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(MIS 31-19) as inferred from planktonic foraminifera and calcium carbonate records 
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†
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of Salamanca, Faculty of Sciences, 37008 Salamanca, Spain; Isabel Cacho (icacho@ub.edu), 

GRC Marine Geosciences, Department of Stratigraphy, Paleontology and Marine 

Geosciences, University of Barcelona, 08028 Barcelona, Spain; Gabriel Michael Filippelli 

(gfilippe@iupui.edu), Department of Earth Sciences, Indiana University-Purdue University 

Indianapolis (IUPUI), 46202 Indianapolis, USA.  

†
 Now at: Institute of Geography and Oeschger Centre for Climate Change Research, 

University of Bern, 3012 Bern, Switzerland. 

 

Marine sediments from the Integrated Ocean Drilling Project (IODP) Site U1314 (56.36°N, 

27.88°W), in the subpolar North Atlantic were studied for their planktonic foraminifera, 

calcium carbonate content, and Neogloboqudrina pachyderma sinistral (sin.) δ13C records in 

order to reconstruct surface and intermediate conditions in this region during the Mid-

Pleistocene Transition (MPT). Variations in paleoceanography and regional dynamic of the 

Arctic Front were estimated comparing CaCO3 content, planktonic foraminifera species 

abundances, carbon isotopes and ice rafted detritus (IRD) data from Site U1314 with 

published data from other North Atlantic sites. Site U1314 exhibited high abundances of polar 

planktonic foraminifera N. pachyderma sin. and low CaCO3 content until Marine Isotope 

Stage (MIS) 26, indicating a relatively south-eastward position of the Arctic Front (AF) and 

penetration of colder and low saline surface arctic water masses. Changing conditions after 

MIS 25, with oscillations in the position of the AF, caused an increase in the northward export 
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of warmer North Atlantic Current (NAC), indicated by more abundance of non-polar 

planktonic foraminifera and higher CaCO3. The N. pachyderma sin. δ13C data indicate good 

ventilation of the upper-part of the intermediate water layer in the eastern North Atlantic 

during both glacial and interglacial stages, except during Terminations 24/23, 22/21 and 20/1. 

In addition, for N. pachyderma (sin.) we distinguished two morphotypes; nonencrusted and 

heavily encrusted test. Results indicate that increases in the encrusted morphotype and lower 

plaktonic foraminifera diversity are related to intensification of glacial conditions (lower sea-

surface temperatures, sea-ice formation) during MIS 22 and 20.  

 

Key words: North Atlantic; Mid-Pleistocene Transition; planktonic foraminifera; 

Neogloboquadrina pachyderma sinistral; intermediate ventilation; CaCO3; Arctic Front. 

 

Detailed analyses of high-latitude North Atlantic sediment cores and the development of 

paleoclimatic models have demonstrated the persistence of cyclical ice-volume variations and 

abrupt global climate changes throughout the Pleistocene Epoch. Especially intriguing is the 

period between 1100 and 700 ka, known as the “Mid-Pleistocene Transition” (MPT) (Berger 

& Jansen 1994), when there was a large build-up of ice sheets in the Northern Hemisphere, 

producing higher amplitude climate oscillations (Mudelsee & Schulz 1997; Tziperman & 

Gildor 2003; Clark et al. 2006). This reconfiguration of the global ice-volume budget may 

have been associated with changes in deep-ocean circulation on glacial-interglacial (G-IG) 

(orbital) and shorter timescales (suborbital) (Raymo et al. 1997; Venz et al. 1999; Kleiven et 

al. 2003, 2011; Raymo et al. 2004; Hodell et al. 2008; Ferretti et al. 2010). During these 

events, ventilation by northern source waters was reduced at depths >2500 meters in the 

North Atlantic, in part because of the melting of icebergs and low-salinity surface waters 

released to the ocean during episodic surges of icebergs to North Atlantic (Broecker et al. 

1992; Alley & MacAyeal 1994; Broecker 1994). Results by Venz et al. (1999) showed that 
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during the past 1.0 Myr, convection in the Greenland, Iceland, and Norwegian (GIN) Seas 

moved south of the Arctic Front (AF), and switched from a deep to an intermediate mode 

(Glacial North Atlantic Intermediate Water, -GNAIW-) during glacials. During most isotopic 

Terminations, melting of icebergs and production of low-salinity surface waters caused 

formation of the intermediate water mass to cease, resulting in decreased ventilation at all 

depths in the northern North Atlantic. 

 A strong linkage exists between changes in surface oceanography and decreased 

ventilation in the North Atlantic. Because deep convection in the GIN Seas depends on 

northward advection of heat through warm and saline Atlantic waters (Broecker 1991), 

studies using surface-ocean proxies (e.g. planktonic fauna and stable isotopes on planktonic 

foraminifera) may provide valuable information to understand changes in the deep ocean. 

Micropaleontological records and sea surface temperature (SST) reconstructions from the 

North Atlantic show major variations in composition and structure of planktonic assemblages 

throughout the MPT, related to severe cold surface waters events associated with the ice-sheet 

expansion and IRD discharge events which resulted in stagnation of deep North Atlantic 

waters (Wright & Flower 2002; Reid et al. 2007; Marino et al. 2008, 2011; McClymont et al. 

2008; Shimada et al. 2008). Although data exist for a wide range of organisms, we focus here 

mainly on planktonic foraminifera.  

Because planktonic foraminifera offer multiple approaches to reconstruct surface 

ocean conditions (changes in assemblage, diversity, variations size and morphology, etc.), it 

has been frequently used as a tracer of North Atlantic water masses (e.g. Stehli 1965; 

Ruddiman 1969, 1989; McIntyre et al. 1972; Balsam & Flessa 1978; Bauch 1994; 

Johannessen et al. 1994; Fronval et al. 1998; Wright & Flower 2002; Kandiano et al. 2004), 

and especially to monitor changes in the position of the AF, which marks the southward 

extent of cold arctic waters and also sea-ice (Swift & Aagaard 1981). Planktonic foraminifera 

can also provide insight into deeper conditions of the water column via the isotopic 
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composition of some relatively deep-dwelling species. An example is the polar species N. 

pachyderma sin., which has been demonstrated to reflect conditions along the pycnocline (Bé 

& Tolderlund 1971; Carstens & Wefer 1992; Wu & Hillaire-Marcel 1994; Kohfeld et al. 

1996). Several recent studies in the Labrador Sea (western North Atlantic) have reconstructed 

the conditions at the upper-part of the of the intermediate water layer from the isotopic 

composition of N. pachyderma sin. (Hillaire-Marcel & Bilodeau 2000; Hillaire-Marcel et al. 

2001a; de Vernal et al. 2002; 2011). 

In this paper, we use new high-resolution planktonic foraminifera assemblage data, 

δ13C of N. pachyderma sin., Shannon-Weaver diversity index and percentage of CaCO3 from 

Integrated Ocean Drilling Program (IODP) Site U1314 between 1069 and 779 ka, to obtain 

information of past sea-surface hydrological parameters. We examine the response of 

planktonic foraminifera species to palaeoenvironmental variations during the MPT, with 

special emphasis on the interrelations between environment and the palaeoecology of poorly 

known encrusted morphotype of N. pachyderma sin., and its potential as a valuable climatic 

index. Data are compared with available CaCO3 content and planktonic foraminifera records 

from neighbouring sites in the subpolar North Atlantic to monitor the AF oscillations and 

implications for the heat and moisture transport to the boreal ice-sheet regions. Finally, we 

examine the potential of the δ13C signal from N. pachyderma sin. as an intermediate water 

circulation proxy in the subpolar North Atlantic. The aim of this study increase the geographic 

coverage of proxy records for a better interpretation of temporal and spatial 

paleoceanographic changes in the subpolar North Atlantic during the MPT. 

 

Study area and site location 

 

IODP Site U1314 was drilled by the D/V JOIDES Resolution in the southern Gardar Drift, in 

the northeast Atlantic (56.36°N, 27.88°W) during IODP Expedition 306 (Fig. 1). Due to its 
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proximity to the “ice-rafted debris” (IRD) belt (Ruddiman 1977) Site U1314 (2820 m water 

depth) provides direct evidence of ice rafting activity from the Upper Pliocene to Holocene 

(Channell et al. 2006). Site U1314 is strongly influenced today by the northward flow of the 

North Atlantic Current (NAC). This surface water mass travels northward across the North 

Atlantic where it crosses the Mid-Atlantic Ridge between 53°N and 60°N. One branch turns 

northwestwards and travels as the Irminger Current (IC) on the western and northern side of 

Iceland, while the main branch flows over the Iceland-Faeroe Ridge into the GIN Seas 

(Krauss 1986; Reynaud et al. 1995). This current carries heat to the north and maintains the 

warm climates of central and northern Europe. The northward flowing water is cooled in the 

Greenland-Iceland-Norwegian (GIN) Seas, increasing its density. Winter convection of the 

cooled Atlantic surface waters results in the formation of North Atlantic Deep Water 

(NADW) which flows as the Iceland-Scotland Overflow Water (ISOW) through the Faeroe 

Bank channel to enter the Iceland basin (Swift 1984; Schmitz & McCartney 1993). The 

intermediate water masses in the eastern North Atlantic (~500 to ~2000 m) that are 

characterized by extrema in salinity or potential temperature are Subarctic Intermediate 

Water, Mediterranean Sea Outflow Water, and Labrador Sea Water; at low latitudes Antarctic 

Intermediate Water can also be recognized from a salinity minimum (van Aken 2000; Álvarez 

et al. 2004).  

Site U1314 is seasonally affected by the southward extension of cold and less saline 

waters of the East Greenland Current (EGC). The distinct oceanic front between warm saline 

NAC and the IC, and the cold arctic waters, is known as the Arctic Front (AF). The AF marks 

the maximum extent of winter sea-ice. The cold and low salinity polar waters transported by 

the EGC are separated from the cold but saltier arctic waters by the Polar Front (PF) (Swift & 

Aagaard 1981). The PF is close to the summer sea-ice edge, thus polar waters are perennially 

under the sea-ice cover, resulting in minimal carbonate productivity (Henrich 1998). South of 
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the AF, calcareous productivity is more intense, while terrigenous deposition occurs widely 

north of the AF (Henrich et al. 2002). 

 

Material and methods 

 

The sedimentary sequence recovered at this Site U1314 varies in color from very dark grey to 

light grey to hues of greenish grey, and consists mainly of predominantly nannofossil oozes 

enriched in biogenic and terrigenous components, and terrigenous silty clay with a varying 

proportion of calcareous (e.g., nannofossils, foraminifers) and siliceous organisms (e.g., 

diatoms and radiolarians). More detailed core descriptions are in (Channell et al. 2006). 

Samples were taken every 4 cm as 2-cm thick slices between the 60 to 84.16 meters 

composite depth (mcd). Each sample was oven-dried, weighed, and wet sieved over a 63 µm 

screen, and then oven-dried again. Later, samples were dry sieved into two fractions, 63-150 

µm and >150 µm. Census counts and picking for the stable isotope analyses were carried out 

in the >150 µm fraction. Full census counts were completed every other sample (total 325 

samples), with and average resolution of ~0.9 ka (see Chronology and age-depth modeling 

section). Each sample was split as many times as necessary to obtain an aliquot that contains 

about 400 planktonic foraminifers, then species of planktonic and benthic foraminifera, 

mineral grains, ash, lithic fragments, radiolarians, ostracodes and planktonic foraminifera 

fragments were counted and relative abundances and fluxes were then calculated. Our 

taxonomy criteria for planktonic foraminifera specimens follows that of Bé (1977) and 

Hemleben et al. (1989). Diversity patterns of planktonic foraminifera assemblage were 

determined using the Shannon Weaver diversity index (Shannon & Weaver 1963), given by 

the following equation: 

																																														

i i

s

i=1
= - ( ln )Σ p pH

																																																															

(1)
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where H is the Shannon Weaver diversity index, pi is the fraction of the entire population 

made up of species 1, s is the number of species encountered, and ∑ the sum from species 1 to 

species S. This index is sensitive to both changes in the number of species and their relative 

abundance in the sample. High values can result from an addition of species, greater equality 

in abundance, or both. In modern Atlantic Ocean, planktonic foraminifera diversity shows a 

strong correlation with SST. Polar waters of both hemispheres show lowest diversity, being 

dominated by a single species (N. pachyderma), while the highest diversity and largest sizes 

are found in the oligotrophic subtropical gyres (Rutherford et al. 1999). A more detailed 

discussion of this index and its use in ecological studies is provided by (Pielou 1975). 

The total carbon (TC) content of the sediment was measured in 584 samples using a 

UIC Coulometrics CM150 carbon analyzer. For total organic carbon (TOC) analyses, first we 

removed total inorganic carbon (TIC) following standard procedures (Van Iperen & Helder 

1985). About 0.2 g of powdered sample was digested in 2N HCl in 50 ml centrifuge tubes, 

and shaken by hand periodically until carbonate reaction was no longer visible. The samples 

were dried overnight at ~70ºC to evaporate excess HCl. In order to ensure all HCl was 

removed samples were rinsed with deionized water, and then centrifuged and decanted. After 

two rounds, wet sediment was transferred to a vial and dried overnight at 65°C. TOC was then 

measured using a Flash 2000 Combustion CHNS/O Analyzer.  

TIC and CaCO3 were then calculated from the weight percentages of the TC and TOC 

using the following equations: 

TIC � ��TC � TOC 100⁄ 
 �1 � �TOC 100⁄ 
 � 8.33
⁄ � � 100																		�2
 

  

																															CaCO�% � TIC � 8.33																																																							�3
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The accumulation rates of planktonic foraminifera (PF AR = Planktonic Foraminifera 

Accumulation Rate) to estimate surface productivity was calculated using the following 

equation: 

																													PF	AR � planktonic	foraminifera	concentration	 � MAR																			�4
 

where PF AR is given in number of individuals cm-2 ka-1; planktonic foraminifera 

concentration (number of individuals g-1); MAR = mass accumulation rates (g cm-2 ka-1) 

(MAR = SR	�	DBD; SR = sedimentation rate (cm ka-1); DBD = dry bulk density (g cm-3). SR 

and DBD are published in Hernandez Almeida et al. (2012) and IODP-USIO Janus web 

database (2007), respectively. 

In order to estimate carbonate dissolution, a planktonic foraminifera fragmentation 

index (FI) was also calculated by measuring the ratio between planktonic foraminifera 

fragments and whole tests. Furthermore we estimate the ratio of benthic to planktonic 

foraminifers B/(P+B) in the >150 µm size fraction. In general, dissolution produces more 

planktonic foraminifera fragments and preferentially removes planktonic foraminifers, which 

leads to a higher FI and B/(P+B) ratio (Thunell 1976).  

The benthic and planktonic stable isotope records were previously published by to 

Hernández-Almeida et al. (2012). One to eight tests of Cibicidoides spp. (mainly C. 

wuellerstorfi and occasionally C. pachyderma) were picked from the >250 µm size fraction 

and one to eight individuals were used for isotopic analysis. When this species was absent, we 

picked specimens of Melonis pompilioides from the same size fraction to produce a 

continuous signal. In order to elaborate a homogenous isotope record from both species, we 

calculated the mean difference between both species in 74 samples covering the 1069 to 400 

ka period (this study; Alonso-Garcia et al. 2011). The average difference was used to adjust 

both records, -0.11‰ for the oxygen and +0.6‰ for the carbon isotopes. 

For the planktonic foraminifera stable isotope study, we chose to analyse 

Neogloboquadrina pachyderma sinistral (sin.), because this species is present throughout the 
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studied section. A minimum of 15 specimens from the size range between 150-250 µm were 

picked. Benthic and planktonic specimens of each sample were crushed, ultrasonicated and 

cleaned with methanol before the isotopic analyses. Benthic and planktonic foraminifera 

stable isotope analyses were carried out in a Finnigan MAT 252 mass spectrometer at the 

University of Barcelona. Calibration to the Vienna Pee Dee Belemnite (VPDB) standard scale 

(Coplen 1996) was made through the NBS-19 standard, and the analytical precision was 

better than 0.06‰ for δ18O and 0.02‰ for δ13C.  

Since δ13C values measured in planktonic foraminifera tests are related to nutrient 

concentrations (Broecker & Peng 1982), the analyses of carbon isotopes in N. pachyderma 

sin. aims to reconstruct the structure of the bottom of the pycnocline (the upper-part of the 

intermediate water layer). To test the potential of N. pachyderma sin. δ13C as a tracer of 

intermediate ventilation, we compared our record to benthic δ13C data from Site 982, which is 

bathed by the well ventilated GNAIW during glacial stages between 0-1.0 Ma (Venz et al. 

1999) The ~0.9‰ off-set between benthic and planktonic δ13C records from Site 982 and 

U1314 represents the metabolic and vital effects of δ13C values of N. pachyderma sin. These 

are well constrained by a shift of +0.9‰ versus δ13C in dissolved inorganic carbon (DIC) 

(Labeyrie & Duplessy 1985). At the level of the pycnocline (upper-part of the intermediate 

layer), where N. pachyderma sin. lives (e.g. Bé & Tolderlund 1971; Simstich et al. 2003), the 

sea water δ13C is already partially affected by addition of CO2 with low 13C, recycled from 

settling organic matter (Kroopnick 1985). To facilitate comparison with the ODP Site 982 

(1145 m depth) benthic δ13C record, our N. pachyderma sin. δ13C record was adjusted to a 

‘Cibicidoides’ scale by adding +0.9‰ (Labeyrie & Duplessy 1985). 

Finally, we compared our records with other available proxies at ODP Sites 982 

(CaCO3, IRD) (Baumann & Huber 1999; Venz et al. 1999) and 983, 980 and 984 (CaCO3, 

planktonic foraminifera assemblages) (Ortiz et al. 1999; Wright & Flower 2002) in order to 

provide a regional perspective of paleoceanographic changes in the subpolar North Atlantic. 
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Benthic δ18O records from former sites were used to correlate these records to the LR04 

benthic δ18O stack, and thus the Site U1314 age.  

 

Notes on taxonomy of Neogloboquadrina pachyderma sinistral 

Microscopic investigation of planktonic foraminifera for quantitative analyses was conducted 

under light microscope, but we also performed visual inspection of the specimens using SEM 

microscope in order to make a morphotype separation. In our samples, we clearly 

distinguished the two different coiling directions of N. pachyderma, dextral and sinistral (Fig. 

2A, B, M; C, D, N, respectively). Within the sinistral coiling, we identified two morphotypes 

on the basis of the criteria of Srinivasan & Kennett (1974) and Vilks (1974). The two 

morphotypes are characterized as (i) nonencrusted N. pachyderma sin. with a smooth, shiny, 

reticulate surface, and with larger latter chambers and lobate shape (Fig. 2C, D), and (ii) 

encrusted morphotype with tiny and compact chambers, with an opaque and quadrate shell, 

and with a heavily encrusted crystalline surface (Fig. 2E-L, O-P). These morphotypes are 

close to those that are recognized in North Atlantic and Arctic sediments (Eynaud et al. 2009; 

Moller et al. 2011). At Site U1314, encrusted individuals of N. pachyderma sin. appear more 

abundant during the last two glacial stages, at MIS 22 and 20, replacing the lobate form of this 

species (Fig. 3A;B). Large numbers of the encrusted morphotypes of N. pachyderma sin. first 

appear close to the Plio/Pleistocene boundary, in conjunction with the deposition of glacial 

detritus and the absence of other cold water species, such as N. atlantica and nonencrusted N. 

pachyderma sin. (Poore & Berggren 1975; Huddlestun 1984). It is unclear whether this 

encrusted form results from a process that converts nonecrusted N. pachyderma sin. into 

encrusted morphotypes by a secondary calcification that takes place below critical water 

depths (Bé 1960; Kohfeld et al. 1996; Volkmann & Mensch 2001), or if they are indeed 

different morphotypes entirely (Bergami et al. 2009). What is clear is they occupy two 

distinct environments. The nonencrusted morphotype are found in the mixed layer, between 
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100-150 m, above the main pycnocline, whereas the encrusted morphotypes are associated to 

greaterdepths up to 300 m, within the main pycnocline (Kohfeld et al. 1996; Stangeew 2001; 

Bergami et al. 2009). 

 

Chronology and age-depth modelling 

 

The conversion from core depth to time was derived by direct correlation of benthic 

foraminifera oxygen isotope record from Site U1314 and the LR04 benthic isotope stack 

(Lisiecki & Raymo 2005). All correlations were performed using the AnalySeries 2.0software 

(Paillard & Yiou 1996). The final age model for the 24.16 m studied section spans an interval 

of ~290 ka (1069 to 779 ka) through the early and mid-Pleistocene based on 13 stratigraphic 

tie points, yielding a temporal resolution of 547 years for the full resolution records and 1094 

years for the every other sample records. Between tie points sedimentation rates were 

assumed constant based on shipboard preliminary stratigraphy (Channell et al. 2006). The 

resulting sedimentation rates are moderately high (average 9.3 cm ka-1) and differ largely 

between glacial (as low as 1.15 cm ka-1) and interglacial (up to 27 cm ka-1) intervals, which is 

a consistent feature in the area of the Gardar Drift (Huizhong & McCave 1990; Dickson & 

Brown 1994). The variability of sedimentation rates can be attributed to changes in the 

intensity of the ISOW (Bianchi & McCave 2000). Further details of the age model 

construction can be found in Hernández-Almeida et al. (2012). Isotopic events labeled at Site 

U1314 records (30.1, 29.1, 27.1, 24.1, 23.3, 23.1, 21.7, 21.5, 21.3 and 21.1) correspond to 

nomenclature given to suborbital-scale climate events observed in the benthic δ18O record 

from Site U1314 by Hernandez-Almeida et al. (2012). 

 

Results  
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Fauna 

The most abundant foraminifera species are Neogloboquadrina pahyderma sin., 

Neogloboquadrina pachyderma dextral (dex.), Globorotalia inflata, Globigerina bulloides, 

Globigerinita glutinata and Turborotalita quinqueloba. Glacial stages are highly dominated 

by N. pachyderma sin., while interglacial stages comprise a multispecies assemblage, where 

N. pachyderma dex. is the most abundant (from 65% to less than 1%, average 20%), followed 

by G. inflata, and secondarily, G. bulloides, T. quinqueloba and G. glutinata (Fig. 4). N. 

pachyderma sin. shows a high variability ranging from 5 to 90% (average 60%). The lowest 

values are recorded at MIS 19, while high values are observed during glacial stages (Fig. 4A). 

The N. pachyderma dex. distribution pattern is opposite to that of the sinistral coiling variety, 

with higher abundances during interglacial stages MIS 25, 21 and 19 (Fig. 4B).  

The abundance record of G. inflata is similar to that of N. pachyderma dex., with 

values between 40 and 0% (average 8%), with a prominent peak during MIS 25. However, 

both species display opposite trends during MIS 21 (Fig. 4C). The relative abundance of G. 

bulloides varies between 0 and 25% (average 6%), reaching the maximum values during MIS 

21. The pattern shown by this species is similar to that of N. pachyderma dex., except during 

MIS 25 and 21, where they show rather opposite trends (Fig. 4D). 

Besides the most abundant species described previously T. quinqueloba and G. 

glutinata contributed in lower proportion to the total assemblage. T. quinqueloba percentages 

are below 5% (average 2%) throughout the studied section, except at MIS 29 and 21, when 

percentages reach 18% (Fig. 4E). The G. glutinata distribution resembles that of G. bulloides; 

with values between 0 and 8% (average 2%). The main feature of this curve are the low 

values from MIS 22 upward, and the abrupt increase from MIS 23 downward, where three 

peaks of around 8% occur (Fig. 4F).  

 

δ
13

C record from Neogloboquadrina pachyderma sin. 
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The N. pachyderma sin. δ13C record of Site U1314 shows a pattern of lower values during the 

late glacial and deglacial phase and higher values during the later phase of the interglacial and 

during glacials (Fig. 5C). Higher values are recorded before MIS 25, with a peak maximum 

during MIS 27, at 988 ka. Values decreased in average between the MIS 24-19 interval, 

recording pronounced δ13C minima at Terminations 24/23, 22/21 and 20/19, coinciding with 

greater IRD events at Site U1314 (Hernández-Almeida et al. 2012). 

 

Distribution of total planktonic foraminifera concentration, carbonate content and 

diversity index 

The CaCO3 values from Site U1314 averaged 34.3%, with higher carbonate concentrations 

occurring in interglacial isotope stages and lower concentrations in glacial stages (Fig. 6A). 

The typical glacial-to-interglacial change in carbonate percentage over the 1069-779 ka time 

period was from 8 to 50%, within in the range of the distribution of CaCO3% in surface 

sediments in this region and during the Last Glacial Maximum (LGM) (Biscaye et al. 1976; 

Bianchi & McCave 2000). Highest values occurred during interglacial stage 31, 25, 21 and 

19, and lowest during glacial stage 28, 26 and 22.  

High PF AR are recorded late in the interglacial phase of MIS 27, 25 and 20, where 

the largest peak was recorded (798 ka) (Fig. 6B). The PF AR are generally within the range of 

the published data from Holocene sediment cores collected in the same area, ~15x104 

individuals cm-2ka-1 (Rasmussen et al. 2003b), except for the aforementioned maxima at MIS 

20. In terms of species, N. pachyderma sin. is the major contributor to the PF productivity 

(Fig. 6C), while other subpolar species appear to be more important during interglacial stages 

(Fig. 6D), temporal pattern similar to that observed for CaCO3 content. 

 Changes in CaCO3 percentages and PF AR may also be influenced by dissolution, 

which has to be taken into account for all palaeoenvironmental interpretations based on these 

proxies. To estimate variations in carbonate dissolution we used the planktonic fragmentation 
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index (FI). Higher FI values take place with higher percentages of N. pachyderma dex., G. 

inflata, G. bulloides and T. quinqueloba, while it decreases at times of dominance of the polar 

species N. pachyderma sin., with a maximum FI of 32% at 1002 ka (Fig. 6E). Overall, this 

index is generally lower than 40%, the level at which planktonic foraminifera assemblages are 

determined to be altered by dissolution (Miao et al. 1994). The low FI value found for Site 

U1314 indicates good CaCO3 preservation, with no significant differences between glacial 

and interglacial stages. This assumption is plausible since Site U1314 is bathed by oxygen-

rich, dense deep-water from the GIN Seas, which are supersaturated with respect to carbonate 

ion, and it is located above the aragonite compensation depth which is presently about 3300 m 

in the North Atlantic (Broecker & Takahashi 1978). In addition, the B/(P+B) ratio was <<1, 

which suggests that extensive calcium carbonate dissolution did not take place in the subpolar 

North Atlantic between MIS 31 and 19 (Fig. 6F). 

The Shannon diversity (H) index follows the record of subpolar, temperate-water 

species, with higher diversity in the planktonic foraminifera assemblage during interglacial 

and lower during glacial stages (Fig. 3C). The highest diversity is found during MIS 30, 25 

and 21, and lowest diversity is recorded during glacial maximum at MIS 22 and MIS 20. 

 

 Discussion  

 

North Atlantic paleoceanography and palaeoproductivity 

The present distribution of planktonic foraminifera assemblages reflects the general 

hydrography of the modern North Atlantic. High percentages of N. pachyderma sin. are 

associated with the EGC, with annual mean temperatures of 2ºC (Tolderlund & Be 1971; 

Pflaumann et al. 2003), and occurs in a wide range of habitats including sea ice (Spindler & 

Dieckmann 1986). In contrast, N. pachyderma dex. and G. inflata are definitely linked to the 

warmer waters of the NAC (Kipp 1976; Schiebel & Hemleben 2000; Hald et al. 2007). Other 
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species such as G. bulloides, G. glutinata and T. quinqueloba are also present, the latter 

species being more abundant along the region of the AF (Johannessen et al. 1994). Site 

U1314 is located today along the main course of the NAC, and a foraminifera assemblage 

dominated by N. pachyderma dex. G. inflata, G. glutinata and G. bulloides, with almost no N. 

pachyderma sin. (Schiebel & Hemleben 2000; Hald et al. 2007).  

Between MIS 31 and 26, surface arctic waters dominated this region, as indicated by 

the high percentages of N. pachyderma sin. (~90%), which were cyclically replaced by 

temperate Atlantic waters. Interglacial conditions similar to those found today in this region 

were not reached until MIS 25, when N. pachyderma dex. + G. inflata surpassed 70% 

(Andersson et al. 2009; Chapman 2010) (Fig. 4A-C), revealing a penetration of Atlantic 

waters after this interglacial stage. Decreasing percentages of the only polar species found at 

Site U1314, N. pachyderma sin., indicate a north-west retreat of the AF and rising SST. These 

AF retreats were moderate prior MIS 25, since N. pachyderma sin. abundances did not fall 

below 40% within this period. Hence, we can infer a limited influence of the NAC at this 

latitude compared to today, since relative abundances of this polar species in modern pelagic 

sediments are below 10% (Andersson et al. 2009; Chapman 2010). Diatom assemblage 

records from North Atlantic IODP Sites 983 and 1304 support this interpretation, since they 

were dominated by the cool and low-saline waters Neodenticula seminae during this period 

(Koç et al. 1999; Shimada et al. 2008), reflecting a more southerly extension of the AF than 

today (even during interglacials). Southern limits of the AF may have reached latitudes 

between 32-37ºN, based on the occurrence of the diatom N. seminae in North Atlantic 

sediments (Baldauf 1986; Ikeda et al. 2000). Cooler surface waters during glacial stages were 

not suitable for high surface productivity levels, as seen in the decrease in CaCO3 values (2%) 

during MIS 28 and 26, a condition likely due to southeastward migration of the PF, covering 

U1314 with year-round sea ice cover (Fig. 6A). In contrast, during MIS 30 CaCO3 values 

between 7-30% at Site U1314 and the presence of diatom productivity at the neighboring Site 
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983 (Koç et al. 1999) reflects some degree of surface productivity, and suggests that the North 

Atlantic was free of sea-ice during this glacial stage.  

In a similar way to the two ‘eccentricity-like’ cycles recognized in the benthic δ18O 

record by Hernández-Almeida et al. (2012) (Fig. 5A), planktonic foraminifera assemblages 

changed at the onset of interglacial cycle of MIS 25based on the N. pachyderma and G. 

inflata record (Fig. 5B, dashed line), two 100-ka cycles can be recognized. The first 100-ka 

G-IG cycles occur at c. 950 ka (MIS 25 to 22), and started with high percentages of N. 

pachyderma dex. + G. inflata. These values reached well over 70%, very similar to those 

found during the Holocene and indicating a SST between 10 and 14ºC (Pflaumann et al. 

2003; Hald et al. 2007), and indicating a long period of ~20 ka of warm-water advection to 

Site U1314. This warming was followed by a sharp cooling event, evidenced by a pronounced 

increase in abundance of N. pachyderma sin. up to 93% (Fig. 3B, solid line). This event took 

place at 933 ka and reflects an abrupt southward shift of the AF. Cool arctic conditions were 

followed by three events of significant NAC advection towards the North Atlantic. The first 

one, of smaller amplitude, occurred during substage 24.1, while the later two related with 

warmer waters are linked to substages 23.1 and 23.3. Maximum glacial conditions during this 

100-ka cycle were recorded during MIS 22 in which arctic waters with planktonic 

foraminifera assemblage characterized by 94% N. pachyderma sin. dominated in the region 

for a long period of time, spanning from 885 to 862 ka (Fig. 5B, solid line). This glacial stage 

is considered the first of the major cold events that typify glaciations of the Late Pleistocene 

and the most severe of the early and mid-Pleistocene (Head & Gibbard 2005). Based on the 

high benthic δ18O values (Fig. 5A), and on the diatom-barren samples at Site 983 (Koç et al. 

1999), we infer that the PF may have migrated southeastward, bringing extremely low SST 

and perennial sea-ice conditions to the subpolar North Atlantic. 

The second 100-ka cycle started with an abrupt warming event at the onset of MIS 21 

at c. 860 ka (MIS 21 to 19), when waters with dominant N. pachyderma sin. were rapidly 
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replaced by waters with abundant N. pachyderma dex. + G. inflata (Fig. 5B). These remained 

as the dominant species until 845 ka, when an abrupt southward advance of the AF took place 

with the subsequent proliferation of N. pachyderma sin., marking the onset of substage MIS 

21.5. This marked the beginning of a long-term period of ice-sheet growth towards the glacial 

maximum recorded at around 800 ka. However, a series of suborbital scale North Atlantic 

oscillations are recorded by the planktonic foraminifera assemblages that, in general, follow 

the isotope substages recognized during MIS 21. These were interpreted by Ferretti et al. 

(2010) as harmonics of the precession cycles. Events of enhanced northward advection of the 

NAC are recorded during isotope substages 21.5, two events in substage 21.3, of which the 

latest one is very prominent, and a low amplitude event in substage 21.1, which indicates 

strong advection of the NAC towards the North Atlantic latitudes, similarly to that occurring 

today in this region. Higher CaCO3 values during these substages support the inferred retreat 

of the AF, allowing more NAC waters to bath latitudes over 60ºN (Fig. 6A). This finding is 

substantiated by the concomitant increase in CaCO3% in several sites from the GIN Seas 

(Henrich 1989; Henrich & Baumann 1994), which also reflected an increased surface water 

exchange between North Atlantic and Norwegian basins. Fully glacial conditions, with a 

planktonic foraminifera assemblage dominated by N. pachyderma sin., prevailed from 815 to 

790 ka (MIS 20), with only a short incursion of warm-water species at around 815 ka. The 

presence of significant diatom production at sites 919 and 983 (Koç & Flower 1998; Koç et 

al. 1999), and CaCO3 percentages of 17% during MIS 20, indicate at least seasonally open 

marine conditions and a PF north of 60º N during this time. 

Besides major changes in planktonic foraminifera assemblage at G-IG and suborbital 

time-scales, there are striking ecological successions within warm intervals and fauna changes 

along the studied section that can indicate changes in the properties of surface waters. N. 

pachyderma dex. reaches its maxima modern representation in the North Atlantic with 

enhanced warm NAC advection, especially toward longitudes >0ºE, with warm, stratified 
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surface waters during summer (Sautter & Thunell 1989; Schiebel & Hemleben 2000; Bauch 

& Kandiano 2007; Fraile et al. 2008). In contrast, although G. bulloides and G. glutinata also 

occupy the upper meters of the water column, their seasonal peak abundance seems to differ 

from these other groups, occurring today during spring at 60ºN following phytoplankton 

blooms during ice-free periods (Bé 1977; Schiebel & Hemleben 2000; Schiebel et al. 2001; 

Fraile et al. 2008). Accordingly, a decrease of N. pachyderma dex. after interglacial maxima 

at Site U1314 indicates an eastward shift in the flow path of the NAC toward the Norwegian 

continental margin, and an incipient expansion of colder waters during late interglacial 

periods (e.g., at MIS 25 and 21.1; Fig. 4B). Higher G. bulloides and G. glutinata levels during 

this progressive cooling might represent wind driven mixing and peaks of chlorophyll in open 

ocean conditions, suggesting that nutrient content played a more important role than 

temperature for this species (Fig. 4D, F). 

Regional warming as a consequence of a greater retreat of AF at MIS 21 may have 

affected G. glutinata, whose percentages are considerably higher during interglacial stages 

before MIS 22 than after (Fig. 4F). This species is not as opportunistic as G. bulloides, and is 

more specifically adapted to a diatom-based diet (Hemleben et al. 1989; Schiebel & 

Hemleben 2000). Since the period before MIS 22 is characterized by a diatom fauna 

dominated by N. seminae, a major component in prominent spring blooms in the subarctic 

ocean (Reid et al. 2007), it is possible that disappearance of this diatom was caused by 

regional warming of the North Atlantic after MIS 22. Latitudinal migration of the AF, 

resulted in accelerated dumping of large diatoms during advances of warm waters (Koç et al. 

1999; Shimada et al. 2008). This in turn may have diminished the main food source for G. 

glutinata, leading to a decrease in its percentages after MIS 22. 

G. inflata has been correlated to the IC at the subpolar North Atlantic (Olson & Smart 

2004; Chapman 2010), which results from a mixture of Irminger Sea water and the warmer 

and saltier water transported by the NAC (Reynaud et al. 1995). As G. inflata accounts only 
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for ~12% of total in the modern North Atlantic at around 49ºN, and ~2% in core top fauna at 

60ºN (Chapman 2010), the observed peaks of this species in excess of 25% at 946, 902 and 

849 ka imply a markedly different palaeoenvironment (Fig. 4C). Thus, it is possible that its 

proliferation was linked to strong phases of IC advection and a well-mixed environment, with 

potentially lower nutrient levels and warmer temperatures than during peaks of G. bulloides.  

Higher T. quinqueloba percentages generally occur at Site U1314 between peaks of N. 

pachyderma dex. and N. pachyderma sin., but in relatively low abundances, revealing a shift 

from temperate Atlantic waters to cool subpolar water masses (Fig. 4E). This species is 

usually associated with the proximity of the AF (Hebbeln et al. 1994; Johannessen et al. 

1994), and thus can be interpreted as a proxy for the AF swings. Values below 2% on average 

during the MIS 31-19 interval reflect the almost steady position of the AF far from the Site 

U1314, with only the exceptions of increased T. quinqueloba percentages at MIS 21 

substages, indicating that the AF moved back closer to the Site U1314 position. 

Overall changes in the CaCO3 content and PF AR at Site U1314 are decoupled along 

the 1069-779 ka interval (Fig. 6A;B). This pattern suggests that planktonic foraminifers were 

a secondary component of biogenic carbonate at least in the early interglacial phases, 

corroborating other studies that determined that coccolithophores were the main contributors 

to CaCO3 content in the Northeast Atlantic (van Kreveld et al. 1996; Baumann & Huber 

1999). During late interglacial phases and glacial stages, a southward migration of the AF and 

concomitant expansion of the EGC occurred which shifted the NAC towards the south. Under 

this scenario, carbonate from primary producers (coccolithophores) was reduced (Balestra et 

al. 2010), while polar foraminifera N. pachyderma sin. found optimal environmental 

conditions. Except for the short glacial peaks of the cold water–adapted coccolithophore C. 

pelagicus at sites 980 and 982 (Baumann & Huber 1999; Marino et al. 2011), there was no 

other polar-adapted carbonate secreting species and thus carbonate accumulation in the 

subpolar North Atlantic during glacials was limited to N. pachyderma sin. (Fig. 6C). In 
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contrast, northward migration of the AF and the flow of the warmer waters favored 

coccolithophore bioproductivity and increased accumulation of subpolar planktonic 

foraminifera species (Fig. 6D) (Baumann & Huber 1999; Marino et al. 2011). Additionally, 

deep-ocean currents favored the lateral transport of particles settling in the water column all 

over this region of the North Atlantic that finally accumulated in the Gardar Drift. Besides 

changes in overall productivity and vertical settling, a reorganization of the bottom currents 

over the eastern North Atlantic could have influenced the CaCO3 distribution, and hence the 

concentration of planktonic foraminifera and CaCO3% in sediments across the Pleistocene 

(Huizhong & McCave 1990; McCave et al. 1995; Bianchi & McCave 2000). 

  

Progressive increase in abundance of the N. pachyderma sin. “encrusted” type and 

changes in diversity of planktonic foraminifers 

N. pachyderma sin. often dominates planktonic foraminifera assemblages of the northern 

North Atlantic, but shows a wide range of morphological variations (e.g. Cifelli 1973). In 

glacial periods prior to MIS 22, the abundance of the encrusted morphotype of N. pachyderma 

sin. was low, between 20 and 30%. A significant increase in abundance was recorded in MIS 

22 and MIS 20, which represent the glacial maximum periods of the two first 100-ka glacial 

cycles (Fig. 3A;B). Encrusted morphotypes are dominant in modern stratified waters with 

strong pycnocline in north and south high-latitude oceans (Kohfeld et al. 1996; Stangeew 

2001; de Vernal et al. 2005; Bergami et al. 2009), and the occurrence of these larger 

specimens may be related to subsurface penetration of the Atlantic inflow (Hillaire-Marcel et 

al. 2004). These observations could explain size selection of N. pachyderma sin. specimens at 

Site U1314 and those from other high-latitude sites. Other factors influencing the observed 

mortphotype variability of N. pachyderma sin. may be selective dissolution or ontogeny. 

Dissolution is unlikely because there is low or nonexistent dissolution in the planktonic 

foraminifera assemblage throughout the intervals with high percentages of encrusted N. 
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pachyderma sin., indicating that dominance of this morphotype is not controlled by this 

factor. Ontogeny does not seem a feasible explanation either, because the encrusted 

specimens had achieved full adult size and do not correspond to juvenile stages (Hemleben et 

al. 1989). 

We suggest that size distribution of N. pachyderma sin. at Site U1314 is uniquely 

linked to pulsed Atlantic G-IG inflow, with large specimens calcifying during increased rates 

of subsurface penetration of the Atlantic waters and smaller ones occurring with more 

restricted environment along the pycnocline. These harsher conditions with lower SST and 

strong pycnocline were likely achieved during MIS 22 and 20, allowing N. pachyderma sin. 

encrusted morphotype to thrive at greater depths for a few thousand years at Site U1314. 

Intensification of the glacial cycles during the MPT caused an ecological adaptation of N. 

pachyderma sin., which after MIS 22 was mainly represented by the encrusted morphotype, 

reflecting a progressive polar water specialization in response to the onset of the 100-ka 

climatic cycle that led to stronger glaciations (Fig. 3B). Similar conclusions were obtained by 

Kucera & Kennett (2002) for the eastern North Pacific, who found a consistent pattern of 

encrusted and more compact N. pachyderma sin. populations after 990 ka. Hence, we argue 

that the temporal evolution of encrusted morphotypes of N. pachyderma sin. in fossil 

planktonic foraminifera assemblages and apparent hemispheric synchronicity represent a 

useful index for interpreting Pleistocene climates. 

Diversity variations in a fossil planktonic foraminifera assemblages can also be used 

as a proxy for surface circulation, since variations of dominant ocean currents can affect 

habitat of the water column (Bé 1977; Jenkins 1993). Higher planktonic diversity in North 

Atlantic environments is associated with a well-established flow of the warm NAC 

(Ruddiman 1969; Balsam & Flessa 1978). Intervals with relatively higher H appear to 

correlate with increased advection of this warm Atlantic current during interglacial isotopic 

stages 31, 29, 27, 25, 23 and 21. Diversity declines marked by lower H coincide with highest 
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percentages of the N. pachyderma sin. encrusted morphotype at MIS 22 and 20 and heavier 

benthic δ18O values (Fig. 3C). This indicates more severe glaciations and extreme low SST 

derived from the large build-up of the ice-sheets and cold surface waters with arctic origin 

reaching the Site U1314 location during these intervals. This conclusion is consistent with 

Hillaire-Marcel et al. (2004) and de Vernal et al. (2005), who report smaller N. pachyderma 

sin. specimens with more restricted environment and lower NAC inflow into the western 

North Atlantic. Moreover, similar fluctuation patterns of nannofossil diversities have been 

observed in other Atlantic sites (Sites 607 and 980/981), interpreted as due to a change in G-I 

periodicity from 40-ka to 100-ka (Marino et al. 2008; 2011) and indicating more intense 

glacial and interglacial phases. 

 

Intermediate circulation in the eastern North Atlantic 

A strong difference in the planktonic δ13C response is seen before and after MIS 25. Between 

MIS 31 and 25, planktonic δ13C values at Site U1314 are higher, and exhibit positive peaks 

during episodes with high percentages of N. pachyderma sin. and IRD events, related to a 

southward shift of the AF and ice-sheet advance/retreat sequences (Fig. 5B;C). These events 

had a low impact on the AMOC and some ventilation of intermediate waters was occurring 

throughout most of the glacial stages in the subpolar North Atlantic. Such an approach is 

supported by some convection during winter south of the AF, as depicted by the high benthic 

13C values at Site 982 (Venz et al. 1999). Increased δ13C values are also observed at the 

Rockall Plateau and Gardar Drift during the LGM and are interpreted to result from a shift in 

the convection cell from the Nordic Seas to the subpolar North Atlantic in a process 

analogous to that for the glacial production of Labrador Sea Water (Dowling & McCave 

1993; Oppo & Lehman 1993). 

After MIS 25, negative δ13C peaks lasting well into the subsequent interglacials are 

observed during Terminations at 24/23, 22/21 and 20/19, coinciding with lowest benthic δ13C 
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and greatest IRD delivery at sites 982 and U1314 (Fig. 5C-E). This suggest decreased 

ventilation of the intermediate water mass in the northeast North Atlantic, as already 

demonstrated by several authors (Venz et al. 1999; Spero & Lea 2002; Voelker et al. 2010). 

These less ventilated intermediate waters were most likely due to influx of fresher, colder and 

nutrient rich Subarctic Intermediate Water to the deep-water convection area of the Rockall 

Plateau (Álvarez et al. 2004), or to Antarctic Intermediate Water that penetrated farther 

northward like during the last deglaciation (Rickaby & Elderfield 2005).  

Finally, the observed decrease in the average δ13C at Site U1314 after 950 ka (Fig. 5C) 

coincides with Kleiven et al. (2003) findings of a decrease in the glacial δ13C gradient 

between intermediate and deep sites after that age, suggesting stronger suppression of 

thermohaline circulation at all depths after MIS 25 that typify Late Pleistocene Terminations 

(Raymo 1997). 

 

Implications of the regional AF dynamic 

Thermal gradients between the east and west subpolar North Atlantic can be observed by 

comparing the differences in carbonate content of the sediments from Sites 984, 983, 980, 982 

and U1314 (Table 1). In general, we observe synchronous fluctuations of carbonate 

sedimentation with higher carbonate values east of 20ºW meridian, although differences were 

more pronounced before MIS 25. A comparison of carbonate records between the two farthest 

sites (984 and 980; 900 km away) shows differences >60% (Fig. 7A). As high carbonate 

productivity fluctuations in this region were probably caused by variations in the extension of 

warm Atlantic water inflow (Baumann & Huber 1999), we argue that spatial and temporal 

differences are related to the configuration of the AF. A dominant north-easterly position of 

the AF towards the Faeroe Islands, with relatively small AF swings until MIS 26, led to 

dominant arctic conditions with limited carbonate bioproductivity northwest of the AF, 

explaining the lower values at sites 984, 983 and U1314 (Fig. 8A). This situation is true for 

Page 23 of 45 Boreas

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

24 

 

these locations today, where the inflow of warm and saline Atlantic water is compressed to 

the east, between Iceland and the Faeroe Islands and through the Faeroe-Shetland Channel as 

it flows northward into the GIN Seas (Orvik & Niiler 2002), resulting in a strong west-east 

temperature gradient. These results also show that well ventilated intermediate waters formed 

in the Rockall Plateau even during G-IG transitions (Fig. 8A). 

The structure of circulation changed during MIS 25, 21 and 19, with broader AF 

swings allowing a greater northward intrusion of warm surface waters that reached cores 

located in a more western position (Site 984, 980 and U1314) (Fig. 8B). The existence of 

greater flow of Atlantic waters into the GIN Seas during interglacial stages 25, 21 and 19 

would provide the necessary moisture for growing ice-sheets during the glacial inception 

phase (Ruddiman & McIntyre 1981c; Raymo & Nisancioglu 2003), and thus may explain the 

build-up of larger ice-sheets in the Northern Hemisphere during the MPT. However, the 

influx of less saline arctic waters and/or melting icebergs during Terminations within this 

interval deflected the NAC water northward flow toward winter convection areas of the 

Rockall Plateau, causing a reduction in the carbonate productivity in the area and ventilation 

of intermediate waters (Fig. 8B). 

Although faunal records from sites 980 and 984 only spans from 990 and 890 

(respectively) to 779 ka, the striking differences observed in the composition of the planktonic 

foraminifera assemblages between those sites and U1314 can help to establish the position of 

the AF. Strong difference in the lower values of T. quinqueloba at westward sites U1314 and 

984 compared to the eastward 980 reflect the almost steady position of the AF close to site 

980 and far from the other two sites. After MIS 25, we observed lower percentages of T. 

quinqueloba at site 980 and higher percentages at U1314 and 984 (Fig. 7B;C). This may 

reflect a greater northwest retreat of the AF. For N. pachyderma sin., the most striking feature 

is the early decrease at site U1314 and 984 relative to site 980 during glacial inceptions of 

MIS 27, 25, 23 and 21. The gradual cooling at Site 980 indicated by this species, defined by 
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Wright et al. (2002) as ‘lagging warmth’, may reflect a NAC compressed to the east, thus 

causing higher temperatures in the eastern areas while cooler waters bathed the western sites. 

This faunal evidence agrees with the regional differences in the CaCO3 content stated above, 

and highlights the strong longitudinal thermal gradient in the subpolar North Atlantic. 

 

Conclusions 

 

The planktonic foraminiferal assemblage record combined with CaCO3 content and N. 

pachyderma sin. δ13C data from IODP Site U1314 helps to define the surface and 

intermediate oceanographic changes during the Mid-Pleistocene Transition (MPT) (1069-779 

ka). Higher percentages of N. pachyderma sin. indicate glacial conditions with a south-

eastward expansion of the AF and penetration of cold arctic waters. In contrast, high 

percentages of N. pachyderma dex., T. quinqueloba, G. bulloides, and G. inflata indicate 

interglacial conditions in the subpolar North Atlantic. Fluctuations in the contribution of polar 

(N. pachyderma sin.) vs. temperate (N. pachyderma dex. + G. inflata) fauna show a marked 

change since MIS 25, interpreted as due to a change in G-I periodicity from 40-ka to 100-ka 

that characterizes the MPT (Berger & Jansen 1994). 

The higher PF AR during glacial inceptions, and lack of correlation of this record with 

the CaCO3%, seems to indicate that planktonic foraminifera played a secondary role as 

calcium carbonate producers, with coccolithophores being dominant during interglacial 

stages, and N. pachyderma sin. colder periods. 

Two different morphotypes of N. pachyderma sin. were recognized based on the 

degree of encrustration and shell structure. Lower SST and development of a strong 

pycnocline at the time of severe glacials MIS 22 and 20 at Site U1314 may have controlled 

the distribution of the encrusted morphotype, while the non-encrusted morphotype dominated 

phases with subsurface penetration of Atlantic waters. Synchronicity of encrusted morphotype 
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of N. pachyderma sin. events in the subpolar North Atlantic (this study) and in the North 

Pacific (Kucera & Kennett 2002) may suggest that this morphotype responded to strong 

environmental changes through time, thus making this analysis valuable for 

palaeoenvironmental interpretation. Shannon diversity index oscillations define surface 

circulation pattern in the North Atlantic; high diversity was related increased advection of the 

warm Atlantic current, while low diversity was typical of colder. 

N. pachyderma sin. δ13C signature reflects conditions at the upper-part of the 

intermediate water layer. Minima in the N. pachyderma sin. δ13C record during Terminations 

24/23, 22/21 and 20/19, coinciding with low benthic δ13C values and high IRD input at Site 

982, suggest cessation of intermediate water production (GNAIW) in the Rockall Plateau, 

and/or penetration of AAIW into the subpolar North Atlantic (Venz et al. 1999). Based on the 

planktonic δ13C values, the resumption of strong and ventilated intermediate North Atlantic 

was delayed until well into the subsequent interglacial, but was active during most of glacial 

stages because deep convection shifted south of the AF, around the Rockall Plateau. 

We observe a strong longitudinal thermal (E-W) gradient in this part of the North 

Atlantic defined by the position of the AF. From MIS 31 to MIS 25, the AF was steady, 

located south of sites U1314 and 984, limiting heat flux westward, while eastward sites 980 

and 982 were influenced by a more intense NAC flow, and allowed a northward transport of 

heat during glacial inceptions. As the result of the steep east-west surface SST gradient, 

CaCO3 productivity was lower north-west of the AF during this interval (sites 984, 983 and 

U1314). During MIS 22, the most extreme surface cold conditions are observed, likely with 

perennial sea-ice, a consequence of the southward migration of the PF. During MIS 21 and 

19, greater retreat of AF allowed a regional warming that increased carbonate bioproductivity 

at the Site U1314 area. 
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FIGURE CAPTIONS 

Table 1. Site information. 

Figure 1. Location of IODP Site U1314 (black star: 56º21’N, 27ºW; 2820 m water depth), and other 

North Atlantic sites (see Table 1). Modern surface (red), and deep circulation (blue) in the North 

Atlantic (Krauss 1986; Schmitz & McCartney 1993). Map generated with Ocean Data View v.3.4.3. 

software (Schlitzer 2008). EGC = East Greenland Current; NC Norwegian Current; LC = Labrador 

Current); NAC = North Atlantic Current; IC = Irminger Current; DSOW = Denmark Strait Overflow 

Water; ISOW = Iceland Scotland Overflow Water; LSW = Labrador Sea Water (LSW); NADW = 

North Atlantic Deep Water; LDW = Lower Deep Water. 

 

Figure 2. Scanning electron microscopy images from Site U1314 specimens demonstrate the physical 

differences between nonencrusted morphotypes of N. pachyderma dex. (A, B); the nonencrusted 

morphotypes (C, D) and encrusted morphotypes (E-L) of N. pachyderma sin. Close examination of 

these same specimens shows differences on density of calcite crust. Nonencrusted morphotypes of N. 

pachyderma sin. and N. pachyderma dex. (M, N, respectively) show lower density than encrusted 

morphotypes of N. pachyderma sin. (O, P), with a denser calcite crust around shell pores. Scale bars 

for A-L are 50 µm, and 20 µm for M-P. 

 

Figure 3. Site U1314 records from 1069 to 779 ka. A. Benthic δ18O. B. Relative abundance of N. 

pachyderma sin. encrusted morphotype. C. Shannon diversity index (H). Glacial Marine Isotope 

Stages (MIS) are shown with blue vertical bars. Suborbital-scale climate events described by 

Hernández-Almeida et al. (2012) are shown with red vertical bars. 

 

Figure 4. Relative abundance of the planktonic foraminfera species at Site U1314. A. N. pachyderma 

sin.. B. N. pachyderma dex. C. G. inflata. D. G. bulloides. E. T. quinqueloba. F. G. glutinata. Glacial 

Marine Isotope Stages (MIS) are shown with blue vertical bars. Suborbital-scale climate events 

described by Hernández-Almeida et al. (2012) are shown with red vertical bars. 
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Figure 5. Site U1314 records from 1069 to 779 ka. A. Benthic δ18O from C. wuellerstorfi. B. Relative 

abundance of N. pachyderma sin. (black) versus N. pachyderma dex. + G. inflata (dashed grey). C. 

Planktonic δ13C record from Site U1314 (black) vs. benthic δ13C from Site 982 (blue) (Venz et al. 

1999). D. Site 982 IRD% (Venz et al. 1999). E. Site U1314 IRD%. For better comparison between 

both sites, U1314 N. pachyderma sin. δ13C data was adjusted to a ‘Cibicidoides’ scale, by adding 

0.9‰ (Labeyrie & Duplessy 1985). Benthic δ18O record from 982 was used to correlate the δ13C 

record from this site to the LR04 benthic δ18O stack. Glacial Marine Isotope Stages (MIS) are shown 

with blue vertical bars. Suborbital-scale climate events described by Hernández-Almeida et al. (2012) 

are shown with red vertical bars. 

 

Figure 6. A. CaCO3% from Site U1314. B. PF AR. C. N. pachyderma sin. AR D. Subpolar species (N. 

pachyderma dex., G. inflata, G. bulloides, G. glutinata and T. quinqueloba) AR (red) vs. CaCO3% 

from Site U1314 (grey). E. Fragmentation Index. F. B/B+P ratio. Glacial Marine Isotope Stages (MIS) 

are shown with blue vertical bars. Suborbital-scale climate events described by Hernández-Almeida et 

al. (2012) are shown with red vertical bars. 

 

Figure 7. Comparison of fauna and CaCO3% record from Site U1314 with other North Atlantic sites. 

A. CaCO3% records from sites U1314 (black), 982 (blue), 980 (dashed red), 983 (orange) and 984 

(green) (Baumann & Huber 1999; Ortiz et al. 1999). Relative contributions of (B) T. quinqueloba and 

(C) N. pachyderma sin. from sites U1314 (black), 980 (dashed red) and 984 (green) (Wright & Flower 

2002). Glacial Marine Isotope Stages (MIS) are shown with blue vertical bars. Suborbital-scale 

climate events described by Hernández-Almeida et al. (2012) are shown with red vertical bars.  

 

Figure 8. The subpolar North Atlantic inferring the average glacial (black) and interglacial (grey) 

Arctic Front positions and surface circulation (A) between MIS 31-26; and (B) between MIS 25-19. 

Blue ellipse in (A) indicates intermediate water formation area (Venz et al. 1999) and arrows of the 

same colour designate intermediate waters. Grey ellipse in (B) indicates cessation of GNAIW 

production during Terminations noted in the figure. 
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Site Latitude Longitude Location Data Reference 

U1314 56º36'N 27º88'W Gardar Drift fauna, IRD isotopes, CaCO3 this study 

983 60º23'N 23º38'W Gardar Drift CaCO3
Baumann & Huber (1999)

Ortiz et al. (1999) 

984 61º25'N 24º04'W Bjorn Drift fauna, CaCO3
Wright & Flower (2002) 

Ortiz et al. (1999) 

980 55º29'N 14º42'W Feni Drift fauna, CaCO3
Wright & Flower (2002) 

Ortiz et al. (1999) 

982 57º30'N 15º52'W Rockall Plateau IRD, isotopes, CaCO3
Venz et al. (1999) 

Baumann & Huber (1999)
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