hp-dGFEM for Second-Order Elliptic Problems in Plyhedra II: Exponential Convergence

Schötzau, D.; Schwab, Ch.; Wihler, T. P. (2013). hp-dGFEM for Second-Order Elliptic Problems in Plyhedra II: Exponential Convergence. Siam journal on numerical analysis, 51(4), pp. 2005-2035. Society for Industrial and Applied Mathematics 10.1137/090774276

[img] Text
77427.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (412kB) | Request a copy

The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Mathematics and Statistics > Institute of Mathematics

UniBE Contributor:

Wihler, Thomas

Subjects:

500 Science > 510 Mathematics

ISSN:

1095-7170

Publisher:

Society for Industrial and Applied Mathematics

Language:

English

Submitter:

Mario Amrein

Date Deposited:

12 Mar 2014 11:32

Last Modified:

06 Aug 2019 14:04

Publisher DOI:

10.1137/090774276

BORIS DOI:

10.7892/boris.41961

URI:

https://boris.unibe.ch/id/eprint/41961

Actions (login required)

Edit item Edit item
Provide Feedback