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We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG
and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free
randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed,
and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with
multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses.
Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP
experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing
the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias
statistics.

1. Introduction

Scalp field measurements represent activity of electrically
active extended neural generators in the brain and offer a
unique window to measure human information processing
noninvasively and with a high time resolution. Today, EEG
and MEG recording systems can record human scalp field
data with high density in space (>100 sensors) and time
(>1000 Hz), which improves the resolution of the results.
However, the understanding of effects observed on the
scalp has been severely hindered by the so-called inverse
problem of EEG and MEG measurements, which prevents
in the general case that effects observed on the scalp can be
unambiguously attributed to a specific set of brain tissue. As
a consequence, many of the results found in the literature
depend at some point on some implicit or explicit model,
and since these models vary considerably, unambiguous con-
clusions across studies and models are often difficult to draw.

The aim of the current paper is to present methods and
software that allow users to analyze event-related scalp field

data using methods that incorporate the physical underpin-
nings of scalp electromagnetic data but are model indepen-
dent. The software should enable researchers to assess the
significance of ERP effects globally, and without need of
a-priori assumptions about the correct model, (i.e., about
the location of “active” or “inactive” sensors, or about the
correct parameters for a source model). Evidence for an effect
based on such unbiased statistics can then entail further more
model-based analyses implemented in other tools. In the
remainder of the paper, we will develop the methodological
background of the procedure, followed by a brief description
of the software implementation, a sample analysis to illus-
trate the procedure, and a discussion of the implications.

2. Methodological Background

The physics that relates the intracranial brain-electromag-
netic activity to the extracranial sensors is summarized by the
so-called leadfield or forward solution of the EEG/MEG [1].
The leadfield of the EEG and MEG defines weighting factors
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that linearly translate the activity of a given source to scalp
potential differences; these weighting factors depend on the
sensors position, the location and orientation of the source,
and eventually (for EEG data) on the geometry and electro-
magnetic properties (i.e., conductivity, homogeneity) of the
different tissues between source and sensor. The leadfield is a
smoothing operator that blurs the measurements in space [1]
and introduces correlations among the sensors depending
(among other factors) on the distance between them. As a
result, there are three important facts to take into account
when dealing with EEG/MEG scalp field data:

(1) the activity of even a point-like source will produce
a field that extends across the entire scalp, such that
most sensors will pick up a signal from that source;

(2) a single sensor can pick up signals from many
different and eventually remote sources;

(3) for the case of EEG, since all measurements are
potential differences, the signals recorded at a given
electrode are always dependent on, at some point, an
arbitrary choice of reference.

In our opinion, a major part of the publications that
have employed scalp potentials to investigate the effects of
some experimental manipulations have not taken these facts
sufficiently into account, such that the interpretability of
the obtained results is seriously limited. As a consequence,
the impact of ERP studies is probably below the original
potential of the measured data.

2.1. Statistical Assessment of Topographic Effects for One Time
Point. In general, the aim of a statistical comparison of scalp
field maps between two or more conditions at a given time
point is to test whether some of these conditions consistently
differed in active sources. Interestingly, such arguments can
be made without estimating the location of those sources.
This is so because scalp fields are additive; if two sources are
active at the same moment in time, the data measured is the
sum of the two scalp fields produced by the two sources. This
implies that we can also interpret the difference of scalp fields
observed during different conditions. This difference scalp
field is identical to the scalp field of those sources that were
different between the two conditions. (All sources that were
identical in the two conditions cancel out when the difference
is computed).

In order to test whether some conditions differ in active
sources, it is thus sufficient to show that there are scalp
field differences between these conditions, and that these
differences are unlikely to have occurred by chance. To avoid
any biases, this evidence can be based on quantifying the
overall amount of difference of activity, that is the overall
strength of scalp field differences. Once such a quantifier is
available, it can be used to test the measurements against the
null hypothesis. The suggested quantifier and the suggested
statistical testing rely on previously reviewed and published
papers [2, 4, 5] and are briefly explained below.

A global and well-established quantifier of scalp field
strength is the Global Field Power (GFP, [6, 7]). As shown

in formula (1), the computation of GFP is analogous to the
computation of the standard deviation across all sensors

GFP =
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where vj is the voltage measured at sensor j, n is the number
of sensors, and v is the mean measurement across all sensors.
The GFP can be shown to be reference independent. Given
that the sensor array covered a sufficient part of the scalp,
using the GFP of scalp field differences to quantify the effect
of an experimental manipulation is thus compatible with the
three important facts about EEG/MEG scalp data mentioned
in the introduction:

(i) since all sensors are taken into account, the scalp
field produced by difference source(s) is taken into
account to its largest possible extend (no problem
with fact 1);

(ii) since all sensors are being used, false negatives based
on partially overlapping scalp fields are unlikely (no
problem with fact 2);

(iii) there is independence of the reference (no problem
with fact 3).

As previously outlined [3], the usage of the GFP of a
difference map can be generalized to cases with more than
two conditions and/or two or more groups using a global
measure s of scalp field differences as defined below
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where c is the number of conditions and group, n is the
number of sensors, vi j is the voltage of the grand mean across
subjects of condition and/or group i at sensor j, and v j is the
grand mean across subjects and conditions of the voltage at
sensor j. All data has to be against the average reference [3].

If instead of a group/condition membership a predictor is
available that is assumed to be linearly related to the activity
of an unknown set of sources, the scalp field produced by this
set of sources can be estimated using the so-called covariance
maps βj [4]. Given a set of scalp field maps vi j , where i is the
index of the observation and j is the sensor, and given for
each map vi j the predictor bi, the covariance map of vi j and
bi is given as follows:

βj =
m
∑

i=1

vi j · bi. (3)

As mentioned above, the quantification of the overall
strength of the sources that account for the predictor bi, the
GFP of the covariance map can be used. In this case, s is
defined as
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As argued in previous papers [3], the value of s depends
on the amplitudes of the mean differences among conditions
and/or groups, and on some random variance across subjects
and conditions. For the assessment of the significance of
an effect, we are interested in whether the value of s is
solely due to random variance across conditions and/or
groups, or whether it is at least partially caused by a certain
consistency of an effect across the measurements obtained
in the different groups and/or conditions. This can be
tested by randomly shuffling the group and/or condition
assignments in each subject and recompute s. The resulting
value of s will then depend only on the random variance
across subjects and conditions, but an eventual consistency
of differences among groups and/or conditions across
subjects (i.e., an effect of group and/or condition) has been
eliminated by the randomization procedure. Any value of
s obtained after random shuffling is thus an instance of s
under the null hypothesis, stating that some differences are
due to noise alone. By repeating the random shuffling and
computation of s many times, one can obtain an estimate of
the distribution of s under the null hypothesis and compare
the value of s in the real data against this distribution.
The significance of the effect, that is the probability of the
null hypothesis, is then given by the percent of randomly
obtained values of s that are larger than or equal to the
value of s obtained with the real data. In the literature, the
procedure to compare groups and/or conditions has been
called TANOVA (topographic analysis of variance); if a
linear predictor is used, the proposed term is TANCOVA
(topographic analysis of covariance).

In general, nonparametric randomization statistics as
those described above are known to have similar statistical
power as classical parametric tests if the assumptions made
by the parametric tests hold, and have better power otherwise
[8]. One important additional point has, however, to be
taken into account when applying randomization statistics,
which is exchangeability. Exchangeability means that the
distribution of the effect sizes remains the same after the
shuffling. This may become a problem in fMRI data, where
the spectrum of the physiological data is at or below the
spectrum of the experimental design [9]; for EEG and
MEG, this is, however, not a problem, because the events
to be analyzed are typically very short, and instantaneously
measurable at the sensor level. Furthermore, it is obvious
that the number of observations sets a limit to the number
of possible permutations, which set a natural lower limit on
the possible level of significance.

2.2. Statistical Assessment of Significance across a Time
Interval. In ERP experiments, it is often not a priori clear
at what latency window an effect can be expected, and
the analysis needs to explore the data across many time
frames. This may obviously inflate the possibility of false
positive findings due to multiple testing, and some test for
the overall significance of an effect is necessary. In previous
papers [2, 3], we have proposed to obtain such indices of
overall significance by estimating how likely it was that the
overall count of significant time points (at a given threshold
of significance) could have been observed by chance, or

how likely it was that the observed duration of a period of
significant effects would have been observed by chance.

If randomization statistics have been computed, such
overall statistics can be directly derived from a further
analysis of the results of the randomization runs. Following
the description in Koenig and Melie-Garcia 2010, we illus-
trate the procedure for the overall count of significant time
periods. First, a threshold for significance is chosen, and the
count of the number of significant time points in the data is
established, which will serve as the overall measure of effect
size. As before, this effect size needs to be compared to the
distribution of the count of false positives assumed to occur
under the null hypothesis.

In the present case, we can estimate the distribution of
the count of false positives from the randomization runs.
We assess, for each randomization run r and time point t,
a “pseudo-P-value” P′ defined as the percentage of cases
where the measure s of r was larger than the measures s
obtained in the remaining randomization runs. For a given
randomization run r, we thus obtain P′ values at each
moment t, and we can establish the count of P′ values that
are lower than the above chosen threshold of significance.
This count is thus an instance of the number of time points
with P values below the critical threshold while the null
hypothesis still holds on a global level. If this count of false
positives is assessed for all randomization runs, an estimate
of its distribution under the null hypothesis is obtained. The
count of significant time points obtained in the original data
is then compared against this distribution, yielding an overall
estimate of the significance of the difference. This test is
similar to cluster-size statistics used in MRI data analysis and
have been described elsewhere [9].

For the assessment of significance of the duration of an
effect, the analogous procedure can easily be inferred.

2.3. Data Normalization. For the interpretation of significant
differences between two or more scalp fields, it is sometimes
useful to make a distinction between two specific cases. In
one case, the distribution of the active intracranial sources
is the same in all conditions, and the differences among
conditions can be explained by a scaling factor that is
common for all these active sources. Functionally, one would
thus interpret such a difference as a quantitative difference
of activation in the presence of apparently similar brain
functions. Because of the above-outlined linear relation
between intracerebral sources and scalp field measurements,
the same argument can be made if the measured scalp
fields differ merely by a scaling factor that is common for
all sensors. If (and this is the alternative case) differences
between scalp fields cannot be solely explained by a scaling
factor common for all sensors, the active intracerebral
sources must have had at least a partially different location
and/or orientation, which can be considered as a qualitative
difference and indicates that at least partially different brain
functions have been recruited. In order to distinguish these
two cases, the program offers the possibility to normalize the
variance of the scalp fields across sensors before the statistical
tests are computed. This eliminates the effect of potential
differences in scaling, such that significant results obtained
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with normalized data can be taken as evidence of qualitative
difference, or evidence for the recruitment of at least partially
different brain functions. Therefore, to complete an analysis
that was based on normalized data, it is thus suggested to
run separate univariate statistics on the spatial variance of the
scalp field measurements, which is identical to an analysis of
the Global Field Power (GFP) [6, 7] of the data. GFP analyses
are currently not implemented in the software but will
follow.

2.4. Visualization of Scalp Field Differences. Mean scalp
field differences between two conditions or groups can
easily be displayed using difference maps. If more than
two conditions need to be compared simultaneously, this
gets, however, increasingly complex, because the differences
between all possible pairs all may have a different spatial
distribution. A classical way to deal with such problems is
multidimensional scaling (MDS) that allows to downscale
high-dimensional result spaces into lower dimensional ones
that can be easier visualized. Based on a matrix of similarities
among all observations, multidimensional scaling represents
each observation as a point in a lower-dimensional space,
such that the closeness of the observation points optimally
represents the original similarities.

In the current case, the number of sensors defines the
original amount of dimensions of the result space; this has
to be reduced to a two-dimensional space in order to be
displayed on a computer screen. The similarities between the
mean scalp fields of the different conditions and/or groups
can be assessed using the covariance between these maps.
In this case, the two-dimensional space that optimally rep-
resents the entire matrix of covariances is spanned between
the first two eigenvectors obtained from this covariance
matrix [10, 11]. For the purpose of visualization, each
mean scalp field is projected onto these two eigenvectors,
which yields the two-dimensional coordinates of each mean
different scalp field in this optimized two-dimensional result
space. These coordinates of the different scalp fields are
then displayed as points in a scatterplot. If two points are
relatively close, this indicates that the corresponding scalp
fields were relatively similar; if two points are relatively far
apart, the scalp fields were relatively different. The direction
of the difference between two points in the scatterplot and
the scalp distribution of the firsts and second eigenvectors
furthermore give an approximate account of the distribution
of the scalp field difference between the two corresponding
scalp field distributions.

3. Implementation

The program presented here implements the above described
statistical procedures for the statistical comparison of event-
related EEG and MEG multichannel scalp field data across a
broad range of experimental designs. It is called Ragu (RAn-
domization Graphical User interface), making an allegation
to the preparation of a ragout. A good ragout is obtained
by slowly cooking many different ingredients until they are
undistinguishable; this cooking is similar to the programs’

procedure of increasing the data’s entropy by randomizing
until its constituents form an unstructured mixture.

The program offers the possibility to compute these
statistics either time point by time point, or on data
averaged over some specified time interval. If time point by
time point statistics are used, it further offers to compute
the above-described overall statistics that prevent problems
of multiple testing across time. Once the randomization
statistics have been computed, the program displays all the
effects (main effects and interactions) as line graphs showing
the probability P of the null hypothesis as a function of time.
If duration threshold statistics have been applied, periods of
significance exceeding the critical duration are additionally
marked. Results can then be interactively explored by
displaying the mean scalp fields belonging to those within or
between factors that constitute an effect. Additionally, these
mean that scalp fields are displayed using multidimensional
scaling.

Apart from the procedures described above, Ragu serves
as a platform for the implementation of further statistical
tools, such as microstate statistics. However, since these
methods still await validation, an independent review, and
publication, they are not further discussed here.

Ragu was developed under Matlab (http://www
.mathwork.com/) and Windows 7. The program is available
in the form of a downloadable standalone Matlab graphical
user interface compiled for Windows using MS Visual Studio
2005; a Matlab license is therefore not necessary. The source
code can be made available upon request, and the Matlab
background should ensure cross-platform portability. The
program is freeware; we attempt, but do not guarantee,
support for bugs and questions that are not obvious from
the manual or the papers. We, however, request users who
publish results based on the output of the program to quote
some of the conceptual papers [2–4] or the current paper.

The program uses standard, plain text-based ASCII
input files that contain time x sensor matrices of scalp
field potentials. This should avoid problems of incompatible
data format but offers little control over possible mistakes
in channel sequences and so forth. Checking the correct-
ness of the imported data is therefore part of the user’s
responsibilities.

The program allows saving and loading previously
imported data, definitions of designs, and obtained results.
The program always saves the entire information to standard
Matlab files: The data, the analysis parameters, and the
results are thus always within the same container, ruling out
uncertainties about what results have been obtained with
what data and parameters. These files contain a structure
with all the information used by the program. Users with
Matlab skills can open these files in Matlab (V7.10 or above)
and extract or modify the data according to their needs, but
care must be taken not to corrupt the internal consistency
of the information or false results may be obtained. Further-
more, Ragu can save and load Matlab figures files (V6.0 or
higher); users with Matlab skills can thus use these figure files
as basis for their figures. Output to metafiles and bitmaps is
also available, as well as a tab-delimited text output to be used
with spreadsheet applications.
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Figure 1: Ragu data import. (a) shows the directory containing data to be imported. The first 3 characters code the subject (“S01”, “S02”,. . .),
characters 6 and 7 (“C1”, “C2”, “F1”, and F2) code for the 4 conditions. The dialog (invoked by Data -> Import command) with the parameters
to import the data is shown on the right side. With the provided search mask, a list of the expected file names of one condition and all subjects
is constructed (note that the search mask must find exactly one among all conditions). This list is then extended to the remaining conditions
using the specified tags. Thus, as a crosscheck, one of the tags for the conditions has to appear somewhere in the search mask. Then, all the
data is read based on the expected file names. If the importing of the data was successful, a confirmation is given informing the user about
the dimensions of the imported data matrix. Otherwise, the output window displays error messages that may help identifying the problem.

4. Usage and Sample Analysis

4.1. Installation and Update. The Ragu installation pack-
age can be downloaded at http://www.thomaskoenig.ch/
Ragu pkg.exe. This package contains the Ragu program,
the installer of the required Matlab runtime library, and a
history of the changes made to the program across time.
The installation of the runtime library is necessary only
once, to later install newer versions of Ragu, it is sufficient
to download and run the file http://www.thomaskoenig.ch/
Ragu pkg NoMCR.exe, that is much smaller. Upon request
to the first author, users can be put on a mailing list that
alerts you whenever a new version of the program has
been compiled and uploaded. The source code is also made
available upon request.

4.2. Sample Data. As an example, Ragu has been applied on a
dataset from Stein et al. [12]. For this experiment, 16 healthy
English speaking exchange students living in Switzerland
for the duration of one year were recruited. Subjects were
recorded twice, once at the beginning of their stay when they
had basic German language skills (day 1) and in the middle
of their stay with improved German language skills (day 2).
During the experiment, they read German sentences with
either semantically correct (The wheel is ROUND) or false
(The garden is SHY) endings. It is known from previous
studies that the violation of the semantic expectancy gener-
ated by the first part of the sentence (The garden is) produces
an ERP scalp field called N400 in response to the last word

(SHY) which is proportional to the degree of violation of the
individual semantic expectancy [13].

The data analyzed here consists thus of four conditions:
sentences with correct endings at day 1, with false endings
at day 1, and with correct and false sentence endings at day
2. This represents a two-factorial design consisting of the
factors “day” (day 1 and day 2) and “expectancy” (correct or
false). The EPRs were recorded from 74 scalp locations with
a 250 Hz sampling rate, were low-pass filtered at 8 Hz, and
lasted from the onset of the last sentence word to 1000 ms
after stimulus. Additionally, all subjects performed language
tests at day 1 and day 2; thus, an overall score of language
proficiency increase from day 1 to day 2 was available.

4.3. Data Import. Ragu stores all scalp field data to be
analyzed internally in a single four-dimensional matrix
(number of subjects x number of conditions x sensors x
time points). To import data, the user has to provide, for
each condition and subject, a plain ASCII file with only the
measurements, one row for each time point, and one column
for each sensor. The naming of the files has to be such that
each file contains a tag that is unique for each subject, and
a tag that is unique for each condition; the remaining parts
of the filename must be identical for all files. All files have to
be in the same directory (also if there are several groups of
subjects), and missing data is not allowed.

According to Figure 1, in our example, we search the
different files with S∗ C1.asc and define 4 conditions: C1
(correct sentence ending day one), C2 (correct sentence
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Figure 2: Specification of the within-subject design of the sample analysis in Ragu. In the upper left list box, all conditions are shown. For
each factor, the levels of a condition can be set with the + or− button. To choose which factor to define, the “Set” buttons of the two possible
factors are used. Additionally, the factors and factor levels can be labelled, and conditions can be excluded.

ending day two), F1 (false sentence ending day one), and F2
(false sentence ending day two).

Once the data have been successfully imported, one can
optionally specify further parameters such as the sampling
rate and the latency of the event onset, and the montage (the
possible formats are simple and specified in the online help),
which helps for the later interpretation of the results. After
the data and its additional parameters have been defined,
it is recommended to briefly verify with the View->View
data command whether the program represents the data as
expected.

4.4. Defining and Understanding Within-Subject Designs. The
experimental design is specified separately for within- and
between-subject factors. Within subjects, it is possible to
define up to two factors, and each factor can have several
levels. If two factors are defined, the levels of the two factors
must be orthogonal. Figure 2 shows the dialog where users
can enter the within-subject design of their experiment
(invoked by Design->Within Subject Design). Users can
name each factor and assign a label to each level of each
factor, which will help for the later interpretation of results
using multidimensional scaling. It is also possible to exclude
some conditions from the analysis for post-hoc comparisons.

As visible in Figure 2 and introduced before, our sample
consists of the factor “expectancy” containing the two levels
“correct” and “false” and the factor “day” with the levels day
1 and day 2.

Once all the data has been imported, the data parameters
have been set, and the within-subject design has been
defined, the program is ready to compute the corresponding
TANOVA. For these computations, a number of options are
available (Analysis->Randomization options).

Most importantly, and as discussed above, it can be
specified if and how the data is normalized before the
statistics are computed. If the L2 norm of the raw data
is chosen, each individual scalp field of each condition is
scaled to unity variance. This is the recommended type of
normalization. For backward compatibility, it is also possible
to normalize on the level of group/condition grand means;
this is invoked by choosing dissimilarity [7] for normali-
zation.

Furthermore, the number of randomization runs can be
chosen. The recommended number for an accurate estimate
of the significance at the 5% level is 1000 runs, for the
1% level, it is 5000 runs [8], but as the computation of so
many runs is lengthy, lower number can also be sufficiently
informative for exploratory purposes.
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Figure 3: Display of the results of the analysis of the within-subject factors in the sample dataset. The left part of the display shows the
significance of the TANOVA’s main effects (expectancy and day) and their interaction as line graphs showing the probability P (y-axis) of
the null hypothesis as a function of time (x-axis). Significant time points (P < .05) are marked in white. By clicking in a graph, a cursor is
set, the P value of the respective time point is displayed besides the graph title, and the effect is mapped on the right side of the display. In
the current figure, the main effect of expectancy (correct versus false sentence endings) at 400 ms is displayed. The upper right part of the
display shows the mean topographic maps of all factor levels from the graph where the cursor has been set. In the present display of the
main effect of expectancy, these are the mean maps across subjects and days of correct and false sentence endings at 400 ms. For the figure in
the lower right part, these two mean maps have been fed into an MDS analysis. For this purpose, all mean maps were submitted to a spatial
PCA. The x-axis of the figure represents the projection of mean maps onto the first eigenvector. The spatial distribution of the eigenvector
is represented by two topographic maps below the x-axis. The graph indicates that the “false” condition is more negative and the correct
condition is more positive at parietal electrodes.

Finally, it is possible to adjust the threshold for the
acceptance of significance; this affects the display of results
and the statistics on temporal cluster-size thresholds.

The first analysis of the sample data that we presented
above is based on a purely within-subject design; all subjects
are expected to show comparable effects, and no between-
subject factor has been defined. After running a TANOVA
with this design, the program displays a graph with the
significance of each within-subject factor as a function
of time (main effects), and the interactions of the factors
(Figure 3, left part). In the case of our sample dataset,
we therefore obtain a main effect of day, a main effect of
expectancy, and an interaction of expectancy and day. The
user can click into these graphs; this will display the obtained
P values at the selected time period. In addition, the mean
scalp field distributions of all groups and factor levels that
form part of the effect are shown (Figure 3, right part).
Finally, those mean scalp field distributions are submitted

to a multidimensional scaling and projected upon the first
two resulting eigenvectors. Those projections are shown
in a scatterplot as shown in Figure 3 (lower right part).
This scatter plot allows an intuitive first interpretation of
an effect; the further two points are apart, the larger the
difference among the corresponding mean maps is. Figure 3
illustrates the display based on the sample data.

4.5. Defining and Understanding Between-Subject Designs.
Apart from being able to investigate up to two within-subject
factors, it is also possible to define a between-subject design
to run analyses that account for individual or group dif-
ferences. When invoking the between-subject design dialog
(Design->Between Subject Design), the program lists the
data files of all subjects of one (arbitrary) condition, and the
user can assign each subject to a specific group. Alternatively,
when checking the “Continuous/rank data” box, each subject
can be assigned an individual value that quantifies some



8 Computational Intelligence and Neuroscience

0 5 10 15
0.8

1

1.2

1.4

1.6

1.8

2

2.2

(a)

0 5 10 15

5

10

15

20

25

30

(b)

Figure 4: Specification of the between-subject design of the sample analysis in Ragu. This figure shows the mask for the definition of the
between-group design. The variable name appears later on the output of the results. As seen in both examples, no behavioural measures
exist for subjects 1 and 2. These subjects are excluded from the analyses by unchecking the “use” checkbox. The line graphs on the right
of each example show the value filled in for each subject. (a) The division of subjects in a group of low language proficiency improvement
and a group of high language proficiency improvement. The values 1 or 2 are given to each subject as shown in the line graph. (b) For the
computation of a TANCOVA, the “continuous/rank data” box has to be checked. Then, the value of proficiency increase from day one to
day two can be entered individually. The line graph shows the level of increase of each subject.
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Figure 5: Display of the results of the analysis of the sample dataset when subjects were divided into two groups with low and high language
improvement. The left-most row of line graphs shows the same information as the line graphs of Figure 3 (except for 2 less subjects); the
additional line-graphs show all effects including the new factor group. The interaction day by group shows a significant effect around 850 ms.
Because there are more than two mean maps, the MDS figure now also contains a y-axis that shows the projection of the mean maps onto
the second eigenvector. The MDS indicates that the day by group interaction is mainly due to the differences between days 1 and 2 in
poor learners; good learners show a much smaller change. The result suggests that from day 1 to day 2, poor learners have changed in late,
feedback-related processing, while good learners have maintained their initial processing strategies. The same conclusion is also deducible
from the mean maps shown in the upper right part of the display.
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Figure 6: TANCOVA of the ERPs with the increase of language proficiency. The second row of graphs shows the same information as in
Figure 5, with the exception that the effect of language improvement has been taken into account as a linear predictor. Again, the interaction
day by improvement shows a late effect now somewhat before 800 ms. The mapping of this interaction on the right side shows the positive
and negative covariance maps separately for days 1 and 2. These covariance maps are again entered into an MDS. It appears that there is an
almost an orthogonal relation among the language improvement and ERP topography on day 1 and day 2 at this time range.

interindividual factor. This factor has to be interval or rank
scaled and will be considered as covariate for a TANCOVA
[4]. If necessary, individual subjects can also be excluded
from the analysis.

In the following analysis of the sample data, we divided
the subjects into a group with above median German
proficiency increase from day 1 to day 2 (“good learners”)
and a group with below median German proficiency increase
(Figure 4(a)). When computing a TANOVA, in addition
to the effects already known from the pure within-subject
analysis (Figure 3), we obtain the interaction of group mem-
bership with day, the interaction of group membership with
expectancy, and the triple interaction of group membership,
day, and expectancy (Figure 5).

The output of this group ANOVA shows an effect of
day∗group in a late time interval around 800 ms.

Alternatively, instead of subdividing the subjects into
groups based on their performance, it is possible to investi-
gate whether there is evidence for components that are lin-
early related to performance across subjects. This approach
is called TANCOVA and is also available in the program. By
checking the “continuous/rank data” box in the between-
subject design dialog, the individual performance (learning

rates in the present example) can be entered (Figure 4(b)),
and the program will compute a TANCOVA.

In our sample, we investigated whether the ERPs at
day 1 have a predictive value for the increase in language
proficiency from day 1 to day 2. Figure 6 shows the results
of computing moment-by-moment TANCOVAs of the ERPs
with the increase of language proficiency.

4.6. Further Statistics. Using a global measure of differences
across all channels eliminates the problem of multiple testing
across sensors, but since the previous analyses have been
conducted time point by time point, false positive results may
have been obtained due to multiple testing across time. To
protect against these, it is possible to compute statistics on
the overall count of significant time points and the duration
of significant effects as discussed above. Figure 7 shows and
explains how such overall thresholds can be obtained for
the duration of continuous periods of significance of the
time point by time point analyses. For the simplicity of the
example, we used only the correct sentence endings in this
analysis. In Figure 8, the obtained duration threshold has
been applied to the TANOVA results.
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Figure 7: Estimation of a duration threshold of significant TANOVA effects. The threshold is estimated for each effect separately. The
horizontal axis indicates the duration of continuous epochs with local significances of the TANOVAs below the selected threshold. The
vertical axis indicates the probability of encountering a certain effect duration under the null hypothesis. These durations are obtained
by “testing” the results of the randomization runs against each other [2, 3]. The red line indicates the chosen threshold for overall
significance, in the current case, P = .05. The vertical green line indicates the duration that is longer than (1 − P) percent (in the present
case 95%) of all randomly obtained effect durations under the null hypothesis. This threshold can then be applied to the previously
obtained TANOVA results. Thresholds have been computed based on the result of the time point-wise sample TANOVA analysis of
Figure 8.

If there is an a-priori hypothesis about a time window
where some effect should be tested, one can also compute
the analyses outlined above based on topographies averaged
across a time interval. As an example, we took the results
of the group analysis with the factors day, expectancy, and
group as described above. Based on the results of the cluster
duration test (Figure 8), we wanted to know whether the
effect is consistent across time points and stable if we average
the signal over the time points between 780 and 890 ms. We
thus computed the TANOVA again over the averaged time
frame. The results are displayed in Figure 9. They show that
the effect is indeed stable across time points as it persists
when averaging.

In addition, and independently of comparisons among
groups and conditions, the program contains a module to
compute the topographic consistency test (TCT, [2]) that
assesses, for each group and condition, during which time
points there is evidence for a consistent pattern of active
sources across subjects (invoked with Analysis->Topographic

Consistency Check); a detailed explanation of this method
is found in [2]. This test can optionally be computed at the
beginning of the analysis to define the analysis window.

As Figure 10 shows, there is evidence for common
activations across subjects over prolonged time periods. The
first period of consistent topography lasts until about 600 to
700 ms and continues after an interruption until the end of
the data. It is also evident that the significance level of the test
is inversely related to the GFP of the ERP.

4.7. Summary of Results. The results of our sample analysis
showed an interaction effect of expectancy∗day from 600
to 650 ms, mainly due to the difference of topographies of
correct word endings from day 1 to day 2. Additionally, in
the group analysis, an interaction effect day∗group from
around 780 to 890 ms was seen. This interaction effect was
mainly due to the change of topographies from day 1 to
day 2 in the group of bad learners. Since we saw that the
interaction expectancy∗day was due to differences in correct
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Figure 8: Results of a TANOVA computed for correct sentence ending on days 1 and 2, with good and poor learners as groups. The
duration threshold estimate from Figure 7 has been applied. Periods meeting the duration criterion are shown in green. The late group
by day interaction meets the duration criterion, whereas the other effects do not.

word endings, we assumed that this may also play a role in
the interaction effect day∗group. Thus, bad learners should
show a change of processing of correct words from day 1 to
day 2.

We tested our assumption as formulated above in a new
design with the factors group and day, with day containing
only correct sentence endings at day 1 and day 2. This
TANOVA resulted in a more stable interaction effect in
the same time frame as indicated by the cluster size test.
Computing this new TANOVA again averaged over the
important time frame resulted in a significant interaction
group∗day, indicating that the effect is stable and consistent
over the respective time points.

Finally, the consistent topography test supported our
results showing that the processing duration of correct
sentence endings was shorter at day 2 than at day 1, whereas
the duration of the consistent topography did not differ
between false sentence endings on day 1 and day 2.

This sample highlights the advantage of an analysis
without the need of a-priori decisions. With a-priori choices
we would have limited the analysis to search effects around
400 ms due to previous studies reporting about the N400
effect. We would have missed the results found around
800 ms mainly due to different topographies in response to
correct sentence endings.

5. Discussion

In the current paper, we present software designed to
compute statistical analyses on scalp field data using methods
and algorithms based on randomization techniques that are
custom tailored to the specific properties and problems of
such data. The methods, user interface, and display of the
results implemented in the program should accommodate
most of the experimental designs that maintain an accept-
able degree of complexity (two within-subject factors with
multiple levels each, and one between-subject factor, also
with multiple levels). The paper is thought as an intro-
duction for researchers using EEG/MEG data that want to
understand the basic concepts of the methods and make
use of the software. For a more thorough discussion of
the underlying concepts, we refer to other publications
[2–4].

In terms of the “flow” of an analysis of event-related
scalp field data, the methods and tools presented here offer
a good starting point, but typically not the end point of
an exhaustive analysis of a data set. The main advantage of
beginning an analysis with the methods proposed here is that
they offer robust, powerful, and physiologically meaningful
statistics on the entire, untransformed, and unbiased set of
measurements. Thus, without the need to select sensors,
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Figure 9: Group TANOVA over averaged time points between 780 and 890 ms. When averaged across multiple time points, the graphs on
the left each shows significance levels for the whole averaged time span as bar graphs instead of line graphs. The y-axis shows again the level
of significance (P), which is now written above each graph for the whole time span.

time windows of interest, type and parameters of inverse
solutions, or other a-priori choices, the data informs the
researcher about whether and when there is a significant
effect of some experimental manipulation. At the same
time, significance indicates that the conditions and groups
involved in the effect activated at least partially different
sources and thus assumingly different brain functions. Once
such a global statistical basis has been established, the data
can be further manipulated to be explored more locally in
sensor or inverse space. In other words, we hope that the
methods and tools introduced here can help to minimize the
dependence of statistical evidence from a-priori choices of
specific models.

A further remark to be made here is on the general
difference of assumptions when doing statistics on the scalp
compared to the source level. Consistent scalp fields indicate
consistent source localization and source orientation, while
source orientation is typically not considered in voxel-wise
statistics of inverse solutions. As argued before [3], source

orientation appears to be a very robust and sensitive feature
of ERP data; all results obtained by averaging evoked scalp
potentials imply that not only the amplitude of the sources of
the evoked potential was constant, but also their orientation.
The interpretation of what a consistent change of orientation
means remains less clear. On the other hand, statistics based
on inverse solutions obviously depend on the correctness of
the assumptions of the inverse model. Furthermore, at least
for distributed inverse solutions, the result space is drastically
inflated without an increase of degrees of freedom of the
data, and heavy corrections for multiple testing across voxels
need then to be applied post-hoc to correct for this somewhat
artificial problem.

A disadvantage of the program (common to all programs
that are based on randomization and resampling techniques)
is that computation time increases linearly with the amount
of randomization runs, which can make computation time
lengthy for larger datasets. In its current implementation,
the program runs as a single-thread process, such that it
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Figure 10: Topographic consistency test (TCT) applied to the four within conditions of the sample data (C1: correct sentence ending day 1;
F1: false sentence ending day 1; C2: correct ending day 2; F2: false ending day 2). For each condition, two graphs are shown. The upper one
displays the P value obtained by the TCT (vertical axis) and the chosen threshold (red line). The x-axis displays the time from 0 to 1000 ms
from the word onset on. The second graph shows the Global Field Power (GFP), with periods of consistent topographies marked in green.
The y-axes of the lower graphs indicate the GFP amplitude in μV.

creates limited interference with performance when running
in the background. Parallelization is, however, planned in
future releases.

Another limitation is that the program is academic
software and under constant development. Since there are
no separate alpha and beta releases, it may contain undoc-
umented, more experimental options that are not yet meant
for the general public (e.g., analyses in the frequency
domain). So, unless you do not know precisely what to ex-
pect, please do not use them. And finally, the program has
been developed and is maintained with limited resources;

careful crosschecking of the plausibility of the results is
mandatory; user support may become limited, but sugges-
tions, problem reports, and criticism are always welcome.

References

[1] J. C. Mosher, R. M. Leahy, and P. S. Lewis, “EEG and MEG:
forward solutions for inverse methods,” IEEE Transactions on
Biomedical Engineering, vol. 46, no. 3, pp. 245–259, 1999.

[2] T. Koenig and L. Melie-Garcı́a, “A method to determine the
presence of averaged event-related fields using randomization
tests,” Brain Topography, vol. 3, pp. 233–242, 2010.



14 Computational Intelligence and Neuroscience

[3] T. Koenig and L. Melie-Garcia, “Statistical analysis of multi-
channel scalp field data,” in Electrical Neuroimaging, C. M.
Michel, T. Koenig, D. Brandeis, L. R. R. Gianotti, and J.
Wackermann, Eds., pp. 169–189, Cambridge University Press,
Cambridge, UK, 2009.

[4] T. Koenig, L. Melie-Garcı́a, M. Stein, W. Strik, and C.
Lehmann, “Establishing correlations of scalp field maps with
other experimental variables using covariance analysis and
resampling methods,” Clinical Neurophysiology, vol. 119, no.
6, pp. 1262–1270, 2008.

[5] W. K. Strik, A. J. Fallgatter, D. Brandeis, and R. D. Pascual-
Marqui, “Three-dimensional tomography of event-related
potentials during response inhibition: evidence for phasic
frontal lobe activation,” Electroencephalography and Clinical
Neurophysiology, vol. 108, no. 4, pp. 406–413, 1998.

[6] D. Lehmann and W. Skrandies, “Reference-free identification
of components of checkerboard-evoked multichannel poten-
tial fields,” Electroencephalography and Clinical Neurophysiol-
ogy, vol. 48, no. 6, pp. 609–621, 1980.

[7] D. Lehmann and W. Skrandies, “Spatial analysis of evoked
potentials in man-a review,” Progress in Neurobiology, vol. 23,
no. 3, pp. 227–250, 1984.

[8] B. F. J. Manly, Randomization, Bootstrap and Monte Carlo
Methods in Biology, Chapman & Hall, Boca Raton, Fla, USA,
2007.

[9] T. E. Nichols and A. P. Holmes, “Nonparametric permutation
tests for functional neuroimaging: a primer with examples,”
Human Brain Mapping, vol. 15, no. 1, pp. 1–25, 2002.

[10] E. R. John, P. Easton, L. S. Prichep, and J. Friedman,
“Standardized varimax descriptors of event related potentials:
basic considerations,” Brain Topography, vol. 6, no. 2, pp. 143–
162, 1993.

[11] J. Wackermann, “Towards a quantitative characterisation of
functional states of the brain: from the non-linear method-
ology to the global linear description,” International Journal of
Psychophysiology, vol. 34, no. 1, pp. 65–80, 1999.

[12] M. Stein, T. Dierks, D. Brandeis, M. Wirth, W. Strik, and T.
Koenig, “Plasticity in the adult language system: a longitudi-
nal electrophysiological study on second language learning,”
NeuroImage, vol. 33, no. 2, pp. 774–783, 2006.

[13] M. Kutas and S. A. Hillyard, “Reading senseless sentences:
brain potentials reflect semantic incongruity,” Science, vol.
207, no. 4427, pp. 203–205, 1980.


