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Abstract 

Objectives: Treatment as prevention depends on retaining HIV-infected patients in care. We 

investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into 

care. 

Design: Mathematical model. 

Methods: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral 

therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load 

(CVL; sum of individual mean viral loads each year) and used a mathematical relationship between 

viral load and transmission probability to estimate the number of new HIV infections. We simulated 

four scenarios: ‘no LTFU’ (all patients stay in care); ‘no tracing’ (patients LTFU are not traced); 

‘immediate tracing’ (after missed clinic appointment); and, ‘delayed tracing’ (after six months). 

Results: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 

patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no 

tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing 

no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% 

PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 

2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed 

tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. 

Conclusion: Tracing of patients LTFU enhances the preventive effect of ART, but the number of 

transmissions prevented is small. 

Keywords: antiretroviral therapy; transmission; sub-Saharan Africa; lost to follow-up; mathematical 

model
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Introduction 

Despite the recent decrease in HIV incidence, an estimated 2.5 million people were newly infected 

with HIV worldwide in 2011
1
. One promising intervention to fight the global HIV epidemic is 

antiretroviral therapy (ART)
2,3

. HIV-1 RNA (viral load) and infectiousness
 
are strongly associated

4,5
; 

successful ART suppresses viral load to undetectable levels and makes onward transmission unlikely. 

However, replication of HIV in patients who interrupt therapy or whose ART fails will rebound and 

increase the risk of transmission. The full benefit of treatment as prevention can only be sustained if 

patients are retained in care, have good adherence, and if treatment failures are identified in time
6
. 

In 2006, to actively trace patients lost to follow-up (LTFU), two public ART clinics in Malawi 

introduced the ‘Back-to-Care’ (B2C) programme. Almost 30% of patients who missed an appointment 

and were found by tracing had stopped or never started ART
7,8

. Two-thirds of the patients found alive 

outside official treatment programmes eventually returned to care. Although the main goal of the 

B2C programme is to improve survival and quality of life of patients on ART, this intervention may 

also reduce transmission. The effect of tracing programmes on transmission is however unclear, and 

has not been explored. 

We investigated the effect of interrupting ART on the risk of HIV transmission at the population level, 

and the effect of bringing patients LTFU back into care using different strategies of tracing. To this 

end, we developed a mathematical model based on data from the B2C programme in Malawi.  
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Methods 

‘Back-to-care’ tracing programme: Study setting and tracing procedure 

By the end of 2012, 405,000 patients were on ART in 651 ART clinics in Malawi
9
. The B2C 

programme
8
 was introduced in 2006 at the Lighthouse Clinic

10,11
 and the Martin Preuss Centre 

(MPC)
12

, the two largest public ART programmes in Lilongwe. Together they treat about 7% of all 

patients in Malawi. Under B2C, patients are declared LTFU three weeks after a missed appointment. 

The B2C team then attempts to contact the patient by phone or personal visit. If the patient died or 

is receiving ART from another provider, the outcome (death or transfer-out) is updated in the patient 

records. If the patient is not found, the outcome remains LTFU. Transfers among patients LTFU may 

be official (recorded in the patient’s health passport but missing from the clinic records) or self-

transfers (patient changes clinics without informing the original clinic). If the patient discontinued or 

interrupted ART, or received ART from sources other than official clinics (e.g. friends, relatives, 

unlicensed vendors), the tracing clerk will, with the patient’s consent, schedule a new appointment 

at Lighthouse or MPC to restart ART. Herein, we refer to ART with gaps and ART from unofficial 

sources as ‘irregular ART’ (see Table S1, Section 1.1, Supplemental Digital Content, 

http://links.lww.com/QAI/A493).  

Data characteristics and statistical analyses 

The characteristics of the dataset have been described in detail by Tweya et al
8
. The dataset included 

23,137 adult patients (aged ≥16 years) with a median follow-up time of 1.3 (interquartile range 0.4-

2.8) years (see Table S2, Section 1.1, Supplemental Digital Content, 

http://links.lww.com/QAI/A493). At the end of follow-up, 13,302 patients were alive and in care, 

1706 had died, 539 were alive without ART, 4335 had transferred out to another ART clinic, and 3262 

were LTFU. A total of 4851 LTFU cases were discovered during the study period and in 4805 (99%) of 

these tracing was attempted. In 3381 (70%) cases the patient’s outcome was verified through tracing 
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(see Table S3, Section 1.1, Supplemental Digital Content, http://links.lww.com/QAI/A493). We 

estimated time from start of ART to the first instance of death, official transfer, self-transfer, 

discontinuation of ART, irregular ART or LTFU. We used a competing risk analysis to calculate the 

cause-specific hazard and corrected these hazards for events that could not be verified by assuming 

that the proportion of events was the same among unverified cases as among verified cases (see  

Section 1.2-1.3, Supplemental Digital Content, http://links.lww.com/QAI/A493Sections 1.2-1.3). We 

estimated expected non-HIV-related background mortality from the Global Burden of Disease 

study
13,14 

and subtracted it from observed mortality. Parametric distributions were fitted to the 

corrected hazards. We then investigated the probability of finding patients LTFU by tracing, and the 

rate of their return back to care. We fitted a Weibull distribution to the observed distribution of 

return times.  

Mathematical model 

We used the R package ‘gems’, a general framework for individual-based multistate models to 

simulate patients under different scenarios of LTFU and tracing
15

. The model simulates the 

progression of individual patients from a chosen starting time until a fixed censoring time. The 

possible paths of progression are presented as states and transitions. Transition times are sampled 

for each patient from transition-specific time-to-event distributions, which are allowed to take an 

arbitrary form. The output of the model is a matrix of the entry times of each simulated patient into 

each state, which we then convert into rates of outcomes of interest. 

Figure 1 illustrates the possible transition paths. The simulation begins at start of ART, after which 

point the patient is at risk of official transfer, self-transfer, change to irregular ART, discontinuation, 

and death (Table 1). A proportion of official transfers, deaths and discontinuations remain 

unregistered. These unregistered events, as well as self-transfers and changes to irregular ART, are 

initially observed as LTFU. Patients who discontinued ART or are on irregular ART can return to care 

spontaneously or after tracing. Time spent on ART is further divided into first-line and second-line 
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ART, and into successful ART, virologically failing ART (viral load permanently above 1000 copies/ml) 

or immunologically failing ART (CD4 count meeting the WHO immunological failure criteria
16

). We 

assumed that 6-monthly CD4 count (but not viral load) monitoring is available, and that patients 

switch to second-line ART after two consecutive measurements that meet WHO immunologic failure 

criteria
16

. The full model includes 113 states (see Table S4, Section 2.1, Supplemental Digital 

Content, http://links.lww.com/QAI/A493). We simulated cohorts of 1000 patients followed-up for 

five years after starting ART. 

Based on the transition times, we assigned each simulated patient a viral load trajectory to 

determine their risk of HIV transmission over time (see Section 2.2, Supplemental Digital Content, 

http://links.lww.com/QAI/A493). We assumed that patients on virologically successful ART, including 

patients on irregular ART, had undetectable viral load. Two measures of transmission were 

estimated: cohort viral load (the sum of mean viral loads of each patient during a particular year
6
, 

applying the concept of community viral load
17

 to a cohort of treated patients); and, the expected 

number of transmissions, calculated from the individual viral load trajectories using a functional 

formula
5,6

. We assumed that all patients were in consecutive one-year partnerships and had 100 

unprotected sex acts per year
5
. HIV prevalence among partners at the beginning of the partnership 

was assumed to be 15%
18

.  

Whenever possible, we used the results of our statistical analyses to estimate the parameters related 

to the patient’s progression through different retention states (Table 2; see Table S5, Section 3, 

Supplemental Digital Content, http://links.lww.com/QAI/A493). Parameters related to virological 

and immunological progression were based on the findings of a previous study of two South African 

township cohorts
6
.  

Simulated strategies 

We simulated four scenarios. In the first scenario, “No LTFU”, we assumed all patients stay in care 

and on ART until death, and events (death, transfer) are correctly recorded. In the remaining three 
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scenarios, we included all types of LTFU (unregistered deaths and transfers, irregular ART and 

discontinuation of ART). A patient was considered LTFU if he or she missed a visit at the clinic 

(scheduled once a month) by 3 weeks. In the “No tracing” scenario, patients could return 

spontaneously to care, not as a result of tracing efforts. In the “Delayed tracing” scenario, patients 

were traced six months after LTFU. In the “Immediate tracing” scenario, patients were traced as soon 

as they were LTFU (3 weeks after the missed appointment). 

We first describe the model’s estimation of LTFU. To estimate the impact of retention in care on the 

preventive effect of ART, we then compare cohort viral load and transmission in scenarios with and 

without LTFU. Finally, we compare cohort viral load and transmission across the three scenarios in 

which patients LTFU are traced. Model outputs are presented as mean values over 100 model runs, 

with 95% prediction intervals (PrI). We conducted two sensitivity analyses to account for uncertainty 

in selected parameters. In the first analysis, we modified the rates of discontinued and irregular ART. 

About one-third of the patients in the dataset who were on irregular ART had gaps in ART intake and 

may therefore have had detectable viral load. We reduced the hazard of irregular ART by one-third 

and increased the hazard of ART discontinuation by the corresponding amount. In the second 

analysis, we decreased the rate of spontaneous return to one-third of the assumed rate we had 

assumed in the main analysis. 
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Results 

Table 3 shows model estimates for the number of patients LTFU for different reasons, number of 

patients traced, number of patients returning to care, total cohort viral load, and number of 

expected transmissions for the three strategies that included LTFU per 1000 patients over five years. 

Rates of loss to follow-up 

The model estimated that about 440 out of 1000 simulated patients were LTFU in the first five years 

of ART (Table 3). About 160 patients were lost in the first year of ART, and between 50 and 90 in each 

of the following years. According to the model outputs, 23% of the patients LTFU had died. 

Discontinued treatment accounted for 37% of LTFU, changes to irregular ART for 26%, unregistered 

official transfers out for 8%, and self-transfers for 5%.  

Effect of loss to follow-up on transmission 

In the absence of tracing, LTFU more than doubled cohort viral load over that of a cohort fully 

retained in care (Figure 2A). The number of expected transmissions over five years increased from 33 

to 54 per 1000 patients (Figure 2B). In the first year of ART, the number of expected transmissions 

per 1000 patients was about 9 in the scenario without LTFU, and 11 in the scenario with LTFU. 

Annual transmissions in subsequent years decreased in the scenario without LTFU, and stayed close 

to 6 from the second year on. In the scenario with LTFU and no tracing, transmissions per year were 

between 10 and 11. 

Tracing and prevention of transmission 

Without tracing, 50% of the patients who discontinued or changed to irregular ART spontaneously 

returned to care within five years. Immediate tracing increased the probability of return to 68%. With 

delayed tracing after 6 months, 59% of the patients who were expected to return did so within the 5-
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year follow-up time. Tracing reduced transmission moderately from the second year onwards. Cohort 

viral load in the cohort of 1000 patients was about 9 million copies/ml during the first year for all 

three strategies (Figure 2A). Cohort viral load remained on the same level without tracing over the 

following years, but declined gradually to 6–7 million copies/ml with tracing. The pattern for 

expected transmissions was similar (Figure 2B). During the first year, the 1000 treated patients 

transmitted on average 11 new infections in all scenarios. Over the subsequent years, the number of 

expected transmissions remained close to 11 without tracing, and decreased gradually to about nine 

per 1000 with tracing. Over the five first years of ART, immediate tracing prevented 3.6 (95% PrI -

3.3–12.8) new infections for each 1000 patients. Tracing after six months prevented 2.5 (95% PrI -

5.8–11.1) new infections. Immediate tracing was more efficient than delayed tracing: 116 patients 

had to be traced to prevent one infection when tracing was immediate; 142 patients had to be 

traced to prevent one infection when tracing was delayed. 

Sensitivity analyses 

In the first sensitivity analysis, we increased the rate of discontinuation and decreased the rate of 

changing to irregular ART. Among all LTFU cases, the proportion of patients who discontinued ART 

increased from 37% to 51%. The increase in the number of patients alive and not on ART also 

increased the cohort viral load and moderately raised expected transmissions above the number 

from the main analysis in the absence of tracing. However, immediate tracing was more efficient 

than in the main analysis, and prevented 5.1 (95% PrI -3.6–13.4) infections. The number of patients 

who needed to be traced to prevent one infection decreased to 86, with immediate tracing (see 

Table S6, Supplemental Digital Content, http://links.lww.com/QAI/A493). 

In the second sensitivity analysis, we decreased the rate of spontaneous return from 0.33 to 0.10, so 

that about 10% (instead of almost 30%) of patients outside care spontaneously returned to the clinic 

within a year. If tracing was not available, during the five years of follow-up, only 58 of the 138 

patients expected back actually returned. In the main analysis, immediate tracing increased the 
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proportion of patients returning to care by 37%. In this sensitivity analysis, the immediate tracing 

more than doubled the proportion of patients who returned. The higher return from tracing reduced 

HIV transmission: tracing with a six-month delay prevented 3.7 infections, and immediate tracing 

prevented 5.5 infections. About 78 immediate tracing efforts were needed to prevent one new 

infection (see Table S7, Supplemental Digital Content, http://links.lww.com/QAI/A493). 
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Discussion 

This mathematical modelling study based on two ART programmes in Malawi found that tracing 

patients LTFU can slightly reduce transmission from patients who started ART. If 1000 patients are in 

one-year partnerships and engage in 100 sex acts per year, active tracing can prevent one to five 

infections in this cohort over the first five years of ART. This is only a fraction of the >20 infections 

transmitted by patients who discontinued or interrupted ART. The effect depends on the delay 

between missed visit and tracing and on assumptions about both the rate of spontaneous return and 

the virological suppression of patients on irregular treatment. 

In our main analysis, we found that 120 patients needed to be traced to prevent one new infection. If 

one tracing clerk can trace 4-5 missing patients per day, preventing a single transmission would 

require a 1.5 month workload. We judge this a reasonable investment since a newly infected patient 

will need life-long treatment and care costing thousands of dollars, and HIV infection can cut short a 

patient’s life. We made some conservative assumptions (a relatively high spontaneous return rate 

and a complete viral suppression for patients with irregular ART) in our main analysis, and so may 

have underestimated the efficacy of tracing as prevention. We used sensitivity analyses to test on 

these assumptions the dependency of the efficacy of tracing as prevention, and found that the 

number of patients who needed to be traced decreased to about 70 if we used assumptions more 

favourable to tracing. 

Immediate tracing of patients LTFU compared to delayed tracing after six months increased the 

efficacy of the intervention. The rationale for delayed tracing is that it reduces the burden of tracing 

by giving the patient time to spontaneously return. The delay slightly decreased the number of 

necessary tracings, but did not prevent as many transmissions as immediate tracing, and was thus 

less efficient. When tracing was delayed, the number of tracing efforts needed to prevent one 
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infection increased about 26%. Our results underline the necessity of tracing patients LTFU as soon as 

possible.  

Patients who interrupted ART contributed almost 40% of transmissions from treated patients, but 

tracing prevented less than a fifth of these infections. Interventions to improve retention and 

prevent LTFU may be more effective in reducing transmissions although no dedicated modelling 

studies have been conducted. Studies from Malawi show LTFU rates are lower in health centres than 

in large referral hospitals, so decentralized ART care in smaller health care units is a promising 

strategy
19,20

. Retention may also be improved by introducing rapid point-of-care diagnostic tests
21

 

and increasing community support
22

. Patients in care also contribute to transmission through poor 

adherence and treatment failure. Viral load monitoring can help identify patients with detectable 

viral load and minimise the transmission from these patients. Viral load monitoring can prevent 

about 30% of transmissions from patients retained in care
6
 and is likely to prevent more infections 

than tracing. 

Strengths and limitations 

Our model was parameterised with routine data from two typical African public-sector ART 

programmes in Lilongwe, Malawi, where patients present with low CD4 counts and symptoms of 

advanced disease, and the majority of patients are women (see Table S2, Supplemental Digital 

Content, http://links.lww.com/QAI/A493). Our results should be applicable to many African settings, 

but are affected by our assumptions and we must acknowledge several limitations. We found that 

the rate of LTFU remained high even after tracing. We assumed the same proportion of different 

outcomes among patients who remained LTFU after tracing as among patients who were found. This 

might not be accurate because the outcome can influence the probability of finding the patient: for 

example, a patient who has moved to another region is probably harder to trace and also more likely 

to have transferred to another ART clinic than a patient who stays at the same address. Moreover, 



ACCEPTED

Copyright  � Lippincott Williams & Wilkins. All rights reserved.

13 
 

we could not estimate some parameters, like the rate of spontaneous return and the infectiousness 

of patients who dropped out of care, from the data. 

One advantage of cohort viral load is that it does not depend on assumptions about the sexual 

behaviour of patients. The disadvantage is that it cannot estimate the reduction in the absolute 

number of infections, and can only approximate relative benefit. On the other hand, the expected 

number of transmissions is easily understood, but also sensitive to the frequency of sex acts and 

changes of partners. In our model, all patients had 100 unprotected acts per year and changed 

partners each year. The absolute numbers of new infections that we present are therefore specific to 

this scenario. Due to the low per-act probability of transmission, the number of transmissions is 

approximately proportional to the frequency of acts, and the effect of partner change rate is 

negligible
6
. Therefore, the relative reduction in transmissions due to tracing will remain stable across 

the different risk behaviour scenarios. If we however assume, for example, 25 sex acts per year, then 

it would take 400-500 tracings to prevent one infection.  

Mathematical modelling has been widely used to compare management strategies for HIV-infected 

patients and to identify the optimal strategy
3,6,23-25

, but most modelling studies have not compared 

model outputs to observed data. One reason for this is that the outputs of models are not necessarily 

directly comparable to observed data. The proportions of true outcomes among patients LTFU in our 

model did not exactly match the corresponding proportions in the source data. This is mainly due to 

differences in censoring between the data and model: in the model everyone is followed up for 

exactly 5 years, whereas in the dataset the follow-up time varied considerably, ranging from no 

follow-up to 10 years. Some of the difference can be attributed to the model: patients cannot return 

to earlier states and the number of events per patient is restricted in the model. In the real world, 

the same patient can become LTFU and return several times within a given follow-up period. This 

means that although the number of LTFU episodes predicted by the model is close to reality, the 

number of patients who survive the entire follow-up time is higher in the data than in the model. 

This makes it harder to compare the model with data, but it should not affect new infections, the 
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main outcome of interest. Our model is also not a dynamic transmission model: we can estimate the 

potential transmission from the cohort but not evaluate the long-term effect on the transmission at 

the population level. The model we used has some important advantages. For example, time-to-

event distributions are flexible and the model allows for time- and history-dependent hazards. 

Some of the differences we observed may also be due to chance. We investigated the possibility of 

stochastic error by splitting the total cohorts into 10 subcohorts of 10,000 patients and compared the 

results. Consistent results from the subcohorts confirmed that cohorts of 100,000 simulated patients 

are large enough to provide reliable estimates of the true effect.  

Conclusions 

Until now, the focus of tracing has been on improving the patient’s own health, on preventing 

mother-to-child transmission and on providing reliable estimates of cohort outcomes
7,26,27

. Our 

analysis shows that tracing offers an additional benefit. Tracing patients LTFU may efficiently reduce 

HIV transmission in Malawi and similar settings. Although the number of prevented transmissions 

may be small, the associated workload is reasonable in light of the cost of each infection averted. Our 

findings support the inclusion of active tracing in guidelines of ART provision in low-income settings. 

However, most transmissions from patients who dropped out of care cannot be prevented by tracing 

alone. Interventions to keep patients in care and monitoring of adherence and treatment response 

accurately are likely to be of greater importance than tracing patients lost to follow-up. 
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Figure Legends 

Figure 1. Schematic representation of the mathematical model. The full model consists of 113 

states, which are grouped here into 13 groups to simplify the graph (for a description of the full 

model, see Table S4, Supplemental Digital Content, http://links.lww.com/QAI/A493). Each patient 

starts in the group of states “alive and on ART (antiretroviral therapy)” and can proceed through the 

different paths. White boxes represent states where the patient’s outcome is known to the original 

ART clinic. Grey boxes represent states observed as loss to follow-up, and patterned boxes states 

where the patient is being traced. Tracing is represented by dashed arrows. 

Figure 2. Cohort viral load and expected transmissions in the four modelled scenarios: no loss to 

follow-up (LTFU), realistic LTFU without tracing, realistic LTFU with tracing after 6 months and 

realistic LTFU with immediate tracing. Panel A shows the cohort viral load and panel B the expected 

number of transmissions from 1000 patients during the first five years after ART initiation. 
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Table 1. Interpretation of events in the mathematical model.  

 

Event Interpretation 

Official transfer out, recorded Patient transfers to another clinic, and transfer is recorded in 

the health passport and the clinic records. 

Official transfer out, unrecorded Patient transfers to another clinic, and transfer is recorded in 

patient’s health passport but not in the clinic records. 

Self-transfer out Patient transfers to another clinic without informing the original 

clinic. 

Irregular ART Patient takes ART (with or without gaps) but does not receive 

antiretroviral drugs from official clinics. 

ART discontinuation, recorded Patient discontinues ART by clinician’s recommendation, and 

this is recorded in the clinic’s records. 

ART discontinuation, unrecorded Patient discontinues ART without informing the clinic. 

Death, recorded Patient dies and the clinic is informed about the death. 

Death, unrecorded Patient dies, but the clinic is not informed about the death. 

The events listed in this table correspond to the events presented in Figure 1. See Table S1 

(Supplemental Digital Content) for the corresponding list of events in the dataset. 
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Table 2. Selected key model parameters. 

 

 
Distribution and value Source 

HIV-related mortality  Double Weibull B2C 

  Shape 1 1.340  

  Scale 1 0.199  

  Shape 2 0.719  

  Scale 2 40.557  

  Weight of 1
st

 component 0.031  

Official transfer out Weibull B2C 

  Shape 1.015  

  Scale 8.196  

Self-transfer out Weibull B2C 

  Shape 1.637  

  Scale 32.813  

Changing to alternative ART sources Weibull B2C 

  Shape 1.207  

  Scale 21.785  

ART discontinuation Weibull B2C 

  Shape 0.666  

  Scale 43.102  

Probabilities of missing an event  B2C 

  Death 0.583  

  Official transfer out 0.140  

  ART discontinuation 0.900  

Spontaneous return Exponential assumption 

  Rate 0.333  

Probability to be found by tracing  B2C 

  If discontinued ART or on irregular ART 0.700  

Return after tracing if discontinued ART Weibull B2C 

  Shape 0.476  

  Scale 2.74  

Return after tracing if on irregular ART Weibull B2C 

  Shape 0.574  

  Scale 0.599  

Partner change  assumption 

  Rate 1  

Frequency of sex acts  assumption 

  Acts per year 100  

Per-act probability of transmission  

  Male to female, viral load 10 copies/ml 4.3*10
-5 

  Female to male, viral load 10 copies/ml 2.2*10
-5 

  Risk ratio per 1 log10 increase in viral load 2.45 

From Wilson et 

al.
5
 

ART, antiretroviral therapy; LH, Lighthouse Clinic (longitudinal data from IeDEA Southern Africa 

database); B2C, Back-to-Care tracing programme
7
. Weibull distribution is parameterised using the 

following formula for cumulative incidence (CI):   , where k is the shape 

parameter and λ the scale parameter. Double Weibull distribution is a mixture of two Weibull 

distributions.
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Table 3. Outcomes and potential transmission from simulated cohorts of 1000 patients during the 

first 5 years since antiretroviral therapy start with either no tracing, tracing after 6 months 

(delayed tracing) or immediate tracing.  

Outcomes 
Immediate 

tracing 
Delayed tracing No tracing 

Loss to follow-up    

    Unrecorded deaths 158 (134-180) 168 (142-194) 181 (158-205) 

    Unrecorded official transfers out 36 (26-47) 37 (27-47) 36 (23-51) 

    Self-transfers out 21 (13-31) 20 (13-29) 21 (12-31) 

    Irregular ART 110 (91-130) 109 (93-128) 114 (96-140) 

    Discontinuation of ART 152 (136-174) 155 (130-175) 162 (138-189) 

    Total* 440 (409-474) 438 (405-471) 437 (403-468) 

No. of tracings attempted 420 (385-453) 360 (334-391) 0 

Returned to care 179 (156-200) 157 (132-184) 138 (120-155) 

HIV transmission 
 

 
 

  Cohort viral load (10
6 

copies/ml)** 7.7 (6.2-9.1) 8.0 (6.7-9.5) 8.6 (7.3-10.0) 

  No. of new infections 50.1 (43.7-56.4) 51.2 (45.8-56.4) 53.7 (47.4-60.4) 

ART, antiretroviral therapy 

Results are given as total number of events over the 5 years of follow-up unless otherwise 

mentioned. We present the mean values over 100 model runs with 95% prediction intervals. 

*Number of patients lost to follow-up at least once; patients were allowed to have at maximum one 

of the following events: unrecorded official transfer-out, self-transfer out, irregular ART, 

discontinuation of ART; and in addition to this, unrecorded death.  

**Cohort viral load is defined as the sum of mean viral loads of all patients across the 5 years of 

follow-up. 
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