Supporting Information for:

Enhancement of excess electron transfer efficiency in DNA containing a phenothiazine donor and multiple stable phenanthrenyl base-pairs

Pascal Roethlisberger, Filip Wojciechowski and Christian J. Leumann
Experimental section

General
All reactions were performed under argon in oven-dried glassware. Anhydrous solvents were obtained by filtration through activated aluminum oxide. Unless stated otherwise all chemicals and solvents were purchased from Sigma. Solvents for extractions and flash chromatography were distilled before use. Flash column chromatography (FCC) was performed using silica gel (230-400 mesh) from Silicycle. Thin layer chromatography was carried out on glass-backed plates precoated with silica gel ($0.25 \mathrm{~mm}, \mathrm{UV}_{254}$) from Macherey-Nagel. ${ }^{1} \mathrm{H}$ NMR was recorded at 300 MHz or 400 MHz on a Bruker AC-300 or a Bruker DRX-400. ${ }^{13} \mathrm{C}$ NMR (75 MHz) was recorded on a Bruker AC-300. ${ }^{31} \mathrm{P}$ NMR spectra were recorded at 121.4 MHz using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard. All spectra were referenced to the signals of the corresponding solvent. Chemical shifts are given in ppm (δ scale) and coupling constants (\mathcal{J}) in Hz. High resolution electrospray ionization (ESI) mass spectra were recorded on a Thermo Scientific LTQ Orbitrap XL instrument. HPLC purification was performed using an Äkta ${ }^{\text {TM }}$ basic 10/100 system (Amersham Pharmacia Biotech) equipped with a Phenomenex Jupiter semi-preparative RP-HPLC column ($5 \mu \mathrm{~m}$, C18, 300Å).

PTZ

Br_{U}

Phen

Φ

Figure S1. Chemical structures of phosphoramidites used in this study.

Scheme S1. Synthesis of a phenothiazine C-nucleoside analogue

Compound (2)

Compound 1β ($2.0 \mathrm{~g}, 3.5 \mathrm{mmol}$), was suspended in $\mathrm{MeOH} / \mathrm{THF}$ ($1: 1,40 \mathrm{~mL}$), $\mathrm{NaOMe}(0.55 \mathrm{~g}, 10.2 \mathrm{mmol}$) was added and the reaction was stirred for 12 h . The mixture was concentrated under reduced pressure to approximately 5 mL , and purified by FCC , eluting with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(98: 2$ to 95:5) gave compound 2 $(0.83 \mathrm{~g}, 72 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.2-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.79(\mathrm{~m}, 2 \mathrm{H}), 5.08$ (dd, J=5.7, 10.2 Hz, 1H), $4.40(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 2 \mathrm{H})$, $2.04-1.94(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.6,135.2,127.5,127.1,125.4,124.8,123.7$, $123.1,122.5,114.0,113.9,87.2,79.4,73.7,63.4,43.7,35.3$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NS}$ $\left[\mathrm{MH}^{+}\right] 330.1158$, found 330.1165

Compound (3)

Compound 2 (645 mg , 2.0 mmol) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, and cooled to $0{ }^{\circ} \mathrm{C}$. To this suspension was added 2,6-di-tert-butyl-pyridine ($0.82 \mathrm{~g}, 4.0 \mathrm{mmol}$) and DMT-triflate ($1.1 \mathrm{~g}, 2.4 \mathrm{mmol}$) in portions. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h ., and stirred at rt until completion (4 h). The mixture was quenched with methanol (2 mL), diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with saturated aqueous sodium bicarbonate, brine and dried over anhydrous MgSO_{4}. Purification by FCC, eluting with hexane/ethyl acetate ($90: 10$ to $20: 80+\sim 1 \% \mathrm{NEt}_{3}$) gave $3(760 \mathrm{mg}, 60 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.12(\mathrm{~m}, 11 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=7.5,1 \mathrm{H}), 6.87-6.74(\mathrm{~m}, 6 \mathrm{H}), 5.09(\mathrm{dd}, J=5.7$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.78$ (br s, 1 H$) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.6,135.2,127.5,127.1,125.4,124.8,123.7$, 123.1, 122.5, 114.0, 113.9, 87.2, 79.4, 73.7, 63.4, 43.7, 35.3. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.4,145.6$, $145.0,144.8,136.0,130.0,128.1,127.8,127.3,127.0,126.7,125.2,124.7,123.4,123.2,122.3,113.9$, 113.7, 113.1, 86.2, 86.1, 79.2, 77.4, 77.0, 76.6, 74.5, 64.5, 55.1, 43.7, 35.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{O}_{5} \mathrm{NS}\left[\mathrm{M}^{+}\right] 631.2387$, found 631.2379

Compound (4)

To a solution of compound $\mathbf{3}(675 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, was added N, N diisopropylethylamine ($0.63 \mathrm{~mL}, 3.5 \mathrm{mmol}$), followed by 2-cyanoethyl diisopropylethylamine ($320 \mu \mathrm{~L}$, 1.4 $\mathrm{mmol})$. The reaction was removed from the ice-bath and stirred for 1.0 h at rt , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with saturated aqueous sodium bicarbonate, brine and dried over anhydrous MgSO_{4}, purified by FCC, eluting with hexane/ethyl acetate ($80: 20$ to $60: 40+\sim 1 \% \mathrm{NEt}_{3}$). The resulting oil was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated by the addition of hexane (15 mL), the hexane was discarded and the residue was again dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitated by the addition of hexane, the hexane was again discarded and the precipitated compound was dried under reduced pressure to give $4(745 \mathrm{mg}, 81 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52-7.50$ $(\mathrm{m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.12(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.87-6.77(\mathrm{~m}, 6 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H})$, $4.52(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 6 \mathrm{H}), 3.78-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.4,145.7,145.2,144.9,136.0,136.0,130.1,128.3,128.2,127.7,127.3$, 127.1, 126.7, 125.3, 124.8, 123.5, 123.3, 122.3, 113.9, 113.7, 113.1, 86.1, 85.6, 79.6, 79.6, 76.3, 76.1, $75.9,75.6,64.3,64.2,58.4,58.2,55.2,43.3,43.2,43.1,43.1,35.3,24.6,24.5,24.5,24.37,20.4,20.3$, 20.2, 20.1. ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ठ 148.1, 147.9. HRMS (ESI) m/z calcd for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{PS}\left[\mathrm{M}^{+}\right]$ 831.3465, found 831.3466.

DNA synthesis

DNA synthesis was performed on a 1.3μ mole scale on a Pharmacia Gene Assembler Plus DNA synthesizer following standard phosphoramidite protocols with 5 -(ethylthio)-1 H -tetrazole (0.25 M in $\mathrm{CH}_{3} \mathrm{CN}$) as the activator and coupling times of 6 min for the modified building blocks. Cleavage from the solid support and final deprotection was achieved with $30 \% \mathrm{NH}_{4} \mathrm{OH}$ solution ($55^{\circ} \mathrm{C}, 12 \mathrm{~h}$). Sequences containing 5-bromouracil were deprotected with $30 \% \mathrm{NH}_{4} \mathrm{OH}$ solution for 24 h at room temperature in order to avoid formation of 5 -aminouracil. Purification was performed by RP-HPLC using A $=0.1 \mathrm{M}$ triethylammonium acetate in $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$; $\mathrm{B}=0.1 \mathrm{M}$ triethylammonium acetate in $\mathrm{CH}_{3} \mathrm{CN}^{2} / \mathrm{H}_{2} \mathrm{O} 4: 1$, pH 7.0 , detection wavelength at 260 nm and 494 for fluorescein containing sequences. A flow rate of 3.5 $\mathrm{ml} / \mathrm{min}$ was used. For oligonucleotides containing one Phen base surrogate a gradient from $0-35 \%$ B over 30 min was used, for oligonucleotides containing three Phen base surrogates a gradient from 0 45% B over 30 min was used.

UV Melting Curves

UV melting curves were recorded on a Varian Cary 100-Bio UV/VIS spectrophotometer (Varian Inc.), equipped with a Peltier element at 260 nm with a heating/cooling rate of $0.5^{\circ} \mathrm{C} / \mathrm{min}$. A cooling $/$ heating cycle in the temperature range $10-90^{\circ} \mathrm{C}$ was applied. T_{m} values were obtained from the maxima of the first derivatives of the melting curves using WinUV software. To avoid evaporation of the solution, the sample solutions were covered with a layer of dimethylpolysiloxane. All measurements were carried out in a buffer consisting of $10 \mathrm{mM} \mathrm{Na}{ }_{2} \mathrm{HPO}_{4}, 150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$ at $1.2 \mu \mathrm{M}$ strand concentration.

CD spectra

CD spectra were measured on a JASCO J-715 spectropolarimeter at the temperature indicated using quartz cuvettes with a path length of 1 cm . All measurements were carried out in a buffer consisting of 10 $\mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$ at $4.0 \mu \mathrm{M}$ strand concentration.

Figure S2. CD spectra of Duplexes D1-D9.

Table S1. MS data of single strands 1-14 and fragments \mathbf{a} and \mathbf{b}. ${ }^{b}$ ss denotes the single stranded oligonucleotide.

ss ${ }^{\text {b }}$	Sequence	m/z calcd	m/z found
1	5'-GCGATФAAATGCG-3'	3874.5	3874.2
2	3'-CGCTAPtzT ${ }^{\text {Br }}$ UTACGC-Fluo	4590.0	4589.9
3	5'-GCGATФPhenAATGCG-3'	3917.6	3917.3
4	3'-CGCTAPtzPhen ${ }^{\text {Br }}$ UTACGC-Fluo	4642.2	4641.7
5	5'-GCGATФAAAAATGCG-3'	4500.9	4500.6
6	3'-CGCTAPtzTTT ${ }^{\text {Br }}$ UTACGC-Fluo	5198.4	5198.1
7	5*-GCGATФPhenPhenPhenAATGCG-3*	4630.2	4630.0
8	3'-CGCTAPtzPhenPhenPhen ${ }^{\text {Br }}$ UTACGC-Fluo	5354.7	5354.1
9	5'-GCGATAPhenAATGCG-3'	4050.7	4050.2
10	3'-CGCTATPhen ${ }^{\text {Br }}$ UTACGC-Fluo	4555.0	4554.5
11	3'-CGCTAPtzPhenTTACGC-Fluo	4577.3	4576.6
12	5'-GCGATAPhenPhenPhenAATGCG-3'	4763.3	4762.7
13	3'-CGCTATPhenPhenPhen ${ }^{\text {Br }}$ UTACGC-Fluo	5267.6	5266.8
14	3' CGCTAPtzPhenPhenPhenTTACGC-Fluo	5289.93	5289.4
a	3'-O ${ }_{4}$ P-ACGC-Fluo	1775.3	1775.7
b	3'- ${ }_{4} \mathrm{P}$-TACGC-Fluo	2079.4	2079.8

Irradiation

The irradiation sample was prepared by mixing a duplex ($4 \mu \mathrm{M}, 10 \mathrm{mM} \mathrm{Na}-\mathrm{P}_{\mathrm{i}}$-buffer, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH}$ 7.0) in equimolar solutions of the single strands together and heating them to $90^{\circ} \mathrm{C}$ for 5 min . in the dark, cooling to room temperature over night. Samples were deoxygenated by bubbling N_{2} for 30 min . through the solution and then irradiated in quartz glass cuvettes (1 cm). Cuvettes with fresh prepared duplexes were placed 6 cm in front of a Sylvania Blacklight (F8 8W T5 BL350 G5) equipped with a glass cut-off filter (wall thickness $3 \mathrm{~mm}, \leq 300 \mathrm{~nm}$). The cuvettes were ice cooled to maintain the temperature of the irradiated sample at $4^{\circ} \mathrm{C}$. Aliquots ($60 \mu \mathrm{l}$) of the sample solution ($1000 \mu \mathrm{l}$) were taken after $0,5,10,15$, $20,30,40,60 \mathrm{~min}$ of irradiation, placed into sterile a container and stored protected from light at room temperature. After withdrawing the last aliquot, all samples were treated with piperidine ($6.6 \mu \mathrm{l}$) and subsequently heated to $90^{\circ} \mathrm{C}$ for 30 min ., cooled to RT and lyophilized.

Gels

Samples were dissolved in loading buffer ($60 \mu \mathrm{l}$; $900 \mu \mathrm{l}$ of formamide, $100 \mu \mathrm{l}$ EDTA solution pH 8.0) and treated with ultrasound for 3 min . at RT. After sonication samples were heated to $60^{\circ} \mathrm{C}$ for 10 min . and loaded ($20 \mu \mathrm{l}$) onto a gel (19:1 acrylamide-bisacrylamide, $20 \% \mathrm{w} / \mathrm{v}, 8 \mathrm{M}$ urea, 100 mM Tris-borate and 20 mM EDTA buffer, pH 8.3). Gels were run at 250 V for 2 h and analyzed using a FLA-3000 Phosphor Imager (Fujifilm). Band intensities were quantified with ImageJ. Yields were determined by dividing the specific fragment area by the total area, where the aliquot without piperidine treatment served as a blank. All experiments were performed in triplicates.

Figure S3. Fluorescence images of 20 \% denaturing PAGEs of duplexes D1-D9 and single strands 2, 4, 6 and 8. Lane 1 represents aliquot without irradiation and piperidine treatment. Lane 2-9 are aliquots withdrawn after $0,5,10,15,20,30,40,60 \mathrm{~min}$ of irradiation and treated with 10% piperidine at $90^{\circ} \mathrm{C}$ for 30 min . Lane 10 represents the specific strand scission fragment a as a reference.

Duplex D1

Duplex D2

Duplex D3

Duplex D5

Duplex D7

Duplex D4

Duplex D6

Duplex D8

Duplex D9

Single strand 6

Single strand 2

Single strand 8

Single strand 4

Intra-strand photoaddition

Duplex 2 ($1 \mathrm{~mL}, 4 \mu \mathrm{M}, 10 \mathrm{mM} \mathrm{Na}$-P P_{i}-buffer, $150 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.0$) was deoxygenated by bubbling N_{2} for 30 min . through the solution and then irradiated in quartz glass cuvettes $(1 \mathrm{~cm})$. Cuvettes with fresh prepared duplex was placed 6 cm in front of a Sylvania Blacklight (F 88 W T5 BL350 G5) equipped with a
glass cut-off filter (wall thickness $3 \mathrm{~mm},<300 \mathrm{~nm}$) and irradiated for 1 h at $0{ }^{\circ} \mathrm{C}$. The sample was transferred into a sterile container, lyophilized, desalted by sep-pak column and separated by RP-HPLC using $A=0.1 \mathrm{M}$ triethylammonium acetate in $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0 ; \mathrm{B}=0.1 \mathrm{M}$ triethylammonium acetate in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 4: 1, \mathrm{pH} 7.0$, with a detection wavelength at 260 nm and 494 . A flow rate 0 f $1 \mathrm{ml} / \mathrm{min}$. and a gradient of $0-80 \%$ B over 50 min was used. The purified fragment was characterized by MALDI and NSI mass spectroscopy.
ss 4 crosslink ($m / z\left[\mathrm{M}+\mathrm{Na}^{+}+3 \mathrm{H}^{+}\right]$found 5297.07; calcd. 5296.98)
ss $7\left(\mathrm{~m} / \mathrm{z}\left[\mathrm{M}+4 \mathrm{H}^{+}\right]\right.$found 4635.38; calcd. 4634.2)

D:\DatalARSLDCB\Leumann\Roethlisberger|DNA CL E810_C111111SLin

Scheme S2. Proposed structure of the Phenanthrene-uridinyl Adduct

Scheme S3. Proposed radical mechanism for the phenanthrene-uridinyl Adduct formation occurring by the formation of the uracil-5-yl radical

Scheme S4. Alternative cross-linking mechanism, initiated by a photochemical induced [2+2] cycloaddition reaction of ${ }^{B r} U$ and a phenanthrenyl unit. This mechanism seems less likely as it does not occur with duplexes D6 and D9 containing a dT instead of a ${ }^{B r} U$ unit.

