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Abstract: In the setting of high-dimensional linear models with Gaussian
noise, we investigate the possibility of confidence statements connected
to model selection. Although there exist numerous procedures for adap-
tive (point) estimation, the construction of adaptive confidence regions is
severely limited (cf. Li, 1989). The present paper sheds new light on this
gap. We develop exact and adaptive confidence regions for the best ap-
proximating model in terms of risk. One of our constructions is based on
a multiscale procedure and a particular coupling argument. Utilizing expo-
nential inequalities for noncentral χ2-distributions, we show that the risk
and quadratic loss of all models within our confidence region are uniformly
bounded by the minimal risk times a factor close to one.
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1. Introduction

When dealing with a high dimensional observation vector, the natural question

arises whether the data generating process can be approximated by a model

of substantially lower dimension. Typically the models under consideration are

characterized by the non-zero components of some parameter vector, and es-

1
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pecially the presence of some approximately sparse parametrization found re-

cently substantial interest in the literature. Sometimes consistent estimation of

the so-called sparsity pattern (the locations of the non-zero components, i.e.

the true model) is one of the central goals. However, consistently estimating

the true model requires the rather idealistic situation that each component is

either equal to zero or has sufficiently large modulus: A tiny perturbation of

the parameter vector may result in the biggest model, so the question about

the true model does not seem to be adequate in general. Instead of focussing

on the true model one could aim for parsimonious ones which still contain the

essential information and are easier to interpret. However there may exist sev-

eral and quite different models which explain the data comparably well. This

leads to the question which models are definitely inferior to others with a given

confidence. The present paper is concerned with confidence regions for those

approximating models which are optimal in terms of risk.

Suppose that we observe a random vector Xn = (Xin)ni=1 with distribution

Nn(θn, σ
2In), where the mean vector θn is unknown while the noise level is

assumed to be known for the moment. Often the signal θn represents coefficients

of an unknown smooth function with respect to a given orthonormal basis of

functions. There is a vast amount of literature on point estimation of θn. For a

given estimator θ̂n = θ̂n(Xn, σ̂n) for θn, let

L(θ̂n, θn) := ‖θ̂n − θn‖2 and R(θ̂n, θn) := EL(θ̂n, θn)

be its quadratic loss and the corresponding risk, respectively. Here ‖ · ‖ denotes

the standard Euclidean norm of vectors. Various adaptivity results are known

for this setting, often in terms of oracle inequalities. A typical result reads as

follows: Let (θ̌
(c)
n )c∈Cn be a family of candidate estimators θ̌

(c)
n = θ̌

(c)
n (Xn) for θn.

Then there exist estimators θ̂n and constants An = 1 + o(1), Bn = O(log(n)γ)

with γ ≥ 0 such that for arbitrary θn in a certain set Θn ⊂ Rn,

R(θ̂n, θn) ≤ An inf
c∈Cn

R(θ̌(c)
n , θn) +Bnσ

2.

Results of this type are provided, for instance, by Polyak and Tsybakov (1991)

and Donoho and Johnstone (1994, 1995, 1998), in the framework of Gaussian

model selection by Birgé and Massart (2001). The latter article copes in partic-
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ular with the fact that a model is not necessarily true. Further results of this

type, partly in different settings, have been provided by Stone (1984), Lepski et

al. (1997), Efromovich (1998) and Cai (1999, 2002), to mention just a few.

By way of contrast, when aiming at adaptive confidence sets one faces severe

limitations. Here is a result of Li (1989), slightly rephrased: Suppose that Θn

contains a closed Euclidean ball B(θon, cn
1/4) around some vector θon ∈ Rn with

radius cn1/4 > 0. Let D̂n = D̂n(Xn) ⊂ Θn be a (1 − α)-confidence set for

θn ∈ Θn. Such a confidence set may be used as a test of the (Bayesian) null

hypothesis that θn is uniformly distributed on the sphere ∂B(θon, cn
1/4) versus

the alternative that θn = θon: We reject this null hypothesis at level α if ‖η −
θon‖ < cn1/4 for all η ∈ D̂n. Since this test cannot have larger power than the

corresponding Neyman-Pearson test,

Pθon

(
sup
η∈D̂n

‖η − θon‖n < cn1/4

)
≤ P

(
S2
n ≤ χ2

n;α(c2n1/2/σ2)
)

= Φ
(

Φ−1(α) + 2−1/2c2/σ2
)

+ o(1),

where S2
n ∼ χ2

n and χ2
n;α(δ2) stands for the α-quantile of the noncentral chi-

squared distribution with n degrees of freedom and noncentrality parameter

δ2. Throughout this paper, asymptotic statements refer to n → ∞. The previ-

ous inequality entails that no reasonable confidence set has a diameter of order

op(n
1/4) uniformly over the parameter space Θn, as long as the latter is suffi-

ciently large. Despite these limitations, there is some literature on confidence

sets in the present or similar settings; see for instance Beran (1996, 2000), Beran

and Dümbgen (1998) and Genovese and Wassermann (2005).

Improving the rate of Op(n
1/4) is only possible via additional constraints on

θn, i.e. considering substantially smaller sets Θn. For instance, Baraud (2004)

developed nonasymptotic confidence regions which perform well on finitely many

linear subspaces. Juditsky and Lambert-Lacroix (2003) develop adaptive L2-

confidence balls for a regression function in fixed design Gaussian regression

via unbiased risk estimates within the scale of Besov spaces if it is known a

priori that the function belongs to a certain Besov ball. Robins and van der

Vaart (2006) construct confidence balls via sample splitting which adapt to some

extent to the unknown “smoothness” of θn. In their context, Θn corresponds to
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a Sobolev smoothness class with given parameter (β, L). However, adaptation

in this context is possible only within a range [β, 2β]. Independently, Cai and

Low (2006) treat the same problem in the special case of the Gaussian white

noise model, obtaining the same kind of adaptivity in the broader scale of Besov

bodies. Other possible constraints on θn are so-called shape constraints; see for

instance Cai and Low (2007), Dümbgen (2003) or Hengartner and Stark (1995).

New input to the related problem in sup-norm loss has come very recently by

Giné and Nickl (2010) who demonstrate in the context of density estimation

that honest confidence bands can be achieved over Hölder balls if a set of only

first Baire category is removed, see also Hoffmann and Nickl (2011).

The motivation of our work is twofold. First of all, the natural question arises

whether one can bridge the gap mentioned above between point estimators and

confidence sets. More precisely, we would like to understand profoundly the

possibility of adaptation for point estimators in terms of some confidence region

for the set of all optimal candidate estimators θ̌
(c)
n . That means, we want to

construct a confidence region K̂n,α = K̂n,α(Xn, σ̂n) ⊂ Cn for the set

Kn(θn) := Arg min
c∈Cn

R(θ̌(c)
n )

=
{
c ∈ Cn : R(θ̌(c)

n , θn) ≤ R(θ̌(c′)
n , θn) for all c′ ∈ Cn

}
such that for arbitrary θn ∈ Rn,

Pθn
(
Kn(θn) ⊂ K̂n,α

)
≥ 1− α (1)

and

max
c∈K̂n,α

R(θ̌(c)
n , θn)

max
c∈K̂n,α

L(θ̌(c)
n , θn)

 = Op(An) min
c∈Cn

R(θ̌(c)
n , θn) +Op(Bn)σ2. (2)

Solving this problem means that statistical inference about differences in the

performance of estimators is possible, although inference about their risk and

loss is severely limited. Our second motivation is that in some settings, selecting

estimators out of a class of competing estimators entails estimating implicitly an

unknown regularity, smoothness class or model for the underlying signal θn, and

the statistician may be interested in drawing conclusions about the model or the
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data generating process itself rather than about the specific signal. Computing

a confidence region for optimal estimators is particularly suitable in situations

in which several good candidate estimators fit the data quite well although they

look different. Here it is important not to overinterpret a single fit. This aspect

of exploring various candidate estimators is not covered by the usual theory of

point estimation. For a good point estimator it is sufficient to pick a candidate

estimator the risk of which is close to minc∈Cn R(θ̌
(c)
n , θn). This is substantially

easier than trying to cover a really optimal candidate estimator. Note also that

our confidence region K̂n,α is even required to cover the whole set Kn(θn) rather

than just some element of it, with probability at least 1−α; see also the remark

at the end of Section 3.

The remainder of this paper is organized as follows. In Section 3 we develop

and analyze an explicit confidence region K̂n,α related to Cn := {0, 1, . . . , n}
with candidate estimators

θ̌(k)
n :=

(
1{i ≤ k}Xin

)n
i=1

.

These correspond to a standard nested sequence of approximating models. For

this purely data-dependent set K̂n,α we shall prove the following main result.

Theorem 1. Let (θn)n∈N be arbitrary. Then

Pθn
(
Kn(θn) 6⊂ K̂n,α

)
≤ α,

and K̂n,α satisfies the oracle inequality

max
θ̌
(k)
n ∈K̂n,α

Rn(θ̌(k)
n , θn) ≤ min

j∈Cn
Rn(θ̌(j)

n , θn)

+
(
4
√

3 + op(1)
)√

σ2 log(n) min
j∈Cn

Rn(θ̌
(j)
n , θn)

+ Op
(
σ2 log n

)
.

Note that this statement implies and is more precise than (2), where Bn =

log n. Since our result is not about the existence only but contains additionally

an explicit construction of the set K̂n,α which is rather involved, the mathe-

matical techniques of our approach are first described in a simple toy model

in Section 2 for the reader’s convenience. Section 4 discusses richer and rather
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general families of candidate estimators. In Section 5 we discuss briefly the case

of unknown σ and explain that the main results remain valid under moderate

regularity assumptions on an estimator σ̂n. For a more detailed treatment of

this case we refer to the technical report of Rohde and Dümbgen (2009). All

proofs and auxiliary results are deferred to Section 6.

2. A toy problem

Suppose we observe a stochastic process Y = (Y (t))t∈[0,1], where

Y (t) = F (t) +W (t), t ∈ [0, 1],

with an unknown fixed continuous function F on [0, 1] and a Brownian motion

W = (W (t))t∈[0,1]. We are interested in the set

S(F ) := Arg min
t∈[0,1]

F (t).

Precisely, we want to construct a (1−α)-confidence region Ŝα = Ŝα(Y ) ⊂ [0, 1]

for S(F ) in the sense that

P
(
S(F ) ⊂ Ŝα

)
≥ 1− α, (3)

regardless of F . To construct such a confidence set we regard Y (s) − Y (t) for

arbitrary different s, t ∈ [0, 1] as a test statistic for the null hypothesis that

s ∈ S(F ), i.e. large values of Y (s)− Y (t) give evidence for s 6∈ S(F ).

A first and naive proposal is the set

Ŝnaive
α :=

{
s ∈ [0, 1] : Y (s) ≤ min

[0,1]
Y + κnaive

α

}
with κnaive

α denoting the (1 − α)-quantile of max[0,1]W −min[0,1]W . Here is a

refined method based on results of Dümbgen and Spokoiny (2001): Let κα be

the (1− α)-quantile of

sup
s,t∈[0,1] : s6=t

( |W (s)−W (t)|√
|s− t|

− Γ(|s− t|)
)
, (4)

where

Γ(u) :=
√

2 log(e/u) for 0 < u ≤ 1.
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Then constraint (3) is satisfied by the confidence region Ŝα which consists of all

s ∈ [0, 1] such that

Y (s) ≤ Y (t) +
√
|s− t|

(
Γ(|s− t|) + κα

)
for all t ∈ [0, 1].

To illustrate the power of this method, consider for instance a sequence of

functions F = Fn = cnFo with positive constants cn →∞ and a fixed continuous

function Fo with unique minimizer so. Suppose that

lim
t→so

Fo(t)− Fo(so)
|t− so|γ

= 1

for some γ > 1/2. Then the naive confidence region satisfies only

max
t∈Ŝnaive

α

|t− so| = Op
(
c−1/γ
n

)
, (5)

whereas

max
t∈Ŝα

|t− so| = Op

(
log(cn)1/(2γ−1)c−1/(γ−1/2)

n

)
. (6)

3. Confidence regions for nested approximating models

In this section we develop the confidence regions K̂n,α in detail. As in the intro-

duction let Xn = θn+εn denote the n-dimensional observation vector with θn ∈
Rn and εn ∼ Nn(0, σ2In). For any candidate estimator θ̌

(k)
n =

(
1{i ≤ k}Xin

)n
i=1

the loss is given by

Ln(k) := L(θ̌(k)
n , θn) =

n∑
i=k+1

θ2
in +

k∑
i=1

(Xin − θin)2

with corresponding risk

Rn(k) := R(θ̌(k)
n , θn) =

n∑
i=k+1

θ2
in + kσ2.

Model selection usually aims at estimating a candidate estimator which is opti-

mal in terms of risk. Since the risk depends on the unknown signal and therefore

is not available, the selection procedure minimizes an unbiased risk estimator

instead. In the sequel, the bias-corrected risk estimator for the candidate θ̌
(k)
n is

defined as

R̂n(k) :=

n∑
i=k+1

(X2
in − σ2) + kσ2.
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Important for our analysis is the behavior of the centered and rescaled difference

process Dn =
(
Dn(j, k)

)
0≤j<k≤n with

Dn(j, k) :=
R̂n(j)− R̂n(k)−Rn(j) +Rn(k)

σ2
√

4‖θn/σ‖2 + 2n

=

∑k
i=j+1(X2

in − σ2 − θ2
in)

σ2
√

4‖θn/σ‖2 + 2n

=
1√

4‖θn/σ‖2 + 2n

k∑
i=j+1

(
2(θin/σ)(εin/σ) + (εin/σ)2 − 1

)
.

Hence the process Dn consists of partial sums of the independent and centered,

but in general not identically distributed random variables 2(θin/σ)(εin/σ) +

(εin/σ)2 − 1. The standard deviation of Dn(j, k) is given by

τn(j, k) :=
1√

4‖θn/σ‖2 + 2n

( k∑
i=j+1

(
4θ2
in/σ

2 + 2
))1/2

.

Note that τn(0, n) = 1 by construction. To imitate the more powerful confidence

region of Section 2 based on the multiscale approach, one needs a refined analysis

of the increment process Dn. Since this process does not have subgaussian tails,

the standardization is more involved than the correction in (4).

Theorem 2. Define Γn(j, k) := Γ(τn(j, k)2) for 0 ≤ j < k ≤ n. Then

sup
0≤j<k≤n

|Dn(j, k)|
τn(j, k)

≤
√

32 log n+Op(1),

and for any fixed c > 2,

dn := max
0≤j<k≤n

(
|Dn(j, k)|
τn(j, k)

− Γn(j, k) − c · Γn(j, k)2√
4‖θn/σ‖2 + 2n τn(j, k)

)+

is bounded in probability. In the special case of θn having components ±σ, the

random variable dn converges in distribution to the random variable in (4).

The limiting distribution is closely related to Lévy’s modulus of continuity

of Brownian motion, and this indicates that the additive correction term in the

definition of dn cannot be chosen essentially smaller. It will play a crucial role

for the efficiency of the confidence region.

As shown by Rohde and Dümbgen (2009), convergence in distribution of

dn holds under much weaker assumptions on the signal-to-noise vector θn/σ.
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However, to utilize this fact for inference on the set Kn(θn), we are facing the

problem that the auxiliary function τn(·, ·) depends on the unknown signal-to-

noise vector θn/σ. In fact, knowing τn would imply knowledge of Kn(θn) already.

One could try to estimate the variances τn(j, k)2, j < k, by

τ̂n(j, k)2 :=

{ n∑
i=1

(
4(X2

in/σ
2 − 1) + 2

)}−1 k∑
i=j+1

(
4(X2

in/σ
2 − 1) + 2

)
.

However, using such an estimator does not seem to work since

sup
0≤j<k≤n

∣∣∣ τ̂n(j, k)

τn(j, k)
− 1
∣∣∣ 6−→p 0

as n goes to infinity. This can be verified by noting that the (rescaled) numerator

of
(
τ̂n(j, k)2

)
0≤j<k≤n is essentially, up to centering, of the same structure as the

rescaled difference process Dn itself. These difficulties may be overcome with a

trick described next.

The least favourable case of constant risk

The problem of estimating the set Arg mink Rn(k) can be cast into our toy

model where Y (t), F (t) and W (t) correspond to R̂n(k), Rn(k) and the difference

R̂n(k)−Rn(k), respectively. One may expect that the more distinctive the global

minima are, the easier it is to identify their location. Hence the case of constant

risks appears to be least favourable, corresponding to a signal

θ∗n :=
(
±σ
)n
i=1

,

In this situation, each candidate estimator θ̌
(k)
n has the same risk of nσ2.

A related consideration leading to an explicit procedure is as follows: For

fixed indices 0 ≤ j < k ≤ n,

Rn(j)−Rn(k) =

k∑
i=j+1

θ2
in − (k − j)σ2,

and the test statistic

Tjkn :=

k∑
i=j+1

X2
in/σ

2 = 2(k − j)−
(
R̂n(k)− R̂n(j)

)
/σ2
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has a noncentral χ2 distribution

χ2
k−j

( k∑
i=j+1

θ2
in/σ

2

)
= χ2

k−j

(
k − j +

(
Rn(j)−Rn(k)

)
/σ2
)
.

Thus large or small values of Tjkn give evidence for Rn(j) being larger or smaller,

respectively, than Rn(k). Precisely,

Lθn(Tjkn)

{
≤st. Lθ∗n(Tjkn) whenever j ∈ Kn(θn),

≥st. Lθ∗n(Tjkn) whenever k ∈ Kn(θn).

Via a suitable construction involving Poisson mixtures of central χ2-distributed

random variables, this pointwise stochastic ordering can be extended to a cou-

pling for the whole process
(
Tjkn

)
0≤j<k≤n:

Proposition 3 (Coupling). For any θn ∈ Rn there exists a probability space

with random variables
(
T̃jkn

)
0≤j<k≤n and

(
T̃ ∗jkn

)
0≤j<k≤n such that

L
((
T̃jkn

)
0≤j<k≤n

)
= Lθn

((
Tjkn

)
0≤j<k≤n

)
,

L
((
T̃ ∗jkn

)
0≤j<k≤n

)
= Lθ∗n

((
Tjkn

)
0≤j<k≤n

)
,

and for arbitrary indices 0 ≤ j < k ≤ n,

T̃jkn

{
≤ T̃ ∗jkn whenever j ∈ Kn(θn),

≥ T̃ ∗jkn whenever k ∈ Kn(θn).

By means of Proposition 3 we can define a confidence set for Kn(θn), based

on the least favourable case θn = θ∗n. Let κn,α denote the (1 − α)-quantile of

Lθ∗n(dn), where for simplicity c := 3 in the definition of dn. Note also that

τn(j, k)2 = (k − j)/n in case of θn = θ∗n. Motivated by Theorem 2, we define

K̂n,α :=
{
j : R̂n(j) ≤ R̂n(k) + σ2cjkn for all k 6= j

}
(7)

=
{
j : Tijn ≥ 2(j − i)− cijn for all i < j,

Tjkn ≤ 2(k − j) + cjkn for all k > j
}

with

cjkn = cjkn,α :=
√

6|k − j|
(

Γ
( |k − j|

n

)
+ κn,α

)
+ 3Γ

( |k − j|
n

)2

.

With this construction we obtain an extended version of Theorem 1 from the

introduction:
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Theorem 4. Let (θn)n∈N be arbitrary. With K̂n,α as defined above,

Pθn
(
Kn(θn) 6⊂ K̂n,α

)
≤ α.

The critical values κn,α converge to κα introduced in Section 2, and the confi-

dence regions K̂n,α satisfy the oracle inequalities

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn(j) +
(
4
√

3 + op(1)
)√

σ2 log(n) min
j∈Cn

Rn(j) (8)

+ Op
(
σ2 log n

)
and

max
k∈K̂n,α

√
Ln(k) ≤ min

j∈Cn

√
Ln(j) +Op

(√
σ2 log n

)
. (9)

The upper bounds in this theorem are of the form

√
ρn

(
1 +Op

(√
σ2 log(n)/ρn

))
with ρn denoting minimal risk or minimal loss. Thus the maximal risk (loss)

over K̂n,α exceeds the minimal risk (loss) only by a factor close to one, provided

that the minimal risk (loss) is substantially larger than σ2 log n.

Remark (Dependence on α). The proof reveals a refined version of the

bounds in Theorem 4 in case of signals θn such that(
min
j∈Cn

Rn(j)
)−1

= O
(
log(n)−3

)
.

Let 0 < α(n)→ 0 such that κ6
n,α(n) = O

(
minj∈Cn Rn(j)

)
. Then

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn(j)

+
(

4
√

3
√

log n+ 2
√

6κn,α +Op(1)
)√

σ2 min
j∈Cn

Rn(j)

uniformly in α ≥ α(n).

Remark (Point estimation versus confidence regions). As stated in

the introduction, the construction of a confidence region for Kn(θn) is more
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ambitious than the construction of an adaptive point estimator for θn. To see

this, suppose that the true signal vector θn satisfies

|θin|


>> σ for i ≤ jn
∈ [σ − cn, σ + cn] for jn < i ≤ kn
<< σ for i > kn

with indices 1 ≤ jn < kn ≤ n such that kn − jn → ∞ and arbitrarily small

constants cn > 0 tending to zero. Constructing an almost optimal point esti-

mator (based on the given candidates) requires to pick a candidate estimator

θ̌
(k)
n with jn ≤ k ≤ kn. However, depending on the precise values of |θin| for

jn < i ≤ kn, the set Kn(θn) may be any given nonvoid subset of {jn, . . . , kn},
see also the proof of Proposition 3 and Figure 1. Hence it may happen with

asymptotically positive probability that the point estimator uses a candidate

θ̌
(k)
n with k 6∈ Kn(θn). By way of contrast, if cn is small, the confidence region

K̂n,α will contain {jn, . . . , kn} with probability close to or higher than 1−α and

thus indicate that there are many candidate estimators of comparable quality.

4. Confidence sets in case of larger families of candidates

The previous result relies strongly on the assumption of nested models. It is

possible to obtain confidence sets for the optimal approximating models in a

more general setting, albeit the resulting oracle property is not as strong as in

the nested case. In particular, we can no longer rely on a coupling result but

need a different construction.

Let Cn be a family of index sets C ⊂ {1, 2, . . . , n} with candidate estimators

θ̌(C) :=
(
1{i ∈ C}Xin

)n
i=1

and corresponding risks

Rn(C) := R(θ̌(C), θn) =
∑
i6∈C

θ2
in + |C|σ2,

where |S| denotes the cardinality of a set S. For two index sets C and D,

σ−2
(
Rn(D)−Rn(C)

)
= δ2

n(C \D)− δ2
n(D \ C) + |D| − |C|
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with the auxiliary quantities

δ2
n(J) :=

∑
i∈J

θ2
in/σ

2, J ⊂ {1, 2, . . . , n}.

Hence we aim at simultaneous (1−α)-confidence intervals for these noncentrality

parameters δn(J), where J ∈Mn := {D\C : C,D ∈ Cn}. To this end we utilize

the fact that

Tn(J) :=
1

σ2

∑
i∈J

X2
in

has a χ2
|J|(δ

2
n(J))-distribution. We denote the distribution function of χ2

k(δ2) by

Fk(· | δ2). Now let Mn := |Mn| − 1 ≤ |Cn|(|Cn| − 1), the number of nonvoid

index sets J ∈Mn. Then with probability at least 1− α,

α/(2Mn) ≤ F|J|
(
Tn(J)

∣∣ δ2
n(J)

)
≤ 1− α/(2Mn) for ∅ 6= J ∈Mn. (10)

Since F|J|(Tn(J) | δ2) is strictly decreasing in δ2 with limit 0 as δ2 → ∞, (10)

entails the simultaneous (1−α)-confidence intervals
[
δ̂2
n,α,l(J), δ̂2

n,α,u(J)
]

for all

parameters δ2
n(J) as follows: We set δ̂2

n,α,l(∅) := δ̂2
n,α,u(∅) := 0, while for nonvoid

J ,

δ̂2
n,α,l(J) := min

{
δ2 ≥ 0 : F|J|

(
Tn(J)

∣∣ δ2
)
≤ 1− α/(2Mn)

}
, (11)

δ̂2
n,α,u(J) := max

{
δ2 ≥ 0 : F|J|

(
Tn(J)

∣∣ δ2
)
≥ α/(2Mn)

}
. (12)

By means of these bounds, we may claim with confidence 1 − α that for arbi-

trary C,D ∈ Cn the normalized difference (n/σ2)
(
Rn(D) − Rn(C)

)
is at most

δ̂2
n,α,u(C \ D) − δ̂2

n,α,l(D \ C) + |D| − |C|. Thus a (1 − α)-confidence set for

Kn(θn) = Arg minC∈Cn Rn(C) is given by

K̂n,α :=
{
C ∈ Cn : δ̂2

n,α,u(C \D)− δ̂2
n,α,l(D\C)+ |D|−|C| ≥ 0 for all D ∈ Cn

}
.

These confidence sets K̂n,α satisfy the following oracle inequalities:

Theorem 5. Let (θn)n∈N be arbitrary, and suppose that log |Cn| = o(n). Then

max
C∈K̂n,α

√
Rn(C) ≤ min

D∈Cn

√
Rn(D) + Op

(√
σ2 log |Cn|

)
and

max
C∈K̂n,α

√
Ln(C) ≤ min

D∈Cn

√
Ln(D) + Op

(√
σ2 log |Cn|

)
.
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The upper bounds in this theorem are of the form

√
ρn

(
1 +Op

(√
σ2 log(|Cn|)/ρn

))
with ρn denoting minimal risk or minimal loss. This is analogous to the setting

of nested models, where log n is replaced with log |Cn|. Again, the maximal risk

(loss) over K̂n,α exceeds the minimal risk (loss) only by a factor close to one,

provided that the minimal risk (loss) is substantially larger than σ2 log |Cn|.

Remark (Suboptimality in case of nested models). In case of nested

models, the general construction in this section is suboptimal. For if one follows

the proof carefully and uses σ2 log |Cn| = 2σ2 log n+O(1) in this special setting,

one obtains the refined inequality

max
k∈K̂n,α

Rn(k) ≤ min
j∈Cn

Rn(j) +
(
4
√

8 + op(1)
)√

σ2 log(n) min
j∈Cn

Rn(j)

+ Op
(
σ2 log n

)
,

so the multiplier of the term
√

minj Rn(j) is larger than the one in Theorem 4.

The intrinsic reason is that the general procedure does not assume any structure

of the family of candidate estimators. Hence advanced multiscale theory is not

applicable.

5. The impact of estimating the noise level

We discuss briefly the extension of our results to the case of unknown noise

variance. It is assumed subsequently that a variance estimator σ̂2
n satisfying the

subsequent condition (A) is available.

(A) σ̂2
n and Xn are stochastically independent with

mσ̂2
n

σ2
∼ χ2

m,

where m = mn ≥ 1 satisfies

β2
n :=

2n

mn
= O(1).
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Example. Suppose that we observe Y = Mη + δ with given design matrix

M ∈ R(n+m)×n of rank n, unknown parameter vector η ∈ Rn and unobserved

error vector δ ∼ Nn+m(0, σ2In+m). Then the previous assumptions are satisfied

by Xn := (M>M)1/2η̂ with the least squares estimator η̂ := (M>M)−1M>Y

and σ̂2
n := ‖Y −Mη̂‖2/m, where θn := (M>M)1/2η.

Assumption (A) implies the following weaker condition:

(A’) σ̂2
n and Xn are stochastically independent such that for constants 0 <

βn = O(1),
√
n(σ̂2

n/σ
2 − 1)/βn →L N (0, 1).

This condition covers, for instance, estimators of σ used in connection with

wavelets. There σ is estimated by the median of some very high frequency

wavelet coefficients divided by the normal quantile Φ−1(3/4), whereas the signal

θn corresponds only to the other wavelet coefficients.

Nested models. In the setting of Section 3, the modified bias-corrected risk

estimator for the candidate θ̌
(k)
n is redefined as

R̂n(k) :=

n∑
i=k+1

(X2
in − σ̂2

n) + kσ̂2
n,

and we consider Tjkn :=
∑k
i=j+1X

2
in/σ̂

2
n. Now

D̂n(j, k) :=
R̂n(j)− R̂n(k)−Rn(j) +Rn(k)

σ̂2
n

√
4‖θn/σ‖2 + 2n

=
σ2

σ̂2
n

(
Dn(j, k) + Vn(j, k)

)
,

where Dn(j, k) is defined as in Section 3, while

Vn(j, k) :=
2(k − j)(1− σ̂2/σ2)√

4‖θn/σ‖2 + 2n
.

Since σ̂2
n/σ

2 = 1 + Op(n
−1/2), the processes D̂n and Dn behave similarly on

small scales (i.e. for arguments (j, k) with |k − j|/n being small). Nevertheless

the contribution of Vn is non-negligible asymptotically, unless βn → 0.

The confidence region K̂n,α is defined as before in (7) with the new versions

of R̂n and Tjkn, σ2 replaced with σ̂2
n, and the quantile κn,α in the definition of
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cjkn has to be redefined to be the (1−α)-quantile of Lθ∗n(d̂n). Here d̂n is defined

as dn with D̂n in place of Dn. Note that D̂n involves the process Dn and the

ratio S2
n := (σ̂n/σ)2. The latter random variable is known to be independent of

Xn and to have distribution χ2
m under (A). In case of the weaker assumption

(A’), one may replace S2
n with a random variable with distribution χ2

m, where

m := d2n/β2
ne.

With these modifications, Theorem 4 remains true under (A) or (A’). The

only modification is that κn,α 6→ κα in general, but still κn,α = O(1).

General candidate families. In the setting of Section 4, one could replace

Tn(J) with
∑
iinJ X

2
in/σ̂

2
n which has a non-central F distribution under (A).

However, this approach might be very conservative because it ignores the fact

that all test statistics involve one and the same denominator σ̂2
n. Here is an

alternative proposal: Let α′ := 1 − (1 − α)1/2. It follows from Assumption (A)

that with probability 1− α′,

τn,α,l :=
m

χm;1−α′/2
≤ σ̂2

n

σ2
≤ τn,α,u :=

m

χm;α′/2
.

Under Assumption (A’) this is true with asymptotic probability 1−α′. Now we

obtain simultaneous (1−α)-confidence bounds δ̂2
n,α,l(J) and δ̂2

n,α,u(J) as in (11)

and (12) by replacing α with α′ and Tn(J) with

τn,α,l
σ̂2
n

∑
i∈J

X2
in and

τn,α,u
σ̂2
n

∑
i∈J

X2
in,

respectively. The conclusions of Theorem 5 continue to hold, essentially because

τn,α,l, τn,α,u = 1 +O(n−1/2) and (σ̂n/σ)2 = 1 +Op(n
−1/2).

6. Proofs

6.1. Proof of (5) and (6)

Note first that min[0,1] Y lies between Fn(so) + min[0,1]W and Fn(so) +W (so).

Hence for any α′ ∈ (0, 1),

Ŝnaive
α ⊂

{
s ∈ [0, 1] : Fn(s) +W (s) ≤ Fn(so) +W (so) + κnaive

α

}
⊂

{
s ∈ [0, 1] : Fn(s)− Fn(so) ≤ κnaive

α′ + κnaive
α

}
=

{
s ∈ [0, 1] : Fo(s)− Fo(so) ≤ c−1

n

(
κnaive
α′ + κnaive

α

)}
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and

Ŝnaive
α ⊃

{
s ∈ [0, 1] : Fn(s) +W (s) ≤ Fn(so) + min

[0,1]
W + κnaive

α

}
⊃

{
s ∈ [0, 1] : Fn(s)− Fn(so) ≤ κnaive

α − κnaive
α′

}
=

{
s ∈ [0, 1] : Fo(s)− Fo(so) ≤ c−1

n

(
κnaive
α − κnaive

α′
)}

with probability 1−α′. Since κnaive
α′ < κnaive

α if α < α′ < 1, these considerations,

combined with the expansion of Fo near so, show that the maximum of |s− so|
over all s ∈ Ŝnaive

α is precisely of order Op(c
−1/γ
n ).

On the other hand, the confidence region Ŝα is contained in the set of all

s ∈ [0, 1] such that

Fn(s) +W (s) ≤ Fn(so) +W (so) +
√
|s− so|

(√
2 log(e/|s− so|) + κα

)
,

and this entails that

Fo(s)− Fo(so) ≤ c−1
n

√
|s− so|

(√
2 log(e/|s− so|) + κα +Op(1)

)
with Op(1) not depending on s. Now the expansion of Fo near so entails claim

(6). 2

6.2. Exponential inequalities

An essential ingredient for our main results is an exponential inequality for

quadratic functions of a Gaussian random vector. It extends inequalities of

Dahlhaus and Polonik (2006) for quadratic forms and is of independent interest.

Proposition 6. Let Z1, . . . , Zn be independent, standard Gaussian random

variables. Furthermore, let λ1, . . . , λn and δ1, . . . , δn be real constants, and de-

fine γ2 := Var
(∑n

i=1 λi(Zi+δi)
2
)

=
∑n
i=1 λ

2
i (2+4δ2

i ). Then for arbitrary η ≥ 0

and λmax := max(λ1, . . . , λn, 0),

P
( n∑
i=1

λi
(
(Zi + δi)

2 − (1 + δ2
i )
)
≥ ηγ

)
≤ exp

(
− η2

2 + 4ηλmax/γ

)
≤ e1/4 exp

(
−η/
√

8
)
.

Note that replacing λi in Proposition 6 with −λi yields twosided exponential

inequalities. By means of Proposition 6 and elementary calculations one obtains

exponential and related inequalities for noncentral χ2 distributions:
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Corollary 7. For an integer n > 0 and a constant δ ≥ 0 let Fn(· | δ2) be the

distribution function of χ2
n(δ2). Then for arbitrary r ≥ 0,

Fn(n+ δ2 + r | δ2) ≥ 1− exp
(
− r2

4n+ 8δ2 + 4r

)
, (13)

Fn(n+ δ2 − r | δ2) ≤ exp
(
− r2

4n+ 8δ2

)
. (14)

In particular, for any u ∈ (0, 1/2),

F−1
n (1− u | δ2) ≤ n+ δ2 +

√
(4n+ 8δ2) log(u−1) + 4 log(u−1), (15)

F−1
n (u | δ2) ≥ n+ δ2 −

√
(4n+ 8δ2) log(u−1). (16)

Moreover, for any number δ̂ ≥ 0, the inequalities u ≤ Fn(n + δ̂2 | δ2) ≤ 1 − u
entail that

δ2 − δ̂2

≤ +

√
(4n+ 8δ̂2) log(u−1) + 8 log(u−1),

≥ −
√

(4n+ 8δ̂2) log(u−1).
(17)

Conclusion (17) follows from (13) and (14), applied to r = δ̂2 − δ2 and

r = δ2 − δ̂2, respectively.

Proof of Proposition 6. Standard calculations show that for 0 ≤ t <

(2λmax)−1,

E exp
(
t

n∑
i=1

λi(Zi + δi)
2
)

= exp
(1

2

n∑
i=1

{
δ2
i

2tλi
1− 2tλi

− log(1− 2tλi)
})
.

Then for any such t,

P
( n∑
i=1

λi
(
(Zi + δi)

2 − (1 + δ2
i )
)
≥ ηγ

)
≤ exp

(
−tηγ − t

n∑
i=1

λi(1 + δ2
i )
)
· E exp

(
t

n∑
i=1

λi(Zi + δi)
2
)

= exp
(
−tηγ +

1

2

n∑
i=1

{
δ2
i

4t2λ2
i

1− 2tλi
− log(1− 2tλi)− 2tλi

})
. (18)

Elementary considerations reveal that

− log(1− x)− x ≤

{
x2/2 if x ≤ 0,

x2/(2(1− x)) if x ≥ 0.
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Thus (18) is not greater than

exp
(
− tηγ +

1

2

n∑
i=1

{
δ2
i

4t2λ2
i

1− 2tλi
+

2t2λ2
i

1− 2tmax(λi, 0)

})
≤ exp

(
−tηγ +

γ2t2/2

1− 2tλmax

)
.

Setting

t :=
η

γ + 2ηλmax
∈
[
0, (2λmax)−1

)
,

the preceding bound becomes

P
( n∑
i=1

λi
(
(Zi + δi)

2 − (1 + δ2
i )
)
≥ ηγ

)
≤ exp

(
− η2

2 + 4ηλmax/γ

)
.

Finally, since γ ≥ λmax

√
2, the second asserted inequality follows from

η2

2 + 4ηλmax/γ
≥ η2

2 +
√

8η
=

η√
8
− η√

8 + 4η
≥ η√

8
− 1

4
. 2

6.3. Proofs of the main results

Throughout this section we assume without loss of generality that σ = 1. Further

let Sn := {0, 1, . . . , n} and Tn :=
{

(j, k) : 0 ≤ j < k ≤ n
}

.

Proof of Theorem 2. Step I. Let the metric ρn on Tn be defined by

ρn
(
(j, k), (j′, k′)

)
:=

√
τn(j, j′)2 + τn(k, k′)2.

Later on we need bounds for the capacity numbers

D(u, T ′, ρn) := sup
{
|To| : To ⊂ T ′, ρn(s, t) > u for different s, t ∈ To

}
for certain u > 0 and T ′ ⊂ T . Indeed the proof of Theorem 2.1 of Dümbgen

and Spokoiny (2001) entails that

D
(
uδ,
{
t ∈ Tn : τn(t) ≤ δ

}
, ρn

)
≤ 12u−4δ−2 for all u, δ ∈ (0, 1]. (19)

Note that for fixed (j, k) ∈ Tn, ±Dn(j, k) may be written as

n∑
i=1

λi
(
(εin + θin)2 − (1 + θ2

in)
)
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with

λi = λin(j, k) := ±
(
4‖θn‖2 + 2n

)−1/2
I(j,k](i),

so |λi| ≤
(
4‖θn‖2 + 2n

)−1/2
. Hence it follows from Proposition 6 that

P
(
|Dn(t)| ≥ τn(t)η

)
≤ 2 exp

(
− η2

2 + 4η
(
4‖θn‖2 + 2n

)1/2
/τn(t)

)

for arbitrary t ∈ Tn and η ≥ 0. One may rewrite this exponential inequality as

P
(
|Dn(t)| ≥ τn(t)Gn

(
η, τn(t)

))
≤ 2 exp(−η) (20)

for arbitrary t ∈ Tn and η ≥ 0, where

Gn
(
η, δ
)

:=
√

2η +
4η(

4‖θn‖2 + 2n
)1/2

δ
.

The second exponential inequality in Proposition 6 entails that

P
(∣∣Dn(t)

∣∣ ≥ τn(t)η
)
≤ 2e1/4 exp

(
−η/
√

8
)

(21)

and

P
(∣∣Dn(s)−Dn(t)

∣∣ ≥ √8ρn(s, t)η
)
≤ 2e1/4 exp(−η) (22)

for arbitrary s, t ∈ Tn and η ≥ 0.

Since |Tn| ≤ n2/2, one can easily deduce from (21) that the maximum of

|Dn|/τn over Tn exceeds
√

32 log n+η with probability at most e1/4 exp
(
−η/
√

8
)
.

Thus

max
t∈Tn

|Dn(t)|
τn(t)

≤
√

32 log n+Op(1).

Utilizing (19) and (22), it follows from Theorem 7 and the subsequent Re-

mark 3 in Dümbgen and Walther (2007) that

lim
δ↓0

sup
n

P
(

sup
s,t∈Tn:ρn(s,t)≤δ

|Dn(s)−Dn(t)|
ρn(s, t) log

(
e/ρn(s, t)

) > Q

)
= 0 (23)

for a suitable constantQ > 0. SinceDn(j, k) = Dn(0, k)−Dn(0, j) and τn(j, k) =

ρn
(
(0, j), (0, k)

)
, this entails stochastic equicontinuity of Dn with respect to ρn.

For 0 ≤ δ < δ′ ≤ 1 define

Sn(δ, δ′) := sup
t∈Tn:δ<τn(t)≤δ′

(
|Dn(t)|
τn(t)

− Γn(t)− c · Γn(t)2

τn(t)
(
4‖θn‖2 + 2n

)1/2
)+
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with a constant c > 0 to be specified later. Recall that Γn(t) equals Γ(τn(t)2) =(
2 log

(
e/τn(t)2

)1/2
. Starting from (19), (20) and (23), Theorem 8 of Dümbgen

and Walther (2007) and its subsequent remark imply that

Sn(0, δ) →p 0 as n→∞ and δ ↘ 0, (24)

provided that c > 2. On the other hand, (19), (21) and (23) entail that

Sn(δ, 1) = Op(1) for any fixed δ > 0. (25)

In particular, dn = Sn(0, 1) = Op(1).

Step II. In case of θn = (±σ)ni=1, the process (Dn(j, k))0≤j<k≤n has the same

distribution as
(
Wn(k/n)−Wn(j/n)

)
0≤j<k≤n where

Wn(t) :=
1√
6n

bntc∑
i=1

(εin + ε2in − 1)

for t ∈ [0, 1] with
∑0
i=1 · · · := 0. Morover, τn(j, k)2 = |k − j|/n and dn has the

same distribution as

max
0≤j<k≤n

(∣∣Wn(k/n)−Wn(j/n)
∣∣

τn(j, k)
− Γ(τn(j, k)2)− c · Γ(τn(j, k)2)√

6n τn(j, k)

)+

.

According to Donsker’s theorem, the process (Wn(t))t∈[0,1] converges in distri-

bution to Brownian motion W on [0, 1]. Consequently, if we define

Σ(δ, δ′) := sup
s,t∈[0,1] : δ<|s−t|≤δ′

(∣∣W (s)−W (t)
∣∣√

|s− t|
− Γn(|s− t|)

)+

for 0 ≤ δ < δ′ ≤ 1, then

Sn(δ, 1) →L Σ(δ, 1)

for any fixed δ ∈ (0, 1]. Moreover, we have seen in (24) that Sn(0, δ) →p 0 as

n → ∞ and δ ↘ 0. With similar arguments one can show that Σ(0, δ) →p 0

as δ ↘ 0. These findings imply that dn = Sn(0, 1) converges in distribution to

Σ(0, 1) as n→∞. 2

Proof of Proposition 3. The main ingredient is a well-known representa-

tion of noncentral χ2 distributions as Poisson mixtures of central χ2 distribu-

tions. Precisely,

χ2
k(δ2) =

∞∑
j=0

e−δ
2/2 (δ2/2)j

j!
· χ2

k+2j ,



A. Rohde and L. Dümbgen/Inference for the Optimal Approximating Model 22

as can be proved via Laplace transforms. Now we define ‘time points’

tkn :=

k∑
i=1

θ2
in and t∗kn := tj(n)n + k − j(n)

with j(n) any fixed index in Kn(θn). This construction entails that t∗kn ≥ tkn

with equality if, and only if, k ∈ Kn(θn).

Figure 1 illustrates this construction. It shows the time points tkn (crosses)

and t∗kn (dots and line) versus k for a hypothetical signal θn ∈ R40. Note that

in this example, Kn(θn) is given by {10, 11, 20, 21}.
Let Π, G1, G2, . . . , Gn and Z1, Z2, Z3, . . . be stochastically independent

random variables, where Π = (Π(t))t≥0 is a standard Poisson process, and Gi

and Zj are standard Gaussian random variables. Then one can easily verify that

T̃jkn :=

k∑
i=j+1

G2
i +

2Π(tkn/2)∑
s=2Π(tjn/2)+1

Z2
s ,

T̃ ∗jkn :=

k∑
i=j+1

G2
i +

2Π(t∗kn/2)∑
s=2Π(t∗jn/2)+1

Z2
s

define random variables (T̃jkn)0≤j<k≤n and (T̃ ∗jkn)0≤j<k≤n with the desired

properties. 2

In the proofs of Theorems 4 and 5 we utilize repeatedly two elementary

inequalities:

Lemma 8. Let a, b, c be nonnegative constants.

(i) Suppose that 0 ≤ x ≤ y ≤ x+
√
b(x+ y) + c. Then

y ≤ x+
√

2bx+ b+
√
bc+ c ≤ x+

√
2bx+ (3/2)(b+ c).

(ii) For x ≥ 0 define h(x) := x+
√
a+ bx+ c. Then

h(h(x)) ≤ x+ 2
√
a+ bx+ b/2 +

√
bc+ 2c.

Proof of Theorem 4. The definition of K̂n,α and Proposition 3 together

entail that K̂n,α contains Kn(θn) with probability at least 1− α. The assertion

about κn,α is an immediate consequence of Theorem 2.

Now we verify the oracle inequalities (8) and (9). Let γn :=
(
4‖θn‖2+2n

)1/2×
τn. With γ∗n we denote the function γn on Tn corresponding to θ∗n. Throughout
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Fig 1. Construction of the coupling.

this proof we use the shorthand notation Mn(`, k) := Mn(`)−Mn(k) for Mn =

R̂n, Rn, L̂n, Ln and arbitrary indices `, k ∈ Cn. Furthermore, γ∗n(`, k) := γ∗n(k, `)

if ` > k, and γ∗n(k, k) := 0.

In the subsequent arguments, kn := min(Kn(θn)), while j stands for a generic

index in K̂n,α. The definition of the set K̂n,α entails that

R̂n(j, kn) ≤ γ∗n(j, kn)
(

Γ
( |j − kn|

n

)
+ κn,α

)
+O(log n). (26)

Combining this with the equation Rn(j, kn) = R̂n(j, kn)−Dn(j, kn) yields

Rn(j, kn) ≤ γ∗n(j, kn)
(

Γ
(j − kn

n

)
+ κn,α

)
+Op(log n) + |Dn(j, kn)|. (27)

Since γ∗n(j, kn)2 ≤ 6n and maxt∈Tn |Dn(t)|/γn(t) = Op(log n), (27) yields

Rn(j, kn) ≤
√

12n+
√

6nκn,α +Op(log n)γn(j, kn).

But elementary calculations yield

γn(j, kn)2 = γ∗n(j, kn)2 + sign(kn − j)Rn(j, kn) ≤ 6n+Rn(j, kn). (28)

Hence we may conclude that

Rn(j, kn) ≤ Op(log n)
√
Rn(j, kn) +Op

(√
n(log n+ κn,α)

)
,
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and Lemma 8 (i), applied to x = 0 and y = Rn(j, kn), yields

max
j∈K̂n,α

Rn(j, kn) ≤ Op
(√
n(log n+ κn,α)

)
. (29)

This preliminary result allows us to restrict our attention to indices j in a

certain subset of Cn: Since 0 ≤ Rn(n, kn) = n− kn −
∑n
i=kn+1 θ

2
in,

n∑
i=kn+1

θ2
in ≤ n− kn.

On the other hand, in case of j < kn, Rn(j, kn) =
∑kn
i=j+1 θ

2
in − (kn − j), so

n∑
i=j+1

θ2
in ≤ n+Op

(√
n(log n+ κn,α)

)
.

Thus if jn denotes the smallest index j ∈ Cn such that
∑n
i=j+1 θ

2
in ≤ 2n,

then kn ≥ jn, and K̂n,α ⊂ {jn, . . . , n} with asymptotic probability one, uni-

formly in α ≥ α(n). This allows us to restrict our attention to indices j in

{jn, . . . , n} ∩ K̂n,α. For any ` ≥ jn, Dn(`, kn) involves only the restricted signal

vector (θin)ni=jn+1, and the proof of Theorem 2 entails that

max
jn≤`≤n

(
|Dn(`, kn)|
γn(`, kn)

−
√

2 log n− 2c log n

γn(`, kn)

)+

= Op(1).

Thus we may deduce from (27) the simpler statement that with asymptotic

probability one,

Rn(j, kn) ≤
(
γ∗n(j, kn) + γn(j, kn)

)(√
2 log n+ κn,α +Op(1)

)
(30)

+ Op(log n).

Now we need reasonable bounds for γ∗n(j, kn)2 in terms of Rn(j) and the minimal

risk ρn = Rn(kn), where we start from the equation in (28): If j < kn, then

γn(j, kn)2 = γ∗n(j, kn)2 + 4Rn(j, kn) and γ∗n(j, kn)2 = 6(kn− j) ≤ 6ρn. If j > kn,

then γ∗n(j, kn)2 = γn(j, kn)2 + 4Rn(j, kn) and

γn(j, kn)2 =

j∑
i=kn+1

(4θ2
in + 2) ≤ 4ρn + 2Rn(j) = 6ρn + 2Rn(j, kn).

Thus

γ∗n(j, kn) + γn(j, kn) ≤ 2
√

6
√
ρn +

(√
2 +
√

6
)√

Rn(j, kn),
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and inequality (30) leads to

Rn(j, kn) ≤
(

4
√

3
√

log n+ 2
√

6κn,α +Op(1)
)√

ρn

+ Op
(√

log n+ κn,α
)√

Rn(j, kn) +Op(log n)

for all j ∈ K̂n,α. Again we may employ Lemma 8 with x = 0 and y = Rn(j, kn)

to conclude that

max
j∈K̂n,α

Rn(j, kn) ≤
(

4
√

3
√

log n+ 2
√

6κn,α +Op(1)
)√

ρn

+ Op

(
(log(n)3/4 + κ

3/2
n,α(n))ρ

1/4
n + log n+ κ2

n,α(n)

)
uniformly in α ≥ α(n).

If log(n)3+κ6
n,α(n) = O(ρn), then the previous bound for Rn(j, kn) = Rn(j)−

ρn reads

max
j∈K̂n,α

Rn(j) ≤ ρn +
(

4
√

3
√

log n+ 2
√

6κn,α +Op(1)
)√

ρn

uniformly in α ≥ α(n). On the other hand, if we consider just a fixed α > 0,

then κn,α = O(1), and the previous considerations yield

max
j∈K̂n,α

Rn(j) ≤ ρn +
(
4
√

3 + op(1)
)√

log(n) ρn

+ Op
(
log(n)3/4ρ1/4

n + log n
)

≤ ρn +
(
4
√

3 + op(1)
)√

log(n) ρn +Op(log n).

To verify the latter step, note that for any fixed ε > 0,

log(n)3/4ρ1/4
n ≤

{
ε−1 log n if ρn ≤ ε−4 log n,

ε
√

log(n) ρn if ρn ≥ ε−4 log n.

It remains to prove claim (9) about the losses. From now on, j denotes a

generic index in Cn. Note first that

Ln(j, kn)−Rn(j, kn) =

kn∑
i=j+1

(1− ε2in) = Rn(kn, j)− Ln(kn, j) if j < k.

Thus Theorem 2, applied to θn = 0, shows that∣∣Ln(j, kn)−Rn(j, kn)
∣∣ ≤ γ+

n (j, kn)
(√

2 log n+Op(1)
)

+Op(log n),
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where

γ+
n (j, kn) :=

√
2|kn − j| ≤

√
2ρn +

√
2|Rn(j, k)|.

It follows from Ln(0) = Rn(0) = ‖θn‖2 that Ln(j)− ρn equals

Ln(j, kn) + (Ln −Rn)(kn, 0)

= Rn(j, kn) +Op

(√
log(n)ρn

)
+Op

(√
log n

)√
Rn(j, kn) +Op(log n)

≥ Op

(√
log(n)ρn + log n

)
,

because Rn(j, kn) ≥ 0 and Rn(j, kn) + Op(rn)
√
Rn(j, kn) ≥ Op(r

2
n). Conse-

quently, ρ̂n := minj∈Cn Ln(j) satisfies the inequality

ρ̂n ≥ ρn +Op

(√
log(n)ρn + log n

)
=
(√

ρn +Op
(√

log n
))2

,

and this entails that

ρn ≤
(√

ρ̂n +Op
(√

log n
))2

.

Now we restrict our attention to indices j ∈ K̂n,α again. Here it follows from

our result about the maximal risk over K̂n,α that Ln(j)− ρn equals

Rn(j, kn) +Op
(√

log(n)ρn
)

+Op
(√

log n
)√

Rn(j, kn) +Op(log n)

≤ 2Rn(j, kn) +Op
(√

log(n)ρn + log n
)
≤ Op

(√
log(n)ρn + log n

)
.

Hence maxj∈K̂n,α Ln(j) is not greater than

ρn +Op

(√
log(n)ρn + log n

)
=

(√
ρn +Op

(√
log n

))2

≤
(√

ρ̂n +Op
(√

log n
))2

. 2

Proof of Theorem 5. The application of inequality (17) in Corollary 7 to

the tripel (|J |, Tn(J) − |J |, α/(2Mn)) in place of (n, δ̂2, α) yields bounds for

δ̂2
n,α,l(J) and δ̂2

n,α,u(J) in terms of δ̂2
n(J) := (Tn(J) − |J |)+. Then we apply

(15-16) to Tn(J), replacing (n, δ2, u) with (|J |, δ2
n(J), α′/(2Mn)) for any fixed

α′ ∈ (0, 1). By means of Lemma 8 (ii) we obtain finally

δ̂2
n,α,u(J)− δ2

n(J)

δ2
n(J)− δ̂2

n,α,l(J)

}
≤ (1 + op(1))

√
(16|J |+ 32 δ2

n(J)) logMn (31)

+ (K + op(1)) logMn
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for all J ∈ Mn. Here and throughout this proof, K denotes a generic constant

not depending on n. Its value may be different in different expressions. It follows

from the definition of the confidence region K̂n,α that for arbitrary C ∈ K̂n,α
and D ∈ Cn,

Rn(C)−Rn(D) = δ2
n(D \ C)− δ2

n(C \D) + |C| − |D|

= (δ2
n − δ̂2

n,α,l)(D \ C) + (δ̂2
n,α,u − δ2

n)(C \D)

−
(
δ̂2
n,α,u(C \D)− δ̂2

n,α,l(D \ C) + |D| − |C|
)

≤ (δ2
n − δ̂2

n,α,l)(D \ C) + (δ̂2
n,α,u − δ2

n)(C \D).

Moreover, according to (31) the latter bound is not larger than

(1 + op(1))
{√(

16|D \ C|+ 32δ2
n(D \ C)

)
logMn

+
√(

16|C \D|+ 32δ2
n(C \D)

)
logMn

}
+ (K + op(1)) logMn

≤ (1 + op(1))
√

2
(
16|D|+ 32δ2

n(Cc) + 16|C|+ 32δ2
n(Dc)

)
logMn

+ (K + op(1)) logMn

≤ 8
√(

Rn(C) +Rn(D)
)

logMn (1 + op(1)) + (K + op(1)) logMn.

Thus we obtain the quadratic inequality

Rn(C)−Rn(D) ≤ 8
√(

Rn(C) +Rn(D)
)

logMn (1 + op(1))

+ (K + op(1)) logMn,

and with Lemma 8 this leads to

Rn(C) ≤ Rn(D) + 8
√

2
√
Rn(D) logMn(1 + op(1)) + (K + op(1)) logMn.

This yields the assertion about the risks.

As for the losses, note that Ln(·) and Rn(·) are closely related in that

(Ln −Rn)(D) =
∑
i∈D

ε2in − |J |

for arbitrary D ∈ Cn. Hence we may utilize (15-16), replacing (n, δ2, u) with

(|D|, 0, α′/(2µn)), to complement (31) with the following observation:

−A
√
|D| logMn ≤ Ln(D)−Rn(D) ≤ A

√
|D| logMn +A logMn (32)
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simultaneously for all D ∈ Cn with probability tending to one as n → ∞ and

A→∞. Note also that (32) implies that Rn(D) ≤ A
√
Rn(D) logMn +Ln(D).

Hence

Rn(D) ≤ (3/2)
(
Ln(D) +A2 logMn

)
for all D ∈ Cn,

by Lemma 8 (i). Assuming that both (31) and (32) hold for some large but fixed

A, we may conclude that for arbitrary C ∈ K̂n,α and D ∈ Cn,

Ln(C)− Ln(D)

= (Ln −Rn)(C)− (Ln −Rn)(D) +Rn(C)−Rn(D)

≤ A
√

2(|C|+ |D|) logMn +A
√

2
(
Rn(C) +Rn(D)

)
logMn + 4A logMn

≤ 2A
√

2
(
Rn(C) +Rn(D)

)
logMn + 4A logMn

≤ A′
√(

Ln(C) + Ln(D)
)

logMn +A′′ logMn

for constants A′ and A′′ depending on A. Again this inequality entails that

Ln(C) ≤ Ln(D) +A′
√

2Ln(D) logMn +A′′′ logMn

for another constant A′′′ = A′′′(A). 2
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[5] Birgé, L. and Massart, P. (2001). Gaussian model selection. J. Eur.
Math. Soc. 3, 203-268.

[6] Cai, T.T. (1999). Adaptive wavelet estimation: a block thresholding and
oracle inequailty approach. Ann. Statist. 26, 1783-1799.
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