Identification and expression of different dehydrin subclasses involved in drought response of Trifolium repens

Abstract: Reversely transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences the existence of natural antisense transcripts were predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S- segments. Obtained data suggest that different dehydrin classes have distinct roles in drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) which accumulate predominantly under drought.
Identification and expression of different dehydrin subclasses involved in drought response of *Trifolium repens*

Irina Ivanova Vaseva a, b, *, Iwona Anders a, Urs Feller a

a Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland

b Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

* Corresponding author
Corresponding author

Irina Ivanova Vaseva a, b

a Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
Tel.: +41 31 631 49 59
Fax: +41 31 631 49 11

b Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
Tel.: +359 2 979 26 77
Fax: +359 2 873 99 52

E-mail: irina.vaseva@abv.bg
Identification and expression of different dehydrin subclasses involved in drought response of *Trifolium repens*

Irina Ivanova Vaseva a,b,*, Iwona Anders a, Urs Feller a

a Institute of Plant Sciences and Oeschger Centre for Climate Change Research (OCCR), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland

b Plant Stress Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

* Corresponding author

ABSTRACT

Reversely transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (*Trifolium repens*) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences the existence of natural antisense transcripts were predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S- segments. Obtained data suggest that different dehydrin classes have distinct roles in drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-
stressed developing leaves. The acidic SK₂ and KS dehydrin transcripts exhibited some
developmental gradient in leaves. A strong increase of YK transcripts was documented in the
fully expanded leaves and roots of drought stressed individuals. The immunodetected drought-
induced signals imply that Y- and K-segment containing dehydrins could be the major
inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) which accumulate
predominantly under drought.

Keywords
Dehydrins, Drought, Immunoblot, RT-PCR, splice variants, *Trifolium repens*

Abbreviations: DHN, dehydrins; LEA 2, Late Embryogenesis Abundant proteins group 2

Introduction

Climate modeling studies implying changes in average temperatures predict substantial
increase of heat and summer drought frequency in Central Europe (Della-Marta et al., 2007;
Hansen et al., 2012). Crop yield is intensely affected by adverse environmental conditions, and
the understanding of physiological mechanisms that plants have developed to withstand
environmental stress will facilitate the selection of suitable genotypes and also will contribute
to introduction of novel molecular breeding approaches in the agricultural practice.

Legumes are unique among cultivated plants for their ability to carry out endosymbiotic
nitrogen fixation with rhizobial bacteria (Bissuel-Belaygue et al. 2002a; 2002b). As their
representatives clovers are usually preferred as a cover crop in organic crop rotations. When
sown in summer clover may experience problems with drought which often occurs in these
later plantings. Extreme environmental events are likely to shift the adaptive response of forage
species, including clover, in the long term. Therefore the identification of suitable diagnostic

markers related to abiotic stress will contribute to develop agronomic strategies to maintain and enhance productivity of grassland crops.

The majority of published data on the effects of drought in clover focus on productivity (Bissuel-Belaygue et al., 2002a; 2002b; Sanderson et al., 2003), morphological parameters (Grieff et al., 1995; Annicchiaricho and Piano, 2004) or compatible solutes and photosynthetic pigments (Singh et al., 2010; Kim et al., 2004; Lee et al., 2009). Dehydrin accumulation under water stress is well-established phenomenon but dehydrin research in white clover, which is a major legume crop, is very limited (Vaseva et al., 2011; Singh et al., 2012). Drought-inducible dehydrins may serve as indicators for alteration in plant water status. The present study intended to monitor the differential accumulation of DHN types under normal and stress conditions and to elucidate dehydrin spatial distribution in the aboveground parts and roots.

Dehydrins (DHN) are specific proteins expressed in plants experiencing extreme environmental conditions such as drought or low temperature (Campbell and Close, 1997; Close, 1997). They are also involved in developmental processes, such as late embryogenesis, which require stabilization of macromolecules (Rorat et al., 2004; Riera et al., 2004; Hinniger et al., 2006). The accumulation of dehydrins is presumably part of the mechanisms protecting plants from protein denaturation under adverse environments. LEA 2 are highly hydrophilic and remain stable under denaturating conditions. Angiosperm DHNs are distinguished by the presence of a consensus sequence, rich in Lys-residues, known as the K-segment (EKKGIMDKIKEELPG). Their molecules consist of one or more K motifs. The K-segment is known to form amphipathic α-helices (Findlater and Graether, 2009; Koag et al., 2009).

Therefore, it is able to interact with lipid components of the cell membrane and hydrophobic sites of the partially denatured proteins. Some dehydrins may also have a consensus Y-segment (V/T DEYGNP) near the N terminus or a serine-rich tract (the S-segment) that can be modified by phosphorylation and bind ions. It has been shown that the phosphorylation-regulated ion binding activity is generally conserved in the acidic subfamily of dehydrins (Kovacs et al.,
Phosphorylation may enable dehydrins to interact with actin filaments and as consequence to stabilize the cytoskeleton under stress conditions (Abu-Abied et al., 2006; Rahman et al., 2011). The Y-segment, when present, occurs in one to three tandem copies near the N-terminus. It is similar to a portion of the nucleotide binding site motif of chaperonins from plants and bacteria (Martin et al., 1993). Recent studies have reported that dehydrins are localized in the nucleus as well as in cytoplasm (Brini et al., 2007; Mehta et al., 2009).

Dehydrins have also some less conserved regions rich in glycine and polar amino acids which are called Φ-segments (Campbell and Close, 1997). The significant amount of charged and hydroxyl group-containing amino acids suggests that dehydrins have high affinity towards phospholipids and sterols, which explains their ability to stabilize cellular membranes. Campbell and Close (1997) have summarized that dehydrins might act at the interface between membrane phospholipids and the cytosol in plant cells and that they most probably interact with hydrophobic surfaces, rather than with a specific class of macromolecules.

The number (n) and order of the Y-, S- and K-segments define five different DHN sub-classes: \(Y_nSK_n \) (alkaline dehydrins induced by drought), \(SK_n \) (acidic dehydrins responsible for priming of the cells under chill and drought), \(K_n \) (usually related to cold tolerance), \(Y_nK_n \) (related to drought and cold tolerance) and \(K_nS \) (Close 1997). Recent studies have proposed that the basic \(Y_nSK_n \) type dehydrins in their phosphorylated form may protect the plant cytoskeleton, particularly the actin microfilament network and might stabilize membranes through lipid binding, whereas the \(K_nS \)-type dehydrins might protect the membrane integrity via metal binding and scavenging hydroxyl radicals (Rahman et al., 2010; 2011).

Few studies on the role of dehydrins in vegetative development suggest differential regulation of their expression, dependent not only on stress factors causing desiccation, but also on factors related to organ type and leaf developmental stage (Rorat et al., 2004; Weiss and Egea-Cortines, 2009). Some dehydrins were shown to be more responsive to developmental issues than to abiotic stress (Rorat et al., 2004; Koehler et al., 2007).
Significant number of data on physiological roles of LEA 2 proteins provide clear evidence that dehydrin genes may be key genetic determinants of stress tolerance in a number of species (Campbell and Close, 1997; Brini et al., 2007; Ruibala et al., 2012; Davik et al., 2013). Previously published studies aiming to elucidate the contribution of different dehydrin types to abiotic stress tolerance (Puhakainen et al., 2004; Welling et al., 2004; Hinniger et al., 2006; Šunderlíková et al., 2009) have provided evidence that particular LEA 2 proteins tend to accumulate in different sites depending on the developmental stage and tissue type, and that some of them could be chief players in alleviation of the negative physiological impact of environmental stress. The established concept that dehydrins may serve as potential markers for stress-tolerance selection requires a more detailed view on the specific role of the different DHN classes in plant development under normal and stress conditions and the mechanisms of the regulation of LEA 2 expression.

The complex polyploid nature of white clover (Casey et al., 2010) presents additional complications for identification and characterization of genes responsible for stress tolerance of this important legume crop. The aim of the present study was to identify drought-inducible *Trifolium repens* dehydrin homologues and to evaluate their differential distribution in roots and leaves from a single clover stolon under normal and drought conditions in search for DHN classes induced by unfavorable water availability. A dehydrin of SK2-type (Dhn b, GenBank ID: EU846208; Hand et al., 2010) was included in the analyses as a representative of LEA 2, which according to previously published data tended to be constantly expressed in unstressed vegetative tissues (Nylander et al., 2001; Bae et al., 2009; Vaseva et al., 2010, 2011).

Materials and methods

Plant material and growth conditions
The experiments were performed with large leafed white clover variety “Apis” (origin described in Boller et al., 2007), characterized by lower tendency to form hydrocyanic acid. The plants (*Trifolium repens*, cv. “Apis”, Otto Hauenstein Seeds Ltd, Switzerland) were grown in Klasmann-Deilmann Seedlingsubstrat™ soil (pH 6.5), under 200 μE m⁻² s⁻¹ light, at 23 °C – 26 °C (night/ day) temperature and 14 h photoperiod. Optimal soil humidity (80% of the field capacity) was maintained by gravimetrically controlled watering. Each pot contained four seedlings. Drought stress was imposed on 14-day-old plants (with fully developed first and expanding second leaf) by withholding irrigation for a period of fourteen days when the leaf relative water content (RWC) in the stressed plants decreased to around 50% (Fig. 1). RWC was calculated according to Barrs and Weatherley (1968):

$$\text{RWC} (%) = \left[\frac{\text{FW} - \text{DW}}{\text{TW} - \text{DW}} \right] \times 100,$$

where FW – Fresh weight, TW – Turgid weight, and DW – Dry weight

Recovery of the stressed plants was performed for three days by resuming daily watering and maintaining the optimal soil humidity (Fig. 1).

All the analyses were made with frozen material derived from distinct leaves of the main stolons of 6-12 clover plants (L1 – first developed leaf, L2 – second developed leaf, L3 – third developed leaf, L4 – fourth developed leaf, L5 – last developing leaf) and from roots.

RNA extraction and synthesis of cDNA

Total RNA was extracted from 100 mg plant material (leaves or roots) with RNeasy Plant mini Kit (QIAGEN). RNA samples (400 ng) were reversely transcribed at 37 °C for 1 h with 2 mM anchored oligo(dT₂₃) primer (Sigma-Aldrich) using Omniscript Reverse Transcription Kit (QIAGEN).

PCR amplification, fragment isolation, and cloning
Different combinations of primers were designed to amplify Y-, K- or other conserved segments from published dehydrin mRNAs of related legume species. The primer sequences are given in Table 1. PCR reactions (50 μL) contained 5 μL RT assay (performed with 400 ng total RNA as template). Amplification was done with HotStart Taq polymerase (QIAGEN) according to the manufacturer’s protocol. The cycling conditions were 15 min at 95 °C, 35 cycles of amplification at 94 °C for 1 min, and extension at 72 °C for 1 min. The relevant amplification temperatures were as follows: Ta= 53 °C for KₙS-analogue (amplified with degenerate KS legume primers, Table 1); Ta=50 °C for YₙSKₙ-analogue (amplified with Y-segment Forward and K-segment Reverse, Table 1); Ta= 53 °C for CIG-like (Rémus-Borel et al. 2010) YₙKₙ analogues (primers 3, 4 and 5, Table 1). The obtained PCR bands were cut from the agarose gel and purified with QIAquick® PCR Purification Kit (QIAGEN). The fragments were cloned into pBluescript II SK (+/–) vector (Aglient Technologies), cut with Sma I restriction enzyme (Thermo Scientific) according to the manual. The vectors were transformed into Escherich coli strain DH5α. A blue-white screening test on ampicilin containing media was performed to select positive colonies. At least 10 colonies were randomly picked and used for inoculation of overnight liquid cultures, grown at 37 °C with constant shaking. Plasmid DNA was isolated with QIAprep® Spin Miniprep Kit (QIAGEN) and additional PCR screening test with M13 primers (M13 F: GTAAAACGACGGCCAGT and M13 R: CATGGTGTAGCTGTTTCC) was applied to distinguish the plasmids hosting the inserts from the ‘false positive’ ones. The positive clones were sequenced using M13 forward and reverse primers (Mycrosynth, Switzerland) and were BLASTed against the NCBI database. The sequences exhibiting high homology (E values above E-10) with already published dehydrins from other legumes were selected for the following RT-PCR analyses.

Rapid Amplification of cDNA Ends (3’- and 5’-RACE PCR)
Oligo(dT) anchored (for 3’-RACE) or reverse gene specific primers (for 5’-RACE) were used for the reverse transcription (RT) of total RNA to obtain full length of cDNAs.

The following antisense primers were used in 3’- and 5’-RACE PCR reactions:

3’-RACE primer:

```
GGC CAC GCG TCG ACT AGT AC
```

Oligo(dT) anchored primer:

```
GGCCACGCGTCGACTAGTACT TTT TTT TTT TTT TTT TV
```

Oligo(dT) anchored primer was added to the RT reactions and 3’-RACE primer was used in the first PCR. The cycling conditions were: initial denaturation at 95 °C for 15 min, 35 cycles of 94 °C for 1 min, amplification for 1 min at 60 °C and 72 °C for 1 min, final extension for 10 min at 72 °C. Gene-specific forward primers 1 (for YnSKn), 7 (for YnKn) and 11 (for KnS) were used for the second nested PCR (Table 1).

First strand cDNA synthesis in 5’-RACE PCRs was performed with Omniscript Reverse Transcription Kit (QIAGEN) but instead of oligo(dT) primer reverse gene-specific primers “KS legume Reverse” (for KnS) and 3 (for Y3SK2) were used (Table 1). The resulting cDNA was purified with QIAquick PCR purification kit (QIAGEN). Copy DNA ‘tailing’ reactions were performed with terminal transferase (ThermoScientific) and 2 mM dATP (ThermoScientific) according to the manual. The first PCR amplification of dA-tailed cDNAs was done with oligo(dT) anchored primer (listed above) and reverse gene specific primers 12 (for KnS) and 4 (for Y3SK2, Table 1) using HotStart Taq polymerase (QIAGEN). Gene specific primers 13 (for KnS) and 5 (for Y3SK2), and the 3’-RACE primer (listed above) were used in the following 5’ nested PCR. The products from 3’- and 5’-RACE PCR were purified (QIAquick Gel extraction kit, QIAGEN) and sequenced directly (Mycrosynth, Switzerland).

The resulting full length cDNAs were submitted to NCBI GenBank. All nucleotide sequences were examined and characterized individually with MegAlign, EditSeq of DNASTAR (Lasergene), and Vector NTI TM (InforMaxTM, Frederick,
to identify the most likely open reading frames (ORFs) and putative translational start and stop sites.

Semiquantitative RT-PCR

PCR reactions were carried out with cDNA derived from roots (R) and leaves at different stage of development (L1, L2, L3, L4, L5). The used primers are shown in Table 1. PCR reactions (50 μL) containing 2 μL RT assay (400 ng total RNA was used as template) were performed with HotStart Taq polymerase (QIAGEN) according to the manufacturer’s protocol. The cycling conditions were 15 min at 95 °C, 30 cycles of 94 °C for 1 min, amplification for 40 sec and 72 °C for 1 min. The amplification temperatures and primer pairs were as follows: Ta= 53 °C for CIG-like Y₂K₄ (primers 6 and 8, Table 1), Y₆K₆ (primers 7 and 8, Table 1), and K₁₅S (primers 11 and 13, Table 1); Ta= 58 °C for Y₃SK₂ (primers 1 and 5a, Table 1); Ta= 60 °C for Y₃SK₂ (primers Y₃SK₂F and Y₃SK₂R, Table 1); Ta= 61 °C for Y₃SK₂ (primers 1 and 5, Table 1); Ta= 62 °C for SK₂ (primers 9 and 10, Table 1). The final extension step was for 10 min at 72 °C. The expression of T. repens actin (GenBank ID: AY372368, primer F: CCTGAGGAGCACCCAGTGC, primer R: AAGGGAGAGGACAGCCTGGA) and tubulin (GenBank ID: AY192359.1, primer F: ATCTTGACCTACCGTAC, primer R: TGAGAGACAGGCGATTAAG, Asp et al., 2004) were used as two internal controls for normalization of the expression levels of the studied genes (Thellin et al., 1999).

SDS-PAGE and protein immunodetection

Extraction of soluble proteins, SDS-PAGE and immunodetection were performed with leaf and root samples derived from the third consecutive biological repeat according to the previously described procedure (Vaseva et al., 2011). The levels of dehydrins were analyzed on
immunoblots developed with primary antibodies against legume K-sequence (GEKKGILDKIKEKLPG); Y- (N-terminal flanking region and the well-conserved Y-segment from *Triticum aestivum* – HDNPANRVDEYGNP) and S- (N-terminal flanking region and internal S-stretch in *Trifolium repens* – SLLEKLHRSDSSSS) segments raised in rabbit. The bands were visualized as described previously (Mitsuhashi and Feller, 1992).

Statistical analysis

The semiquantitative RT-PCR data represented on Figs. 2C, 3C, 4 and 5C are from three independent biological repeats. RT-PCR reactions were loaded on at least three ethidium bromide-containing 2% agarose gels (Suppl. 4) and the mean values of the these technical repeats were used for further analyses. Quantification of bands revealed during the different runs was done with ImageJ 1.30v software (National Institutes of Health, Bethesda, MD, USA). Processed data (Figs. 2C, 3C, 4, and 5C) represent the percentage of average area of the ethidium bromide-stained agarose gel occupied by each band. The graphs depict target dehydrin genes and actin or tubulin expression ratios. The vertical bars indicate the standard deviation from the three independent biological repeats calculated with SigmaPlot for Windows, Version 9.00. Results were subjected to unpaired two-tail Student's t-test to compare the mean values of transcript accumulation under drought stress with their relevant controls. Significant differences are indicated for p ≤0.05 (*), p ≤0.001 (**), and p ≤0.001 (***)..

Results

Copy DNAs from control and drought stressed leaves and roots were used as template in PCR reactions with different primer pairs designed to amplify conserved dehydrin sequences. Most of the amplification products showed high homology with published
dehydrins from other species at TBLASTX search (incorporates translated nucleotide databases

Y₂K₄ dehydrin – isolation, characterization and RT-PCR

A partial CIG-like YₙKₙ dehydrin homologue (GenBank ID: KC756189) was amplified
with primers 6 and 8 (Table 1) on genomic DNA. BLAST, BLASTX, and phylogenetic
analyses of the identified genomic sequence confirmed that T. repens YₙKₙ had high identity
with other previously published dehydrins (Suppl. 1). CIG-like YₙKₙ is 46.7% similar to Galea
orientalis (GenBank ID: HM7770) and 44.2% to Vicia monata dehydrin a (GenBank
ID: AB506694.1, Suppl. 1).

Detailed examination of T. repens CIG-like YₙKₙ homologue (genomic DNA GenBank:
KC756189) identified one complete direct open reading frame ORF 1 (699-1325 b.p.) with
three nested alternative start codons (positions 876 b.p., 996 b.p. and 1146 b.p.), coding for
four K-segments (Fig. 2A). The fragmentary ORF 2 had multiple nested start codons (Fig. 2A).

Two other CIG-like partial genomic sequences differing from KC756189 were identified (with
primers 7 and 8) and sequenced (genomic DNA GenBank: KC247806 and GenBank:
KC247807). The examination of KC247806 and KC247807 with VectorNTI revealed similar
features as in KC756189 – a complete direct ORF with one nested alternative start coding for 3
K segments and a fragmentary one with multiple nested start codons (Suppl. 2A). Possible
NATs were predicted for the three CIG-like sequences (Fig. 2A, Suppl. 2A).

Several amplification products, most probably originating from different CIG-like
genetic sequences, were obtained when cDNA was used as a template (Fig. 2B). Variations in
CIG-like transcripts were reported previously for Medicago spp. Y₂K₄ homologue as well
(Rémus-Borel et al., 2010). T. repens CIG-like YₙKₙ cDNAs were sequenced and the
translation showed that the peptides contained two Y segments at the N-end of the molecule,

Under drought KC756187 and KC756188 transcripts were still accumulating in roots, while the 635 b.p. CIG-like Y₂K₃ transcript (KC756186) was no longer detectable (Fig. 2B). The sequencing and subsequent MegAlign analysis (DNASTAR, Lasergene) of the 1310 b.p. CIG-like transcript isolated from drought stress leaves (Fig. 2B) did not determine any ORF (Suppl. 3).

Another CIG-like YₙKn transcript (GenBank ID: KC247805) accumulating predominantly in drought-stressed roots was isolated with primers 7 and 8 (Table 1). The sequence analysis showed that this transcript originated from KC247806 and codes for three K-segments (Suppl. 2B). RT-PCR revealed that KC247805 was scarcely represented in all control samples but drought provoked its accumulation in the fully expanded leaves and in roots (Suppl. 4A, Fig. 2C). The consistency of the expression results were confirmed after normalization with two reference genes – actin and tubulin (Fig. 2C). The expression of CIG-like YₙKn variant KC247805 decreased to control level after recovery (Suppl. 4A, Fig. 2C).

KS dehydrin – isolation, characterization, and RT-PCR

The degenerate KnS primer pair (Table 1) amplified a triplet in samples derived from control and drought-stressed leaves and roots (Fig. 3A). The two bands exhibiting stronger signals (marked with arrows, Fig. 3A) were cut and purified. The corresponding sequences (GenBank IDs: KC247802 and KC247803) were BLASTed against the NCBI database. The transcripts had high homology with a published *Trifolium repens* cold acclimation specific protein (cas15) mRNA containing modified K-motif and S-stretch at the C-end (GenBank ID: JN398458.1 – 91% identity, 6e-40). The KnS homologues showed also high similarity with several *Medicago sativa* mRNAs coding for different cold related proteins (BudCAR3 mRNA
KS sequence KC247802 encodes a 142 a.a. peptide with estimated Isoelectric Point = 6.643, charge at pH 7.0 = −2.9, and MW of 14871.96 Da. A downstream nested start codon within the ORF (1>426 b.p.) at position 13 b.p. was detected (Fig. 3B). cNLS Mapper which predicts importin α-dependent nuclear localization signals (Kosugi et al., 2009) predicted a bipartite NLS (underlined) which anticipates cytoplasm localization of the polypeptide:

MAGIMNKIGGALHIGGDKKEGEHKGEQHGHVGGEQQHGVVGVGEQHFVG

GHGGEYKGEQHGLVGGHGGYKGEQHGLVGGHGGYKGEQHGGEEPKEG

FVDKIKDKIHGEGGKEKKKEKKKHGEGHEDSSSDDSD

Analysis of the nucleotide sequence showed that clover KS homologue contained two fragmentary ORFs: ORF 2 (1>161) with undefined start codons and ORF 3 with 12 nested alternative start codons (Fig. 3B). The existence of a fragmentary antisense DNA sequence (402>1), consisting 18 nested start codons, was predicted (Fig. 3B).

Semiquantitative RT-PCR with primers 11 and 13 (Table 1) resulted in amplification of a single 224 b.p. band (named KS224) on genomic DNA (data not shown). The expression of KS224 transcript (ID: KC247802) at the very beginning of the experiment was negligible (Suppl. 4B, Fig. 3C) but later it increased in the older drought-stressed leaves (Suppl. 4B, Fig. 3C) according to actin normalization. This was not validated by the normalization with the other frequently used housekeeping gene tubulin. RT-PCR documented amplification of an
additional band in samples derived from the younger fully expanded control and recovered leaves (Suppl. 4B). The recovered individuals exhibited transcript levels below the age controls (Fig. 3C).

SK2 dehydrin – RT-PCR

BLASTEXT analyses of the previously published T. repens dehydrin b sequence (Hand et al., 2010; GenBank ID: EU846208 = GI:289540937, complement join 91041..91424, 91648..91920) revealed high homology with P. sativum dhn-cog gene (Robertson and Chandler, 1994; GenBank ID: Z14145.1) – 65% identity, 5e-49; Medicago truncatula (MTR 3g117290) mRNA (XM 003603939, protein BT143429) – 60%, 7e-54; Phaseolus vulgaris dehydrin mRNA (GenBank: U54703.1, protein: AAB00554) – 46% identity, 1e-18 – all of them coding for SKn dehydrins. The predicted amino acid sequence (Hand et al., 2010) has been assigned in NCBI data base as protein ADD09608.1 with MW=24508.74 Da, Isoelectric Point = 5.550, and charge at pH 7.0 = – 10.200 (EditSeq DNASTAR, Lasergene). It contains a stretch of seven serine residues in the middle and two K-fragments close to the C-terminus of the molecule. cNLS Mapper (Kosugi et al., 2009) predicted its localization to both the nucleus and cytoplasm:

MAEENQNYEDATSTTNSETIEKDRGVFDFGLGKKKDEEHKQPQEDAISTD 50
FSHKVTLYEAPSETKVEEAEGKKHTSLLEKLHRSDSSSSSSSEEDENG 100
EKRKKKKKEKKEKKEDTSVPVEKVVDGTTVGEKKGFLEKIKDKLPG 150
HKKTEDVTPPPVVPVPTETTTSDDQGEKKGILEKIKEKIPGYHPK 200
TTTDHEEKHKDETASH 218
The changing SK$_2$ transcript profile in the control samples varied according to developmental age of the leaves (Suppl. 4C, Fig. 4). RT-PCR analysis showed that drought did not influence significantly the expression of SK$_2$ transcript in the younger leaves (L3, L4, L5). SK$_2$ relative expression marked significant increase in the older leaves and roots (DL1, DL2, and DR) when the results were normalized to actin due to the observed developmental fluctuations in the housekeeping gene in the different samples (Suppl. 4C, Fig. 4). Upon recovery the levels of SK$_2$ transcripts decreased around or below the controls according to both normalizing standards.

Y$_3$SK$_2$ dehydrin – isolation, characterization, and RT-PCR

Amplification of cDNA from drought stressed roots with degenerate primers Y-segment (Forward) and K-segment (Reverse) (Table 1) allowed the identification of a dehydrin homologue which was strongly influenced by drought. The sequenced PCR product was similar to previously identified partial cDNAs (GenBank IDs: JF748411 and JF748412) (Vaseva et al., 2011). BLAST results documented high identity (2e-118, 99%) with a sequence (GenBank: GU443965.1, complement join: 145184>145402; 145682>146014), coding for Y$_3$SK$_2$ dehydrin annotated as GenBank ID: ADD09613.1 (Hand et al., 2010). The nucleotide sequence analysis showed that *T. repens* Y$_3$SK$_2$ consisted of two exons and one intron (Fig. 5A). The first exon of the gene contained two open reading frames – ORF 1 (1-399 b.p) and the nested ORF 2 (173-340 b.p.). ORF 1 coded for the three Y-segments of the molecule, as well as for the stretch of nine Ser-residues. The second exon comprised only one ORF 3 (607-828 b.p.) coding for two K-segments (Fig. 5A).

The complete cDNA sequence was recovered via 3’- and 5’- RACE PCRs. The isolated mRNA (GenBank ID: KC247804) coded for a 182 a.a. polypeptide with predicted molecular weight of 18866.64 Da, Isoelectric Point = 9.184, and charge at pH 7.0 = 5.082 (EditSeq
DNASTAR, Lasergene). TBLASTX search showed that the isolated Y3SK2 cDNA shared high
identity with other legume dehydrins from the same class: *Medicago truncatula* dehydrin MTR
3g117190 – 75% identity, 2e-32; *Glycine max* dehydrin (PM12) NM 001250385.1 – 63%
identity, 4e-16; *Vitis yeshanensis* dehydrin 4 (GeneBank ID: JQ408444.1) – 45% identity, 7e-
11). cNLS Mapper (Kosugi et al., 2009) predicted localization of the protein to both nucleus
and cytoplasm:

<table>
<thead>
<tr>
<th>MAGVQIRDEHGNIQLTDDQGNNPITLTDEHGNPIETGVATTVPNTTS</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSAGFSTGTYGTGAAGGATTHPTSTVADLLSTEPPAGKRLHRTDQVAGGG</td>
<td>100</td>
</tr>
<tr>
<td>HRRSSSSSSSSSSSDEDQGQGRRKKGVRDKVKEKLPVGGGKDHSQTTVP</td>
<td>150</td>
</tr>
<tr>
<td>AATATHHTAEPTHEKKGILDKIKEKLPGHNN</td>
<td>182</td>
</tr>
</tbody>
</table>

The gene-specific Y3SK2 primers (Y3SK2 F and Y3SK2 R, Table 1) amplified three
different transcripts in the control and drought-stressed samples: JF748411, which contained
retained intron; the complete ORF 1/ ORF 3 splice form KC247804, and the shortened (107 –
324 b.p.) ORF 1 / ORF 3 splice form KF234077. The last one significantly accumulated only in
the drought stressed roots (Fig. 5B), and coded for 142 a.a. polypeptide containing nine serine-
residue stretch and two K-segments (MW=14697.01 Da, Isoelectric Point of 9.520, and charge
at pH 7.0 = 7.878, estimated by EditSeq DNASTAR, Lasergene):

<table>
<thead>
<tr>
<th>YCHPQNPCTSAGFSTGTYGTGAAGGATTHPTTTTVADLLSTEPPAGKQHLH</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRDQVAGGGHGRRSSSSSSSDDQGQGRRKKGVRDKVKEKLPVGGGK</td>
<td>100</td>
</tr>
<tr>
<td>DHNSQTTTVPAATATHHTAEPTHEKKGILDKIKEKLPGHNN</td>
<td>142</td>
</tr>
</tbody>
</table>

cNLS Mapper predicted that Y3SK2 polypeptide coded by KF234077 could be localized to both
nucleus and cytoplasm.
The splice variant with a retained intron JF748411 (amplified with primers 1 and 5a, Table 1), was represented in almost all tested samples (Suppl. 4D) but the highest levels were detected in the drought-stressed fully expanded leaves (DL3).

The expression of KC247804 variant (primers 1 and 5, size of the expected band 199 b.p., Suppl. 4D) normalized to actin documented comparatively high Y3SK2 levels in the fully expanded leaves (DL2, DL3, DL4) and roots (DR) subjected to drought (Fig. 5C). The normalization to tubulin confirmed that significant KC247804 amounts presented only in the third fully expanded leaf (DL3; Fig. 5C). Transcript content decreased to the control levels after 72 h of recovery.

Dehydrin immunoblot analyses

Immunodetection of dehydrins performed with three different antibodies against the conserved K-, Y-, and S-segment allowed to outline the different dehydrin types present in the tested samples. Seven distinct bands (within the range 18-60 kDa) were visualized with the K Ab (Fig. 6). These bands were accepted as a “true dehydrin” reference for the immunosignals obtained with the Y- and S- antibodies. The youngest control leaves (CL0 and CL5; Fig. 6) had a rich dehydrin profile with substantial quantity of immunodetected proteins. The strongest detected signals in the controls, predominantly accumulating in the youngest and second youngest leaves (CL0, CL4, CL5), were Yn,Sn,Kn-type dehydrins migrating at position around 50 kDa, (Fig. 6A).

A weaker signal at position around 28 kDa was documented with the K- antibody in the fully expanded leaves (Fig. 6A). Drought stress increased the band intensity and the immunosignal diminished considerably after recovery (Fig. 6A).
The samples derived from drought-treated fully expanded leaves (DL2 and DL3) revealed immunosignals with apparent MW between 18 and 22 kDa on the K-probed membrane (Fig. 6A). The strongest and most consistent signal, cross-detected with the antibodies against K- and Y-segment was documented in drought stressed leaves and roots. The molecular weight of these Y- and K-containing proteins varied between 37 and 48 kDa (Fig. 6A, 6B). The YK immunosignals disappeared in the samples of recovered plants (Fig. 6A, 6B).

Discussion

Previously published studies have demonstrated that the accumulation of certain dehydrins was related to drought stress tolerance in wheat (Lopez et al., 2003) and bermudagrass (Hu et al., 2010). The analysis of dehydrin expression in drought-resistant and drought-sensitive clones from different maritime pine (Pinus pinaster) ecotypes showed that only two out of the five identified DHN genes showed an increase in transcription as the drought stress progressed (Velasco-Conde et al., 2012). These data indicate that the involvement of dehydrins in vegetative development and the particular contribution of the different classes in stress responses still hold some unanswered questions.

The protective capacity of different LEA 2 proteins was a subject of numerous studies in different plant species (Rorat et al., 2004; Brini et al., 2007; Koehler et al., 2007; Ruibala et al., 2012). The high hydrophilicity, high glycine content (>20%) and lack of three-dimensional structure define dehydrins as ‘intrinsically disordered proteins’ (IDPs; Kovacs et al., 2008). Being typical intrinsically disordered DHN tend to exhibit abnormal migration during electrophoresis (Receveur-Bréchot et al., 2006) which could be also provoked by the high net charge of certain dehydrin types (Rahman et al., 2010). Some of the multiple dehydrin species may result from post-transcriptional (Wisniewski et al., 2006) or post-translational
modifications such as glycosylation (Levi et al., 1999) or phosphorylation of the serine-strech. IDPs could be involved in regulating signal transduction or gene expression (Tompa, 2002). Previously it has been suggested that some YₙSKₙ dehydrins may act as stress signaling molecules holding the potential to interact with distinct cellular components through their potential chaperone property (Brini et al., 2010). Y₃SK₂ dehydrin was significantly induced by drought in white clover as evident by the high transcript levels in the fully expanded leaves and roots. According to their phosphorylation status YₙSKₙ dehydrins may be transported from the nucleus to the cytoplasm (Riera et al., 2004; Brini et al., 2011). Earlier study on transcriptome profiling of DHN-5 Arabidopsis transgenic plants, provided an evidence that this YSK-type confers higher tolerance to oxidative stress via interaction with ascorbate biosynthetic pathway and that the same dehydrin expresses a functional link with jasmonate response which promote them as candidates with important functions in signal transduction or gene expression, perhaps through binding to targets such as proteins, RNA, ions, and membranes (Brini et al., 2011).

These properties of YSK-containing dehydrin types show that the substantial amount of these DHNs in the youngest developing leaf identified by immunoblot has its physiological grounds since this is a site of extremely dynamic developmental processes.

White clover is an allotetraploid species with high levels of genetic variation both within and between populations, which are composed of a heterogeneous mixture of highly heterozygous individuals (Casey et al., 2010). Additionally as a result of the high degree of self incompatibility white clover is characterized with very high allelic diversity. The revealed closely migrating YₙKₙ immunosignals (a doublet with MW ~ 38-39 kDa) support this assumption. The existence of YₙKₙ species detected on the immunoblot suggests either an existence of gene homeologues within the genome of the polyploid clover or an existence of a promiscuous start codon choice for the particular dehydrin type (de Mayolo et al., 2006).

White clover plants produce leaves at all stages of development along a single stolon from initiation at the apex, through expansion, maturity, and senescence. The stolon growth of
white clover provides a suitable model to study the roles which different dehydrin types perform under normal and stress conditions in relation to leaf development. The pattern of leaf development (the number of leaves at each stage of development present on the stolon at each stage of development) and dehydrin expression along the white clover stolon was expected to reveal the major sites at which dehydrins are fulfilling their protective functions, and which classes are particularly involved in the drought-stress response. Results demonstrated that the major organs for accumulation of dehydrins under water deprivation were the fully expanded leaves and roots, where the stress-inducible types were exclusively detected. The studied acidic dehydrins SK₂ and KS had the highest transcript levels in white clover organs during vegetative growth demonstrating some developmental gradient in leaves. Transcript accumulation in the control leaves during the experimental period suggests that these dehydrin classes probably have developmental functions. Recent results on sugarcane dehydrins also documented fluctuations of dehydrin profiles (Burrieza et al., 2012), indicating that the pattern of their accumulation has been under developmental control. The studied acidic homologues were less influenced by water deficit, while the basic or neutral dehydrins (YK- and YSK-type) were the main inducible LEA 2 in drought-stressed *T. repens* during vegetative growth.

Detailed analyses of the isolated sequences provided evidence for potential alternative splicing (AS) of dehydrin genes. AS combines different transcript splice junctions that result in transcripts with shuffled exons, alternative 5' or 3' splicing sites, retained introns and different transcript termini. In this way, multiple mRNA species and proteins can be created from a single gene (Ner-Gaon et al., 2004). Studies on tissue-specific forms of alternative splicing demonstrated that it can provide a mechanism to introduce changes in various functional attributes of a single gene, such as different subcellular localization of the coded protein, diverse protein–protein interaction, and even opposing function (Tompa, 2012).

The accumulation of the alternatively spliced non-coding transcript JF748411 in the fully-expanded drought-stressed leaves may have certain regulatory role as suggested by Ner-
Gaon et al. (2004) who have found that the functional distribution of the transcripts with retained introns were skewed towards stress and external/internal stimuli-related functions. The authors proposed that the retained introns could be a prominent feature of AS with a regulatory function.

Some of the *T. repens* dehydrin sequences contain ORFs with nested start codons. A phenomenon earlier identified as ‘leaky scanning’ is often a part of the complex regulation of expression in genes with multiple start codons (de Mayolo et al., 2006). This may actually be the mechanism for the synthesis of polypeptides with different number of K motives coded by the various mRNA variants originating from one single gene. The presence of many nested potential translation start sites in the KS dehydrin ORFs also supports such a possibility.

It was found earlier that KS-type dehydrins were not enriched in promoter cis-elements similar to the other dehydrins suggesting they may be regulated through pathways distinct from the rest of the dehydrin family (Koehler et al., 2007). As an evidence for the complex regulation of white clover KS homologue could serve the expression profile of *Arabidopsis* KS gene (At1G54410) generated by Arabidopsis eFP Browser (Winter et al., 2007). It demonstrates diurnal changes in expression pattern, suggesting a very short half life of both the transcripts and the polypeptides. This may partially explain the poor immunodetection results for KS proteins. The daily oscillations of protein expression levels require rapid adjustments in mRNA levels. Recently it was established that the unproductive alternative splicing and nonsense mRNAs actually are a very common case in regulation of expression of circadian genes (Filichkin and Mockler, 2012). The analysis of the nucleotide KS sequence gave evidence for the existence of in-frame premature termination codons (PTCs), which is another possibility for the occurrence of an unproductive alternative splicing. Earlier it has been demonstrated that for some circadian genes the ratio of the productive isoform to its PTC counterpart may shift sharply under specific environmental stress conditions (Filichkin and Mockler, 2012).
Another interesting feature of the isolated dehydrin sequences is the allocated natural antisense ORFs. Actually the biogenesis of natural antisense transcript-derived small interfering RNAs (nat-siRNAs) begins with the formation of double stranded RNAs (dsRNAs) by annealing sense and antisense transcripts (Sunkar et al., 2007). The potential accumulation of dsRNAs formed from the mRNAs encoded by natural cis-antisense gene pairs, opens a possibility for regulation of dehydrin expression via small interfering RNAs (siRNAs). Earlier it has been demonstrated that cis-natural antisense transcripts could regulate salt tolerance in Arabidopsis (Borsani et al., 2005).

The endogenous sources of dsRNAs could be also microRNA-directed cleavage products of noncoding transcripts, which are then converted into dsRNAs. Apart from the previously isolated non-coding dehydrin Y_{3SK_2} transcript with retained intron (Vaseva et al., 2011), a CIG-like Y_{4K_n} long non-coding transcript from drought stressed leaves was also identified. Long noncoding RNAs (IncRNAs) are increasingly recognized as functional regulatory components in eukaryotic gene regulation (Kim and Sung, 2012). Some IncRNAs are likely precursor molecules that are processed into small RNAs, while others function as intact, long molecules that have the potential to regulate gene expression (Boerner and McGinnis, 2012).

All these preliminary results will motivate further detailed study on transcription regulation of dehydrins via interfering RNAs.

As a conclusion the presented data suggest that different dehydrin subclasses perform unique coordinated roles in plant development under normal and drought conditions. Immunoblot analysis attested that water deprivation increases the concentration of dehydrins in the vegetative tissues which are scarcely represented in unstressed plants. The major sites of dehydrin accumulation in white clover under drought are the fully expanded younger leaves and the roots. Studies on dehydrin types and their physiological function in plant growth and development under normal and stress conditions would be helpful to establish a reliable “stress tolerance” profile in economically important crops.
Acknowledgements

This study was supported by a grant from the Scientific Exchange Programme between Switzerland and the New Member States of the European Union - Sciex-NMSch (Project No. 11.113: “Identification of Dehydrin Types involved in Abiotic Stress Responses in *Trifolium repens*” – IDAST) and the NCCR Climate (Project PLANT/SOIL). The authors are grateful to their colleagues Marianne Suter Grotemeyer who gave valuable advises on cloning procedure, and to Anna-Katarina Gilgen who provided helpful information on the agronomical characteristics and origin of the white clover cultivar “Apis”.

References

Boller B, Schubiger F-X, Tanner P. *Apis und Bombus, die ersten Schweizer Weissklee-Sorten*. Agrarforschung 2007; 14: 478–483 (in German)

Hand ML, Cogan NO, Sawbridge TI, Spangenberg GC, Forster JW. Comparison of
homoeolocus organisation in paired BAC clones from white clover (Trifolium
repens L.) and microcolinearity with model legume species. BMC Plant Biol 2010;
10: 94–114

characterization of cDNA encoding three dehydrins expressed during Coffea
canephora (Robusta) grain development. Ann Botany 2006; 97: 755–765

Hu L, Wang Z, Du H, Huang B. Differential accumulation of dehydrins in response to water
stress for hybrid and common bermudagrass genotypes differing in drought

Trends Plant Sci 2012; 17: 16–21

to ammonia and proline accumulation in water stressed white clover. Funct Plant
Biol 2004; 31: 847–855

Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ. The K-segment of maize DHN1
mediates binding to anionic phospholipid vesicles and concomitant structural

Koehler G, Weisel TJ, Randall SK. Transcript expression analysis indicates distinct roles for

Kosugi S, Hasebe M, Tomita M, Yanagawa H. Systematic identification of yeast cell cycle-
dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs.
PNAS 2009; 106: 10171–10176

Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two

Rahman LN, Chen L, Nazim S, Bamm VV, Yaish MW, Moffatt BA et al. Interactions of intrinsically disordered *Thellungiella salsuginea* dehydrins TsDHN-1 and TsDHN-2

Riera M, Figueras M, Lopez C, Goday A, Pages M. Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. PNAS 2004; 101: 9879–9884

Velasco-Conde T, Yakovlev I, Majada JP, Aranda I, Johnsen Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet Genomes 2012; 8: 957–973

Table 1. Primers used in PCR, RACE-PCR and RT-PCR experiments.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Description</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degenerate primers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS legumes Forward</td>
<td></td>
<td>ACAAGATTGGKGRKRCYCTTCA</td>
</tr>
<tr>
<td>KS legumes Reverse</td>
<td></td>
<td>CTGCTGCTRTCAGATCCATG</td>
</tr>
<tr>
<td>Y-segment Forward</td>
<td></td>
<td>GAYGAAYWKGGWAACCC</td>
</tr>
<tr>
<td>K-segment Reverse</td>
<td></td>
<td>ATCAAGTATACCCCTTCTTCTC</td>
</tr>
<tr>
<td>YnSKn gene-specific primers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y₃SK₂ F Forward</td>
<td></td>
<td>ACTGTCACCACTCCTAATCAAACCTTC</td>
</tr>
<tr>
<td>Y₃SK₂ R Reverse</td>
<td></td>
<td>GGTGACCAAGCAATTTTTTTTT</td>
</tr>
<tr>
<td>1 Forward</td>
<td></td>
<td>ACTGTCACCACTCCTAATCAAACCTTC</td>
</tr>
<tr>
<td>2 Forward</td>
<td></td>
<td>GGTGTTATGACCGTGTA</td>
</tr>
<tr>
<td>3 Reverse</td>
<td></td>
<td>TCAGTGGTTGTTGACGCA</td>
</tr>
<tr>
<td>4 Reverse</td>
<td></td>
<td>GGTGACCAAGCAATTTTTTTTT</td>
</tr>
<tr>
<td>5 Reverse</td>
<td></td>
<td>CTAGTGGTTGTTGACGCA</td>
</tr>
<tr>
<td>5a Reverse</td>
<td></td>
<td>TATATGGAAAAAGAAAAGTGAGAAGC</td>
</tr>
<tr>
<td>YnKn gene-specific primers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Forward</td>
<td></td>
<td>ATGAATATGGAACCCAGTG</td>
</tr>
<tr>
<td>7 Forward</td>
<td></td>
<td>AGAAAGGGTTATGACCAGAT</td>
</tr>
<tr>
<td>8 Reverse</td>
<td></td>
<td>CTAGTGCCAGTTAGCCTCCAGTAC</td>
</tr>
<tr>
<td>SKn gene-specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Forward</td>
<td></td>
<td>TGGAAACAGGAGTAAACAGGAGTGA</td>
</tr>
<tr>
<td>10 Reverse</td>
<td></td>
<td>TGCCAGTTGAAAGGTGAGTTG</td>
</tr>
<tr>
<td>KS gene-specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Forward</td>
<td></td>
<td>GAGACAAGAAAGAGGGGAACAC</td>
</tr>
<tr>
<td>12 Reverse</td>
<td></td>
<td>CTTTTCTCTTCTCCTCCCTCACC</td>
</tr>
<tr>
<td>13 Reverse</td>
<td></td>
<td>GTTTCTCTTTGTACTCACCACCAC</td>
</tr>
</tbody>
</table>
Figure 1. Relative water content (RWC) measured in the first fully expanded leaf at the beginning of the experiment (day 14), after 7 (day 21) or 14 days of water deprivation (day 28), and after recovery (day 31). Bars represent standard deviation (n=3 for day 14 – 21, n=8 for day 28 – 31).

Figure 2. (A) Vector NTI analysis of the isolated T. repens CIG-like Y\textsubscript{\text{a}}K\textsubscript{\text{n}} sequence (GenBank ID: KC756189) and locations of the RT-PCR expression assays (marked with arrows and the numbers of the used primers according to Table 1). (B) CIG-like Y\textsubscript{\text{a}}K\textsubscript{\text{n}} RT-PCR amplification products in control (C) and drought-stressed (D) leaves (L1-L5), and roots (R). The arrows indicate the isolated and sequenced transcripts. (C) Expression ratio of Y\textsubscript{\text{a}}K\textsubscript{\text{n}} transcript (GenBank ID: KC247805) normalized to actin and tubulin in control, drought-stressed, and recovered leaves (L1-L5) and roots (R). The vertical bars indicate the standard deviation from three independent biological repeats. According to the performed unpaired two-tail Student's t-test significant differences between the samples derived from drought stressed plants and their controls are marked with * (p ≤ 0.05) or *** (p ≤ 0.001).

Figure 3. (A) RT-PCR amplification products of T. repens KS in control (C) and drought-stressed (D) leaves (L1-L5) and roots (R). The arrows indicate the isolated and sequenced transcripts. (B) Vector NTI analyses of T. repens KS sequence (GenBank ID: KC247802) and location of the RT-PCR expression assay (marked with arrows and the number of the used primers according to Table 1). (C) Expression ratio of KS224 transcript (GenBank ID: KC247802) normalized to actin and tubulin in control, drought-stressed, and recovered leaves (L1-L5) and roots (R). The vertical bars indicate the standard deviation from three independent biological repeats. According to the performed unpaired two-tail Student's t-test
significant differences between the samples derived from drought stressed plants and their controls are marked with * (p≤0.05) or *** (p≤0.001).

Figure 4. Expression ratio of *T. repens* SK2 transcript (GenBank ID: EU846208) normalized to actin and tubulin in control, drought-stressed, and recovered leaves (L1-L5) and roots (R). The vertical bars indicate the standard deviation from three independent biological repeats. According to the performed unpaired two-tail Student's t-test significant differences between the samples derived from drought stressed plants and their controls are marked with * (p≤0.05) or ** (p≤0.01).

Figure 5. (A) Vector NTI analyses of *T. repens* Y3SK2 sequence (GenBank ID: GU443965.1) with identified transcript variants and locations of the RT-PCR expression assays (marked with arrows and the names of the used primers according to Table 1). (B) RT-PCR Y3SK2 amplification products in control (C), and drought-stressed (D) *T. repens* leaves (L1-L5) and roots (R). (C) Expression ratio of Y3SK2 transcript (GenBank ID: KC247804) normalized to actin and tubulin in control, drought-stressed, and recovered leaves (L1-L5) and roots (R). The vertical bars indicate the standard deviation from three independent biological repeats. According to the performed unpaired two-tail Student's t-test significant differences between the samples derived from drought stressed plants and their controls are marked with * (p≤0.05).

Figure 6. Immunoblot analysis of *T. repens* control (C) and drought-stressed (D) leaf (L0-5) (A) and root (R) dehydrins (B). Prestained molecular weight standards (Precision Plus Protein Prestained Dual Color, BioRad) are indicated. Arrows show the position of dehydrin signals.
Figure 3

ORF 2 (fragmentary) → ORF 3 (fragmentary) → ORF 1 (Nested ORF 13)

GenBank ID: KC247802

C

SP-0

Drought

Recovery

KS 224 b.p./actin

KS 224 b.p./actin

KS 224 b.p./actin

L1 L2 L3 L4 L5 R

L1 L2 L3 L4 L5 R

L1 L2 L3 L4 L5 R

Control Drought

Control Drought

Control Drought
Supplementary file 1. Phylogenetic analysis of *T. repens* CIG-like YnKn homologue with related legume dehydrins. Multiple sequence alignment (MegAlign, DNASTAR, Lasergene) showed that *T. repens* CIG-like YnKn (ID: KC756189) has 46.7 % identity with *Galega orientalis* dehydrin (ID: HM7770 (estimated divergence – 41.9 %) and 44.2 % identity with *Vicia monata* dehydrin a (ID: AB506694.1) (estimated divergence – 73.9 %).

Supplementary file 2.

(A) Vector NTI analyses of the isolated partial *T. repens* CIG-like YnKn sequences (GenBank IDs: KC247806 and KC247807) and locations of the RT-PCR expression assays (marked with arrows and the numbers of the used primers according to Table 1)

(B) Translation of the isolated partial *T. repens* CIG-like YnKn mRNAs (K-segments are bold and underlined, Y-segments – italics). cNLS Mapper predicting importin α-dependent nuclear localization signals (Kosugi et al., 2009) did not find any evidence for NLS within the four translations, which means that the peptides should be localized in the cytoplasm.

Supplementary file 3. Alignment of 1310 b.p. cDNA derived from drought stressed leaf 3 (DL3) and genomic DNA coding for CIG-like YnKn dehydrin (ID: KC756189).

Supplementary file 4. RT-PCR amplification products of YnKn transcripts (ID: KC247805) (A); KS transcript (ID: KC247802) (B), SK2 (ID: EU846208) (C), Y3SK2 transcripts (ID: JF748411 and ID: KC247804) (D); actin (E) and tubulin (F) in control (C), drought-stressed (D) and recovered leaves (L1-L5) and roots (R).

Supplementary file 5. Alignment of the translated KS transcripts derived from drought stressed leaves (ID: KC247802, DL) and drought stressed roots (ID: KC247803, DR).
Click here to download e-component: Suppl 1 Vaseva et al_1st Rev.tif
Click here to download e-component: Suppl_2A_Vaseva et al_2nd Rev.tif
e-component 2B

Click here to download e-component: Suppl 2B_Vaseva et al_2nd Rev.doc
Click here to download e-component: Suppl 3 Vaseva et al._1st Rev.tif
Click here to download e-component: Suppl 5 Vaseva et al_1st Rev.tif