow-
erful but computationally intensive and can 
be sensitive to assumptions (e.g. of Gaussian 
distributions), to the treatment of covariance 
matrices, or to the behavior of the observa-
tion operator.

Figure 1: Schematic overview of assimilation approaches. Arrows denote steps in the procedure.
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approaches require a huge pool of possible 
analogues (Annan and Hargreaves 2012).

Nudging approaches
Nudging approaches (Widmann et al. 2010) 
do not explicitly minimize a cost function. The 
distance between model state and observa-
tions is reduced by adding tendencies to (a 
subspace of) the model state at each time 
step, similar to an additional source term in 
the tendency equations. Following our nota-
tion:

x = xb + G (F[y] - x)			   (4)

where F[y] represents the target field (derived 
using up-scaling method F from observations 
or proxies y) in the dimension of the model 
(sub-)space. G is a relaxation parameter. 

The Forcing Singular Vectors method 
(van der Schrier and Barkmeijer 2005) ma-
nipulates the tendency equations as well, 
but adds a perturbation, which modifies the 
model atmosphere in the direction of the tar-
get pattern only.

Examples
Figure 2 shows April-to-September averages 
of surface air temperature obtained from 
two assimilations approaches (EKF and BEM) 
for the year 1810 relative to the 1801-1830 
mean. Both approaches are based on the 
same ensemble of simulations described in 
Bhend et al. (2012). The ensemble consists of 

30 simulations performed with ECHAM5.4 at 
a resolution of T63/L31 (ca. 2° x 2°), with sea-
surface temperatures and external forcings as 
boundary conditions. 

The unconstrained ensemble mean (Fig. 
2 top) shows the effect of boundary condi-
tions, here resulting in cooler than average 
summer temperatures following the large, 
but not yet localized volcanic eruption in 
1809. Anomalies are small and smooth which 
is typical for an ensemble mean. The EKF 
analysis was constrained by historical instru-
mental observations using Eq. (2). The EKF en-
semble mean suggests a more pronounced 
cooling over northern Europe, but over 
most regions (due to lack of observations) 
it is close to the unconstrained ensemble 
mean. BEM was constrained with tree rings 
from 35 locations. The VS-lite tree growth 
model (Tolwinski-Ward et al. 2011) was used 
as H and Eq. (3) was minimized. BEM identi-
fies member 01 as the best fitting one. This 
member exhibits large anomalies in Alaska 
and Eurasia, but due to the small ensemble 
size little regional skill is expected (Annan and 
Hargreaves 2012). For instance, it does not 
fit well with instrumental observations over 
Europe. The same member in the EKF analy-
sis (Fig. 2, bottom) shows a better correspon-
dence, but we loose the advantage of having 
the full 6-hourly model output available. 

Limitations and future directions
Paleoclimatological applications are much 
more disparate than atmospheric sciences in 
terms of time, time scales, systems analyzed, 
and proxies used. Therefore, a plurality of 
data assimilation approaches is a logical way 
forward. However, all approaches still suffer 
from problems and uncertainties. Ensemble 
approaches (PF, EnKF, EKF) provide some 
information on the methodological spread, 
which however represents only one (difficult 
to characterize) part of the whole uncertainty. 
Further uncertainties are related to model 
biases, limited ensemble size, errors in the 
forcings and proxy data. Validation of the ap-
proaches using pseudo proxies in toy models 
and climate models and validation of the re-
sults using independent proxies is therefore 
particularly important. Any approach, how-
ever, fundamentally relies on a good under-
standing of the proxies.
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Figure 2: Northern hemisphere temperature anomalies for April to September 1810 (relative to 1801-1830) from 
the unconstrained ensemble mean, the EKF ensemble mean, BEM (member 01), and the EKF analysis for the BEM 
member. Circles indicate locations and anomalies of the assimilated instrumental measurements; red squares 
the locations of tree-ring proxies. 

Analogue approaches
Reverting to cost function (1), we can also 
look for an existing x, e.g. by choosing among 
different ensemble members. The cost func-
tion (1) reduces to:

J(x) = (y-H[x])T R-1 (y-H[x]) 		  (3)
for x ϵ {x1, x2,...,xn}			 

New ensemble members are then generated 
for the next time step by adding small pertur-
bations to x and the final analysis is a continu-
ous simulation. The Particle Filter (PF, Goosse 
et al. 2010) approach uses a distribution of x 
to calculate a weighted sum of cost function 
contributions to (3). 

In the Proxy Surrogate Reconstruction 
approach (PSR, Franke et al. 2011) and the 
Best Ensemble Member approach (BEM, 
Breitenmoser et al., in preparation) pre-com-
puted simulations are used with {x1,x2,...,xn} 
denoting different slices of a long simulation 
for PSR or in the case of BEM, the same slice 
in an ensemble of simulations. The “analysis” 
in both cases is a sequence of short, discon-
tinuous simulations. In contrast to EnKF, H 
may be non-differentiable (e.g. H can be a 
complex forward model driven by the full 
simulation output). R may be non-diagonal, 
and x may be very large (e.g. six-hourly model 
output over a 6 month period). However, to 
reconstruct the state of systems including a 
large number of degrees of freedom, these 


