Auneau-Cognacq, Jeremy; Ziegel, Johanna F.; Jensen, Eva B. Vedel (2013). Rotational integral geometry of tensor valuations. Advances in applied mathematics, 50(3), pp. 429-444. Elsevier 10.1016/j.aam.2012.10.006
Text
Rotational integral.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (243kB) |
We derive a new rotational Crofton formula for Minkowski tensors. In special cases, this formula gives (1) the rotational average of Minkowski tensors defined on linear subspaces and (2) the functional defined on linear subspaces with rotational average equal to a Minkowski tensor. Earlier results obtained for intrinsic volumes appear now as special cases.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematical Statistics and Actuarial Science |
UniBE Contributor: |
Ziegel, Johanna F. |
Subjects: |
300 Social sciences, sociology & anthropology > 360 Social problems & social services 500 Science > 510 Mathematics |
ISSN: |
0196-8858 |
Publisher: |
Elsevier |
Language: |
English |
Submitter: |
Lutz Dümbgen |
Date Deposited: |
28 Feb 2014 09:46 |
Last Modified: |
05 Dec 2022 14:28 |
Publisher DOI: |
10.1016/j.aam.2012.10.006 |
BORIS DOI: |
10.7892/boris.41305 |
URI: |
https://boris.unibe.ch/id/eprint/41305 |