Split-mouth designs in orthodontics: an overview with applications to orthodontic clinical trials

Nikolaos Pandis*, Tanya Walsh**, Argy Polychronopoulou***, Christos Katsaros*, and Theodore Eliades****

*Department of Orthodontics and Dentofacial Orthopedics, Dental School, Medical Faculty, University of Bern, Switzerland. **School of Dentistry, University of Manchester, UK, ***Department of Community and Preventive Dentistry, School of Dentistry, University of Athens, Greece and ****Department of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, University of Zurich, Switzerland.

Correspondence to: Theodore Eliades, Department of Orthodontics and Paediatric Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, CH-8032, Switzerland. E-mail: theodore.eliades@zzm.uzh.ch

SUMMARY Split-mouth designs first appeared in dental clinical trials in the late sixties. The main advantage of this study design is its efficiency in terms of sample size as the patients act as their own controls. Cited disadvantages relate to carry-across effects, contamination or spilling of the effects of one intervention to another, period effects if the interventions are delivered at different time periods, difficulty in finding similar comparison sites within patients and the requirement for more complex data analysis. Although some additional thought is required when utilizing a split-mouth design, the efficiency of this design is attractive, particularly in orthodontic clinical studies where carry-across, period effects and dissimilarity between intervention sites does not pose a problem. Selection of the appropriate research design, intervention protocol and statistical method accounting for both the reduced variability and potential clustering effects within patients should be considered for the trial results to be valid.

Introduction

Evidence obtained from dental research may be categorized according to a hierarchy, with evidence from well-conducted systematic reviews and randomized controlled trials (RCTs) providing the highest level of evidence, followed by controlled trials and observational studies (Table 1) (Harbour and Miller, 2001). Observational studies such as cross-sectional, case–control and cohort studies, have certain inherent limitations that must be considered when their results are interpreted and conclusions drawn (von Elm et al., 2008). Carefully designed and conducted RCTs, where feasible, can provide the highest level of evidence in terms of effectiveness of an intervention (Moher et al., 2010).

There are several study design features for RCTs, such as adequate sample size, randomization and use of control, blinding and appropriate data analysis (Moher et al., 2010). These components affect a trial in terms of ethics, efficiency, outcome precision and validity (Altman, 1980; Altman and Bland, 1995; Jadad et al., 1996; Pocock, 1983; Juni et al., 2001; Charles et al., 2009). Whilst the most common form of RCT is the conventional parallel-group two- or k-arm design, split-mouth designs, cluster-randomized designs, factorial designs, non-inferiority or hybrids of those can also be employed. In parallel-group designs, participants are randomly allocated to intervention group; in split-mouth designs, each intervention is randomly allocated to a different site or sites within the mouth of each individual (Ramfjord et al., 1968); in cluster-randomized designs, the experimental unit is the cluster. Each cluster is then randomized to an intervention, e.g. the cluster may be the jaw in which all member teeth receive the same treatment and measurements are made on the teeth within the jaw; in the simplest form of a factorial design, two interventions are assessed simultaneously on the same participants.

Split-mouth designs were introduced in periodontics by Ramfjord in the late sixties, but their use has relatively limited (Antczak-Bouckoms et al., 1990; Lesaffre et al., 2007; Lesaffre et al., 2009) as a result of perceived limitations such as carry-across effects, period effects and difficulty in recruiting patients with similarity between randomization units (jaws, quadrants). Carry-over effect has been described extensively in crossover designs in medicine (Senn, 2007) and also in dentistry as carry-across effects or contamination (Lesaffre et al., 2007; Lesaffre et al., 2009). A carry-across effect may be anticipated in a trial of fluoride rinses in a split-mouth design, for example, as it would be difficult to apply the rinse in only specific quadrants and also to assure that fluoride from one site does not carry across to other quadrant(s). Period effects are encountered when interventions are not delivered simultaneously and the effect of the intervention is influenced by the period of delivery. For example, conditions under investigation may
Advantages and disadvantages of split-mouth designs in orthodontics

A key advantage of this study design is the smaller sample size required compared with a parallel-group design. This is due to the fact that each patient acts as his/her own control, so much of the inter-subject variability is removed, resulting in increased study power or a decrease in the number of participants required compared with a study in which patients receive only one intervention. It is estimated that the sample size requirements for a split-mouth RCT is approximately half that of a parallel RCT (Hujoel and DeRouen, 1992), when all other parameters are equal. Sample size depends also on the similarity of the sites within patients and it is estimated that the sample size may be further reduced compared with a parallel trial as the within-participant correlation increases. As the coefficient of correlation (ρ) gets closer to one, the required sample size (N) may be dramatically reduced, as indicated by the following formula (Wang and Bakhai, 2006):

$$N_{\text{split-mouth}} = \frac{(1 - \rho)N_{\text{parallel}}}{2}$$ \hspace{1cm} (1)

When a split-mouth design is applied, there should be uniformity in the sites of each patient to whom the interventions are applied. This can be a problem in dental specialties such as endodontics, periodontics or restorative dentistry, where there may be clinically important between-site differences that are potentially related to the outcome of interest, but this is not often a problem for orthodontics. In orthodontics, intact dentitions are most often available and, thus, it is feasible to have comparable sites to which both interventions are applied. Lack of uniformity between sites within participants may introduce selection bias as interventions may be applied to sites with different baseline characteristics.

Unequal or informative loss to follow-up or introducing post-randomization bias is unlikely to occur in orthodontic split-mouth trials. If a participant withdraws from the trial, the information from both or all interventions is lost. If, however, the loss to follow-up or withdrawal is more than minor, such losses can affect the resulting power of the study.

The potential for carry-across effect should be considered fully, and if this effect is expected, the trial should not be planned as a split-mouth design.
As most interventions are applied usually simultaneously, period effects that could confound the association between interventions and outcome are not usually encountered (unlike in crossover trials). Subjective period effects may occur, for instance, if patient-reported pain associated with appliance A is measured first and then pain associated with appliance B is measured subsequently. The subjective perception of pain associated with the appliance may change with previous experience over time and above that associated with the intervention.

Split-mouth designs can be complicated to conduct and analyse, particularly when sites are nested within patients and teeth are nested within sites, producing clustering effects. In such instances, the clustering effects reduce study power as the information contributed per cluster is reduced (Hayes and Moulton, 2009). It should be pointed out that clustering effects are encountered in all trial designs where multiple observations are recorded within the same participants and that they are not an exclusive characteristic of split-mouth designs. It is recommended to seek expert opinion of a statistician when such studies are planned.

Randomization

In dental research, Hujoel and Loesche have identified 11 different variants for split-mouth treatment allocation. Methods of randomization in split-mouth designs include simple, restricted, stratified randomization or minimization. In orthodontic split-mouth trials, common units of randomization are the jaw, the left or right side of the mouth or the quadrant. For example, if the jaw is the unit of randomization, each intervention will be assigned randomly to either the maxilla or the mandible using one of the methods mentioned earlier. Similarly, if the unit of randomization is the quadrant, within the same patient, two quadrants could be randomly allocated to one intervention and the remaining two quadrants randomly allocated to the other intervention.

Statistical analysis

Statistical analysis should be carried out with reference to the research question and the primary and secondary outcome(s). For split-mouth designs, statistical analyses that take into account the paired nature of the data must be used, and the appropriate statistical test will depend on the nature of the outcome, e.g. categorical or quantitative. In more complicated designs, multiple outcome measurements may arise, i.e. the success or failure of bonds on several teeth within a jaw or quadrant. This multiplicity of data (or clustering of outcome measurements of teeth within a jaw or quadrant allocated to an intervention) requires statistical methods that account for the correlated nature of data. Treating clustered observations as independent often results in small standard errors and consequently small P values, leading to incorrect inferences for the effect of an intervention. To account for clustering effects, the statistical analysis could use either simple methods (in which a summary outcome measurement per cluster is calculated, e.g. mean proportion of bond failures per quadrant or mean plaque score per quadrant) or more complex regression models for correlated data such as generalized estimating equations (GEE) or random effects (Donner and Eliasziw, 1991; Donner et al., 1991; Donner and Zou, 2007; Giraudseau et al., 2008).

Examples

Simple split-mouth design

Example 1. En-masse retraction after maxillary premolar extraction using sliding mechanics on passive self-ligating or conventional orthodontic appliances (no clustering effects). Miles (2007) evaluated the rate of en-masse retraction with sliding mechanics between passive self-ligating Smart-Clip brackets and conventional twin brackets ligated with stainless steel ligatures. Each patient was randomly allocated to be bonded with a passive self-ligating or a conventional appliance per maxillary quadrant in a split-mouth design. In such a study, the outcome measure could be the number of days to close the extraction spaces or millimetres of space closure after a predefined amount of time. Statistical analysis of the effect of intervention uses a paired t-test or the non-parametric equivalent. In this approach, the difference in days to align or the difference in millimetres of space closure between quadrants will be calculated and the hypothesis that this difference is zero will be tested. The fact that the measurements for both interventions are taken from the same patients results in reduced variance and hence higher study power compared with a study in which each patient was receiving only one of the interventions. If adjustment for covariates or assessment of effect modification is required, a regression model can be used. [In the parallel-group design, each participant is randomly allocated to receive on both maxillary quadrants space closure either only with passive self-ligating or conventional appliances. The parallel design makes comparisons between patients using either an independent t-test or a non-parametric equivalent. Adjustment for covariates can be done as before.] Table 2 shows a parallel versus split-mouth design approach.

Example 2. Comparative assessment of bond failures using either plasma or light-emitting diode curing lights. Pandis et al. (2007) compared bond failures using a plasma curing light versus a light-emitting diode (LED) curing light in a split-mouth design. In such an experiment, the unit of
randomization may be at the quadrant level. One quadrant is randomly allocated to plasma curing light, the other to LED curing light. Each quadrant is considered a cluster consisting of many teeth. The outcome for each tooth in the cluster is a binary outcome (failure or no failure of adhesive), and a simple proportion of failures is calculated per quadrant \(P = \frac{\text{failures}}{\text{number of teeth per quadrant}} \). These proportions are treated as continuous outcomes as the analysis is applied at the cluster level (Hayes and Moulton, 2009). Statistical analysis of the effect of intervention uses a paired \(t \)-test or a non-parametric equivalent at the quadrant level (cluster-level analysis). If adjustment for covariates or effect modification is to be assessed or analysis at the tooth level (individual level analysis) is selected, logistic regression modelling that accounts for matching and clustering (robust standard errors, GEE or random effects) may be adopted. It should be noted, however, that models for binary data and event rates are more difficult to fit for matched designs and require sufficient number of clusters. Donner has also proposed methods using adjusted chi-square tests to account for matching and clustering effects (Hayes and Moulton, 2009).

In the parallel design, participants are randomly allocated to the same intervention, either plasma or LED curing light, on all teeth. Statistical analysis of the effect of intervention with a parallel-group design uses a \(t \)-test or a non-parametric equivalent in which each patient contributes one value, the calculated proportion per patient/cluster \(P = \frac{\text{failures}}{\text{number of teeth}} \). If adjustment for covariates or effect modification is required or analysis at the tooth level is selected, logistic regression modelling that accounts for clustering (robust standard errors, GEE or random effects) must be employed. Table 3 shows a parallel versus the split-mouth design for this example.

Split-mouth design with adjustment for baseline value of continuous outcome

An analysis of the effect of an intervention can be more efficient if it takes into account baseline measurements (generally the value before the intervention is given) that are related to the outcome of interest. If there is a correlation between the baseline measurement and the final measurement of a continuous outcome, then an adjusted analysis of the effect of the intervention, which takes the baseline value into account, can increase the precision of the effect estimate. The greater the correlation between the baseline and final measurements, the smaller is the required sample size and vice versa (Figure 1) (Rosner, 2006). Rosner (2006) provides a formula (see Table 4 for sample size calculations for the effect of an intervention with baseline and outcome measurements for parallel-group and paired-design approaches—equivalent to split-mouth design).

Example 3. Local Streptococcus. mutans counts around brackets after bonding with two different orthodontic appliances (adjusting for baseline S. mutans counts). Participants are randomized to a conventional and a self-ligating appliance in a split-mouth design. Measurements of \(S. \text{mutans} \) counts are taken before the appliance is fitted and at follow-up, for example, 6 weeks later. Measurements may be taken from only one location per intervention site or from multiple locations per intervention site. If multiple measurements are taken, an average per intervention side should be used in order to account for clustering effects. It is likely that there is a strong correlation between \(S. \text{mutans} \) counts before and after bonding of the appliances. As this correlation increases, the power of the study increases or a
smaller sample size is required to maintain the same power. Table 6 displays the required sample size for different correlation coefficient (\(\rho\)) values (0.5, 0.7 and 0.9), for parallel and split-mouth designs, to detect a difference of two points on the log scale (\(S.\ mutans\) counts are usually represented on the log scale for normality of the distribution purposes) with standard deviation for each intervention arm of two (standard deviation of change between baseline and follow-up) at the 5% significance level with 90% power. The variance decreases as the correlation coefficient increases and this decrease in the numerator results in smaller sample size (Table 6, Figure 1). In other words, in a split-mouth design, because participants are serving as their own controls as both interventions are applied within the same patient, there is less variability between the observations and as the variability decreases, so does the required sample size.

A related consideration in analyses where baseline measurements are used is that the choice of analysis can affect the power and sample size requirements of the study (Pocock, 1983). In the \(S.\ mutans\) example (Figure 2), using the follow-up measurement alone in the analysis, the required sample size is unaffected (does not decrease) by a change in the correlation between baseline and follow-up values. Using a change from baseline as the outcome measurement (follow-up minus baseline) without adjusting (accounting)

Table 3 Comparison between parallel and split-mouth designs for comparative assessment of bond failures between brackets bonded with plasma versus light-emitting diode curing lights (Example 2).

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Design</th>
<th>Randomization unit</th>
<th>Sample size</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond failure or no failure (binary)</td>
<td>Parallel design</td>
<td>Patient: all teeth are bonded with the same curing light (plasma or LED)</td>
<td>Patients contributing four quadrants (20 teeth) per treatment allocation (assuming clustering)</td>
<td>Cluster-level analysis: (t)-test or non-parametric equivalent after summing at cluster level and accounting for clustering effects</td>
</tr>
<tr>
<td></td>
<td>Split-mouth design</td>
<td>Quadrant: one quadrant receives plasma curing light and the other, LED curing light</td>
<td>Patients contributing two (10-unit) quadrant per treatment allocation; this design requires smaller sample size</td>
<td>Cluster-level analysis: paired (t)-test or non-parametric equivalent after summing at cluster level and accounting for clustering effect. Adjusted Mc Nemar’s chi-square test for matching and clustering Individual-level analysis: logistic regression (robust SE, GEE or random effects) to account for clustering effects and covariate adjustments (more difficult to fit)</td>
</tr>
</tbody>
</table>

Table 4 Sample size formulas accounting for correlation between baseline and follow-up outcome values (Example 3).

\[
\sigma_d^2 = \sigma_1^2 + \sigma_2^2 - 2\rho \sigma_1 \sigma_2 \\
\sigma_d^2 = \text{variance of change between baseline and follow-up. It is assumed that baseline and follow-up variances are the same} \\
\sigma_1^2 = \text{variance in baseline values within a treatment group} \\
\sigma_2^2 = \text{variance in follow-up values within a treatment group} \\
\rho = \text{correlation coefficient between baseline and follow-up values within a treatment group (assumed the same for both trial arms)} \\
\delta = \text{mean difference} \\
f(\alpha, \beta) \text{ is a function of alpha and beta derived from the standard normal distribution for different combinations of power and level of significance (see Table 5).}
\]

Table 5 Values for different combinations of power and level of significance.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>0.05 (95% power)</th>
<th>0.1 (90% power)</th>
<th>0.2 (80% power)</th>
<th>0.5 (50% power)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>13.0</td>
<td>17.8</td>
<td>11.7</td>
<td>3.84</td>
</tr>
<tr>
<td>0.1</td>
<td>10.5</td>
<td>14.9</td>
<td>11.7</td>
<td>6.63</td>
</tr>
</tbody>
</table>

Adapted from Pocock (1983).
for the baseline values requires a large sample size, which progressively decreases as the correlation between baseline and follow-up increases. Finally, using the follow-up value (or the change from baseline) as the outcome measurement and additionally adjusting for the baseline values of *S. mutans* counts usually results in the smallest required sample size and the most precision (power) of all three scenarios. The final analysis is the analysis of covariance (ANCOVA; Vickers and Altman, 2001).

Conclusions

- Split-mouth designs are appropriate for certain orthodontic interventions due to their efficiency and the decreased sample required compared with conventional parallel designs.
- Split-mouth designs may not be a suitable study design when period, carry-across effects/contamination or lack of uniformity in allocation segments is anticipated.
- Due consideration for the split-mouth study design should be taken when sample size calculations and statistical analyses are carried out.

References

Jadad A R et al. 1996 Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled Clinical Trials 17: 1–12

Table 6 Effect of the correlation coefficient (ρ) on variance and required sample size.

<table>
<thead>
<tr>
<th>ρ</th>
<th>Parallel design</th>
<th>Split-mouth design</th>
</tr>
</thead>
<tbody>
<tr>
<td>$=0.5 (\sigma^2)$</td>
<td>84 (4)</td>
<td>42 (4)</td>
</tr>
<tr>
<td>$=0.7 (\sigma^2)$</td>
<td>52 (2.4)</td>
<td>26 (2.4)</td>
</tr>
<tr>
<td>$=0.9 (\sigma^2)$</td>
<td>20 (0.8)</td>
<td>10 (0.8)</td>
</tr>
</tbody>
</table>

Figure 1 Decrease in the required sample size as the correlation between baseline and follow-up outcome values increases (Example 3). The y-axis shows the required sample size and the x-axis shows the values of the correlation coefficient (ρ).

Figure 2 The graph shows how the required sample size varies depending on the type of analysis and the correlation between baseline and follow-up measurements in a before/after measurement. The y-axis shows the required sample size and the x-axis shows the values of the correlation coefficient (ρ). *Follow-up* indicates that only the follow-up outcome value was used without adjustment for baseline value of the outcome. *Change from baseline* indicates that the difference between the final and the baseline outcome value was used without adjustment for baseline outcome value. *ANCOVA* indicates that either follow-up outcome or change from baseline value of outcome was used adjusted for the baseline outcome value.