THE VERIDICALITY OF THE SELF-CONCEPT OF STRENGTH IN MALE ADOLESCENTS

MIRKO SCHMIDT, STEFAN VALKANOVER, AND ACHIM CONZELMANN

Institute of Sport Science, University of Bern

1 Address correspondence to Mirko Schmidt, University of Bern, Institute of Sport Science, Bremgartenstrasse 145, 3012 Bern, Switzerland or email (mirko.schmidt@ispw.unibe.ch).
Summary.— Physical self-concept and the veridicality (i.e. the reality relatedness of one’s self-perceptions) change during childhood and adolescence and are related to performance in physical fitness, exercise activity and global self-esteem particularly in male adolescents. This cross-sectional study aimed to examine the relationship between self-concept of strength and actual strength in groups of male adolescents ages 12 to 15. For this purpose, 889 male adolescents ($M_{age} = 13.22$ years, $SD = 1.0$) were questioned about their self-concept of strength, and a test of strength was carried out. The results showed that the correlation between the self-concept of strength and the actual strength is higher in older (14 and 15 year old) than younger (12 and 13 year old) adolescents. A chi-square test revealed a significant association between the age groups and the veridicality, indicating that realists are underrepresented in younger, but overrepresented in older adolescents. No association between adolescent’s physical activity and their veridicality was found. The consequences for further research trying to shed light on the development of the veridicality in the physical domain are discussed.
Having a positive self-concept (i.e., a positive valuation of one’s competencies and personal characteristics) is consistently regarded to be a desirable developmental goal (e.g. Harter, 2006). Research has linked high levels of self-concept with achievement motivation (e.g. Eccles, Wigfield, Harold, & Blumenfeld, 1993), academic performance (e.g. Marsh & Martin, 2011), work satisfaction (Judge & Bono, 2001) and with athletic performance (Marsh & Perry, 2005). Since the self-concept has traditionally been studied by a wide range of different disciplines, a large number of scientific papers have been written on it incorporating many different definitions of self-concept (Harter, 2005). Shavelson, Hubner and Stanton (1976) proposed a model in which four aspects of self-concept are considered as sub-concepts (academic, emotional, social and physical self-concept). The physical self-concept is further subdivided into “physical appearance” and “physical ability” (Shavelson & Marsh, 1986). In sport psychology (and in the present paper), special attention is paid to the sub-dimension of “physical ability” as it reflects one’s perceived physical competence, which is not only related to other dimensions of physical self-concept (Carraro, Scarpa, & Ventura, 2010), but also to the performance in physical fitness and physical activity (Burkhalter & Wendt, 2001; Chan et al., 2003). Furthermore, perceived physical competence seems to be of fundamental importance particularly for male adolescents, since it is much more related to global self-worth than in female adolescents (Vedul-Kjelsås, Sigmundsson, Stensdotter, & Haga, 2011).

Self-concept is generally thought to develop in two ways during grade school years. First, the domain-specificity of self-concept increases between the ages of five and eight (e.g. Harter, 2006; Pintrich & Blumenfeld, 1985). That is, the rather global self-concept of early childhood evolves into the dimensions of an academic, emotional, social and physical self-concept (Marsh, Ellis, & Craven, 2002). Second, younger children tend to have high competence beliefs that are
very resistant to contradictory feedback and to past experiences (Stipek & Hoffman, 1980; Wigfield & Eccles, 2002). Their self-concepts are usually very positive and just vaguely match reality. With increasing age, however, these extremely excessive self-perceptions become “healthy”, in the sense that they more accurately reflect the children’s actual competence (Eccles, et al., 1993; Harter, 2005). Hence, primary school children typically have a low correlation between external assessment (e.g. teachers’ judgment, marks, test results) and their self-perceptions of performance, and this correlation increases in later childhood and early adolescence (Marsh, Craven, & Debus, 1991; Stipek & Mac Iver, 1989; Weinert & Schneider, 1999). Whereas, cognitive-developmental theorists explain these more accurate self-perceptions by the increasing cognitive abilities and more sophisticated information processing of the growing child (e.g. Nicholls, 1989), others tend to emphasize the significant impact of typical changes in the structure and social context affecting the self-concept of the child, e.g. school enrollment (Harter, 1999, 2005). Certainly, intensive experience with one’s own performance in a specific domain and increasing social comparison processes play a crucial role in the development of realistic self-perceptions (Butler, 2005).

This developmental trend has also been observed in the physical domain. Feltz and Brown (1984) stated that the correlation between children’s perceived and actual soccer abilities increases steadily between the age of 9 and 14. Rudisill, Mahar and Meaney (1993) came to a similar conclusion and argued that the relationship between perceived and actual motor competence rises between the age of 9 and 11. Horn and Weiss (1991) claimed that there is a low correlation only between third and fourth grade pupils’ perceptions and their actual physical competence (r = .21-.32) and that fifth to seventh grade pupils show a higher correlation (r = .49-.69). Raudsepp and Liblik (2002) showed that actual and perceived motor competence were
significantly but only moderately ($r = .25-.56$) correlated. They concluded that 10 to 13 year old children can only assess their personal motor competence moderately accurately. In contrast, Jürimäe and Saar (2003) found a significant moderate correlation between actual and perceived endurance ($r = .31-.51$), but no significant correlation between actual and perceived strength ($r = .03-.21$) in 10 to 17 year olds. Carraro, et al. (2010) revealed 12 to 15 year olds to be quite accurate in their perception of endurance ($r = .60$) but not of strength ($r = .28$).

The relation between an individual’s self-perception and the correspondent external validity criterion is also called “veridicality”. In a broad conceptual sense, veridicality is defined as the extent to which a knowledge structure accurately reflects the information environment it represents (Walsh, Henderson, & Deighton, 1988). One special case of such accurate judgment is self-judgment or self-appraisal. This transforms the subject into the object being judged. Helmkes’ (1992) narrow understanding of “veridicality” (which is used here) as “the reality relatedness of one’s self-perceptions” (p. 197, translated) thereby further narrows the concept from judgment research in order to restrict it to the act of self-perception. One possibility to verify the veridicality is to compare self-perceptions with perceptions from other observers (e.g. Kwan, John, Kenny, Bond, & Robins, 2004). The second possibility is to compare self-perceptions with objective standards or tests (e.g. Dunning, Heath, & Suls, 2004). Studies have, for example, compared self-assessment of academic skills of students with their test scores or grades at the end of the semester (Kurman & Eshel, 1998; Robins & Beer, 2001), or athletic ability assessments with sport motor test performance (Germain & Hausenblas, 2006). This second option seems to be more appropriate in order to minimize distortions on the side of the observer.
A realistic estimation of one’s competences (i.e. veridicality) seems to be not only for the general development but especially in the physical context of particular importance. Several authors have suggested that veridicality is related to achievement motivation, adequate task choice and task performance (Försterling & Morgenstern, 2002; Harter, 2006; McFarlin, Baumeister, & Blascovich, 1984) and has been interpreted as potentially preventing inappropriate risk-taking behavior (Plumert, 1995; Schwebel & Plumert, 1999). Weiss and Horn (1990), for instance, have shown how achievement related cognitions differ in children with a tendency to over- or underestimate compared to those who assess themselves realistically. Difference scores were calculated on the basis of examinations of their perceived physical competence and their actual competence, and the children were divided into three groups: those who underestimated their skills (underestimators), those who assessed themselves realistically (realists) and those who overestimated themselves (overestimators). Results showed that underestimators had less challenge motivation, higher trait anxiety and higher external control perceptions than realists. Plumert (1995) showed in a study of 6 and 8 year olds that an overestimation of one’s own physical abilities is related to the number and severity of everyday injuries. The more children overestimate, the greater the danger of getting hurt. Gender-specific analyzes revealed that this effect was stronger in boys than in girls. Since results of further studies of this group show similar findings (Plumert, Kearney, & Cremer, 2004; Plumert & Schwebel, 1997), the authors warn about overestimations especially in the physical domain.

In view of these empirical findings, the question arises whether this general developmental trend of increasing veridicality as adolescents get older is also found in the self-concept of strength. The main purpose of the present study was to examine the relationship between self-concept of strength and actual strength in groups of male adolescents ages 12 to 15.
It is assumed that (a) the correlation between the two variables are higher in older (14 and 15 year old) then in younger (12 and 13 year old) adolescents. (b) The group of older adolescents (14-15 year olds) should consist in less under- and overestimators and more realists than the group of younger adolescents (12-13 year olds). And since intensive experience of the own strength can be made by engaging in physical activities, (c) the group of adolescents who have higher levels of physical activity should consist in less under- and overestimators and more realists than the group of adolescents who have lower levels of physical activity.

Method

Participants

A total of 889 male adolescents from 25 elementary and 53 secondary classes, aged 12, 13, 14, and 15 ($M_{age} = 13.22$ years, $SD = 1.0$) took part in the study. Sample sizes for each of the four age groups are given in Table 1. All classes were recruited from areas with heterogeneous socioeconomic structure. Since the education fair booth in which a part of the data was collected, informed about sports, civil protection and military, girls did not participate. Both the participants themselves and their parents gave their consent to taking part in the study. The parents of two pupils asked for further information on the data collection processes and on the goals of the study. However, by means of a telephone conversation with the respective parents, their concerns could be allayed. All data were anonymous and did not include any information, which might allow identifying any individuals.

There was some data loss due to non-participation in the shot-put performance test because of injury ($n = 14$). Thus, the percentage of subjects with incomplete data was 1.5%. Independent t tests showed that their mean of the self-concept of strength ($M = 3.19$, $SD = .70$) and the weekly physical activity ($M = 2.02$, $SD = 2.54$) did not differ from the mean of the self-
concept of strength \((M = 3.01, SD = .54)\) and the weekly physical activity \((M = 2.56, SD = 2.41)\)
of the rest of the sample \((t_{903} = 1.31, p = .191, d = .35; t_{903} = .83, p = .405, d = .22)\). All missing
values were equally distributed to the different age groups \((\chi^2 = 1.89, df = 3, p = .595, \text{Cramer’s} V = .05)\). Therefore, participants with missing values were excluded by list-wise deletion
(Schafer & Graham, 2002). To check for multivariate outliers, the Mahalanobis distance values
were evaluated as \(\chi^2\) at \(p < .001\) with 3 degrees of freedom (Fidell & Tabachnick, 2003).
Referring to the table of critical values for chi square distribution, two cases with a Mahalanobis
distance greater than 16.266 were detected as probable multivariate outliers and were therefore
deleted. However, excluding them did not change the patterns of results. Finally, all analyses
were based on a complete data set \((N = 889)\).

Measures

Self-concept of strength. Self-concept of strength was measured using the strength
subscale consisting of six items from the Physical Self-Concept Scales (PSK; Stiller, Würth, &
Alfermann, 2004). In the development of the PSK, a preliminary version of the Physical Self-
Description Questionnaire (PSDQ; Marsh & Redmayne, 1994) and the questionnaire of body
image (KSB; Alfermann & Stoll, 2000) were used. PSK consists of seven subscales measuring
physical abilities (strength, endurance, speed, flexibility, coordination, and sports competence),
and physical appearance. Analyses based on \(n = 1453\) children, adolescents and young adults
aged eight to 28 years demonstrated the appropriateness of the PSK and provided support for
reliability and (factorial, discriminant, construct) validity (Stiller et al., 2004). An example of an
item of the used strength subscale is “I am stronger than most people my age”. All items were
rated on a 4-point Likert scale that ranged from 1 (strongly disagree) to 5 (strongly agree).
Cronbach’s alpha coefficient was .85 for the present sample, thus showing high internal consistency.

Strength. The actual strength of the upper extremities was assessed using a shot-put performance test. While sitting on a bench with a height of 38 cm, the subjects had to push throw a medicine ball (2 kg) as far as possible using two hands (Wyss, Marti, Rossi, Kohler, & Mäder, 2007). Their feet were parallel to each other, their shoulders were pressed against a wall and the ball was held in front of their chest. The test item score (best of two tries) was the distance achieved in meters. The validity as a test of strength and its reliability have already been demonstrated and the reported test-retest reliability coefficient was .83 with a time interval of 7 days (Wyss et al., 2007).

Veridicality. In order to form the veridicality variable, two variables and an individual’s reference group are needed. Since the items of the PSK are formulated age specific, the z-standardization was conducted age specific, indicating the accuracy of the self-concept rating of strength within the group of adolescents of the same age. The veridicality score for each individual was computed by subtracting his z-score for actual strength from the z-score for self-concept of strength. Finally, adolescents were divided into three groups which differed in terms of the veridicality score: those with values of \(z < -1 \), were labelled *underestimators*; those with values of \(z = -1 \) to 1, as *realists*; and those with values of \(z > 1 \), as *overestimators*.

Physical activity. In Switzerland, all elementary and high schools provide 3 hours of compulsory physical education classes per week. Extracurricular physical and sports activities are usually organized by independent nonprofit sports clubs which offer various individual and team sports. Self-reported physical activity level was measured by asking participants how many hours they normally engage in physical activity at a sports club for each day of the week.
separately. Answers were summed over the 7 days of the week to receive the amount of weekly
free-time physical activity in hours. This response format has been frequently used (Trautwein,
Gerlach, & Lüdtke, 2008) and has been shown to yield more reliable scores than more global
reports (e.g., Schwarz & Oyserman, 2001). By means of a median split (2.00), adolescents were
divided into two groups which differed in terms their weekly physical activity level.

Procedures

The data was collected in connection with the *Bernese Intervention Study on School Sport* (BISS; Conzelmann, Schmidt, & Valkanover, 2011), the *Berner Ausbildungsmesse* (BAM, Bern Education Fair) and the *Bieler Berufsbildungsmesse* (BBM, Biel Vocational Education Fair). All data collection took place between August and October and was carried out at the participating vocational schools themselves. In order to prevent their self-concept from being affected by their own performance or by observing the motor test performance of other participants, respondents were first asked to complete the self-concept questionnaire, and then did the motor test. All participants signed an Institutional Review Board-approved informed consent and received some chocolate bars as a token of appreciation without knowing this beforehand.

Analysis

One-way independent analyses of variance (ANOVA) were conducted to determine differences in the independent variables of different age groups. Pearson product-moment correlation coefficients were calculated between the variables self-concept of strength and actual strength. To check for significant differences in the age-specific correlations, the individual product-moment correlation coefficients were converted into Fisher’s Z-scores and tested against the critical Z-value 1.96. To test whether the older adolescents (14-15 year olds) differed from
the younger adolescents (12-13 year olds) and whether more physically actives differed from less
physically actives in terms of veridicality, chi-square tests were performed. For all statistical
tests, a significance level of \(p < .05 \) was chosen.

Results

Table 1 shows the means and standard deviations of self-concept of strength, of actual strength
and of physical activity as well as the correlation between the self-concept of strength and the
actual strength, for each of the age groups.

(Please insert Table 1 here)

Preliminary analysis showed that all dependent variables were normally distributed with
skewness values of -.06 to .53 and kurtosis values of -.11 to .30. A one-way ANOVA yielded
statistically significant differences in the means, both for self-concept (\(F_{3,885} = 2.86, p = .036, \eta^2 \)
= .001) and actual strength (\(F_{3,885} = 199.77, p < .0005, \eta^2 = .40 \)) between the different age
groups. While the Scheffé test in the self-concept of strength revealed only a significant
difference between the 12 year and the 15 year olds, the one in the actual strength revealed
differences between all age groups. The four different age groups did not differ in their amount
of weekly physical activity (\(F_{3,885} = 1.25, p = .292, \eta^2 = .00 \)).

(Please insert Table 2 here)

(a) With respect to the correlation, the Fisher’s \(Z \) test indicates that, apart from between
12 and 13 year olds (\(Z = .80 \)) and between 14 and 15 year olds (\(Z = .12 \)), significant differences
in correlation are seen everywhere else (\(Z > 1.96 \)). These results support the hypothesis that the
correlation between the self-concept of strength and the actual strength is higher in older (14 and
15 year old) than younger (12 and 13 year old) adolescents. (b) To test whether the veridicality
diffs between the younger (12-13 year old) and the older (14-15 year old) adolescents, a chi-
square test was performed. There was a significant association between the age groups and the
veridicality ($\chi^2 = 10.59, df = 2, p = .005$, Cramer’s $V = .11$), indicating that underestimators,
realists and overestimators are not distributed equally to both age groups. Interpreting the
standardized residuals (cf. table 2), it can be said that realists are underrepresented in younger,
but overrepresented in older adolescents. However, Cramer’s V points out only a small effect. (c)
Finally, the chi-square test revealed no significant association between adolescents physical
activity and their veridicality ($\chi^2 = 2.56, df = 2, p = .279$, Cramer’s $V = .05$), indicating that
underestimators, realists and overestimators are equally distributed to both groups of those
adolescents with higher levels and those with lower levels of physical activity.

Discussion
The purpose of the study was to examine the relationship between self-concept of strength and
actual strength in groups of male adolescents ages 12 to 15. The main findings of the study were
that (a) the correlation between the self-concept of strength and the actual strength is higher in
older (14 and 15 year old) than younger (12 and 13 year old) adolescents; (b) the veridicality is
higher in older (14 and 15 year old) than younger (12 and 13 year old) adolescents; (c) more
physically active adolescents do not differ in terms of veridicality from less physically active
adolescents.

The fact that the correlation between the self-concept of strength and the actual strength
increases over the age groups means that male adolescents become more able to accurately
assess their own strength with increasing age. These results are largely consistent with other
research findings (Feltz & Brown, 1984; Horn & Weiss, 1991; Raudsepp & Liblik, 2002;
perceived and actual motor competence in 9 and 11 year olds. Horn and Weiss (1991) revealed
low correlations between self-perceptions and physical competence in third and fourth grade pupils’ and higher correlation in fifth to seventh grade pupils. Because Raudsepp and Liblik (2002) find that even 12 to 13 year olds can hardly evaluate their physical competence accurately they speculate that self-evaluations continue to develop until middle adolescent years. The results of the present study seem to confirm this assumption, since the 12 and 13 year olds show just moderate and the 14 and 15 year olds show quite substantial correlations between the self-concept of strength and the actual strength.

As Piaget’s (1929) studies on cognitive development show that children about the age of 12 years reach the operational stage of development and should be able at combining different information into a realistic view of their competence, one might wonder why the more accurate self-perception occurs only in the middle and not in the early adolescence. Cognitive-developmental theorists explain this delayed development either by a lack of cognitive abilities in younger children (metacognitive deficit, Parsons & Ruble, 1977), the effort attribution hypothesis which claims that younger children make unrealistic prognoses about their abilities because they are not yet able to differentiate between effort and ability (Wellman, 1985) or by the wishful-thinking hypothesis (Stipek, 1984) assuming that children have difficulty in differentiating between wishes and expectations (Schneider, 1998).

Advocates of the ecological systems theory (Bronfenbrenner & Morris, 2006) stress the importance of not only the individual’s cognitive development but also his embeddedness in a social system. In this respect, one should not neglect the influence of typical changes in the social context of the growing adolescent affecting his self-concept and veridicality (Harter, 1999, 2005). In the present sample the 12 year olds were still in primary school, whereas the 13, 14 and 15 year olds are in secondary school. Research in educational psychology suggest that the shift
from primary to secondary school and the concomitant changes in educational demands, teacher
attitudes, grading systems, and social networks are associated with broad negative psychosocial
consequences (e.g. Eccles & Wigfield, 2002). Since negative effects of this shift are also found
on physical self-concept (Trautwein, et al., 2008), one can speculate that adolescents shifting
from primary to secondary school need some time to adopt to the new reference group before
comparing their performance (of strength) with the performance of the new classmates. Beside
the cognitive-developmental changes, also socio-environmental shifts could help to explain why
the increase of adolescent’s accuracy in the self-concept of strength appears delayed.
Explanations stressing both aforementioned factors to be interrelated and inseparable from each
other would be compatible with modern theories of development (Lerner, 2006) that consider an
individual as an active, intentional part of an integrated, complex and dynamic person-
environment system (Magnusson & Stattin, 2006).

The present study indicates that veridicality increases when adolescents get older.
However, since it is a cross-sectional study, one should be careful with conclusions concerning
the veridicality change over time. A longitudinal study would be helpful to determine how and
when the veridicality develops in the physical domain. Whereas the functional characteristics of
veridical self-perceptions are widely discussed in younger children and mainly in the academic
domain (e.g. Försterling & Morgenstern, 2002; Harter, 2006; McFarlin, et al., 1984), the age
related development of adolescents’ veridicality in the physical domain is rarely investigated
(Weiss & Amorose, 2008). But especially in the context of preventing traffic accidents a realistic
assessment of one’s own physical abilities seems to be of particular importance (Plumert, 1995;
Schwebel & Plumert, 1999; Plumert, Kearney, & Cremer, 2004; Plumert & Schwebel, 1997).
Further research investigating adolescents’ veridicality in the physical domain could have a significant impact going beyond the context of physical activity.

Of course, dealing with veridicality (and unavoidably also with its operationalization) implies certain problems which can also be found in the present study. Two contentious issues are discussed in the literature: Firstly, it is unclear which criterion is to be used to operationalize overestimation or underestimation: the veridicality variable can be formed by comparing self-perceptions with perceptions of others (Kwan, et al., 2004) or with objective standards or tests (Dunning, et al., 2004). Secondly, there is disagreement about the use of difference scores or residuals: It is sometimes advised not to use difference scores to form the veridicality variable (Ackerman, Beier, & Bowen, 2002; Ackerman & Wolman, 2007). The main criticism is the emergence of ceiling and floor effects. That is, persons with very good performances can hardly overestimate themselves and persons with very bad performances can hardly underestimate themselves. Therefore, Gramzow, Elliot, Asher and McGregor (2003) suggest using residual values to minimize this problem (for a detailed discussion cf. Funder, 1995; Kurt & Paulhus, 2008; Robins & John, 1997). In the present study difference scores with a cut-off at $z = +/-1$ were used. These scores as well as the selected cut-off points are certainly discussable. Future research should compare different methods to operationalize veridicality and test different cut-off points against each other.

Some further limitations concern the all-male sample and the used instruments. Plenty of studies revealed sex differences in children’s and adolescent’s physical self-concept (e.g. Carraro, et al., 2010; Vedul-Kjelsås, et al., 2011). In order to test sex differences in adolescents’ veridicality it would have been advisable to include both male and female adolescents in the sample. Furthermore, the use of a battery of tests (e.g. EUROFIT; Adam, Klissouras, Ravazollo,
Renson, & Tuxworth, 1998) – instead of a single test – would have allowed several dimensions of physical self-concept to be related to the corresponding motor test performance and to determine whether there are any differences in veridicality between the different dimensions of the physical self-concept.

In conclusion, the findings suggest that male adolescents ages 14-15 can perceive their personal strength quite accurately and perceive themselves more veridical than adolescents ages 12-13. Further research should use modern theories of development as theoretical frameworks, employ longitudinal rather than cross-sectional designs, include both male and female adolescents, and use a battery of tests to shed more light on the development of veridicality in the physical domain.
References

Means and standard deviations of the self-concept of strength (SC Strength), actual strength and physical activity, post hoc tests for group differences and correlations (r) between the self-concept of strength and the actual strength for each age group (N = 889).

<table>
<thead>
<tr>
<th>Age group</th>
<th>n</th>
<th>SC Strength</th>
<th>Post Hoc</th>
<th>Actual Strength</th>
<th>Post Hoc</th>
<th>r</th>
<th>Physical Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Age 12</td>
<td>303</td>
<td>2.96</td>
<td><15</td>
<td>3.16</td>
<td><13,14,15</td>
<td>.20*</td>
<td>2.77</td>
</tr>
<tr>
<td>Age 13</td>
<td>195</td>
<td>3.02</td>
<td><15</td>
<td>3.70</td>
<td><14,15;>12</td>
<td>.27*</td>
<td>2.38</td>
</tr>
<tr>
<td>Age 14</td>
<td>282</td>
<td>3.00</td>
<td>>12</td>
<td>4.20</td>
<td><15;>12,13</td>
<td>.54*</td>
<td>2.47</td>
</tr>
<tr>
<td>Age 15</td>
<td>109</td>
<td>3.14</td>
<td>>12</td>
<td>4.63</td>
<td>>12,13,14</td>
<td>.53*</td>
<td>2.49</td>
</tr>
</tbody>
</table>

* p < .05. Actual strength = test score in the shot-put performance test (in meters).

Crosstabulation of Age Group and Veridicality (Underestimators, Realists, Overestimators).

<table>
<thead>
<tr>
<th>Age group</th>
<th>Underestimators</th>
<th>Veridicality</th>
<th>Overestimators</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Age 12 to 13</td>
<td>105</td>
<td>(1.1)</td>
<td>290</td>
<td>(-1.3)</td>
</tr>
<tr>
<td>Age 14 to 15</td>
<td>64</td>
<td>(-1.2)</td>
<td>269</td>
<td>(1.5)</td>
</tr>
</tbody>
</table>

Note. * = Standardized residuals appear in parentheses below group frequencies.