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Analysis and Geometry in Metric Spaces
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Dimension Distortion by Sobolev Mappings in Foliated
Metric Spaces

Abstract
We quantify the extent to which a supercritical Sobolev map-
ping can increase the dimension of subsets of its domain, in
the setting of metric measure spaces supporting a Poincaré
inequality. We show that the set of mappings that distort
the dimensions of sets by the maximum possible amount is
a prevalent subset of the relevant function space. For folia-
tions of a metric space X defined by a David–Semmes regular
mapping π : X → W , we quantitatively estimate, in terms of
Hausdorff dimension in W , the size of the set of leaves of the
foliation that are mapped onto sets of higher dimension. We
discuss key examples of such foliations, including foliations
of the Heisenberg group by left and right cosets of horizontal
subgroups.

Keywords
Sobolev mapping • Ahlfors regularity • Poincaré inequality •
foliation • David–Semmes regular mapping

MSC: 46E35, 28A78, 46E40, 53C17, 30L99
© Versita sp. z o.o.

Zoltán M. Balogh1∗, Jeremy T. Tyson2† , Kevin Wildrick1‡

1 Mathematisches Institut, Universität Bern, Sidlerstrasse 5,
3012 Bern, Switzerland

2 Department of Mathematics, University of Illinois at Urbana-
Champaign, 1409 W Green Street, Urbana, IL 61801, USA

Received 16 April 2013Accepted 21 June 2013

1. IntroductionLet N and N ′ be differentiable manifolds of dimensions n ≥ n′. For every y ∈ N ′, the preimage π−1(y) under asubmersion π : N → N ′ is a submanifold of N of dimension n − n′. In this way, the map π defines a foliation of
N parameterized by N ′. The canonical such submersion is the orthogonal projection of Rn onto the codimension onesubspace spanned by all but the ith coordinate vector, i = 1, . . . , n. The resulting foliation of Rn by parallel straight linesfeatures in the theory of Sobolev mappings. Indeed, a mapping f ∈ Lp(Rn,Rm) is in the Sobolev space W 1,p(Rn;Rm) ifand only if, up to choice of representative, for each i = 1, . . . , n, each coordinate function of f is absolutely continuouson Hn−1-almost every line in the above foliation, and the resulting partial derivatives are in Lp(Rn).Sobolev mappings between metric spaces are of growing interest and importance in modern analysis, geometric grouptheory, and geometric measure theory. While there are several (often equivalent) definitions of such Sobolev maps, ineach approach Sobolev mappings are assumed or shown to be absolutely continuous along “almost every curve". Whenthe space under consideration is equipped with a foliation by curves that is parameterized by another space W , it isnatural that “almost every curve" refer to a measure on W , as in the Euclidean case above. In other words, a Sobolevmapping should preserve or decrease the dimension of almost every leaf of a given foliation by curves.Our first result states that while a Sobolev mapping may substantially increase the dimension of the remaining measurezero set of curves, this increase is controlled. In fact, there are universal bounds on the dimension increase undera supercritical Sobolev mapping. Here and henceforth in this paper we denote by Hα

Y the α-dimensional Hausdorffmeasure in a metric space Y , and by dimY A the Hausdorff dimension of a subset A of the space Y . The assumptions on
∗ E-mail: balogh.zoltan@math.unibe.ch
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Dimension Distortion in Metric Spaces

the metric space X in Theorem 1.1 are standard and explained in Section 2 below, as is the notion of a Sobolev spacebased on upper gradients.
Theorem 1.1.
Let X be a proper metric measure space that is locally Q-homogeneous and supports a local Q-Poincaré inequality.
Let Y be any metric space. For p > Q, if f : X → Y is a continuous mapping that has an upper gradient in Lploc(X ), then

dimY f (E) ≤ p dimX E
p−Q + dimX E

(1.1)
for any subset E ⊆ X . Moreover, if HQ

X (E) = 0, then HQ
Y (f (E)) = 0.

In the setting of quasiconformal mappings between domains in Euclidean space, such dimension distortion estimateshave been known for many years; see, for instance, Gehring [14], Gehring–Väisälä [15] and Astala [3]. Theorem 1.1 wasalso known in the Euclidean Sobolev setting; see for instance Kaufman [23, Theorem 1].The main difficulty in proving Theorem 1.1 is that in the general metric setting, the usual analogue of a Euclidean dyadiccube need not be bi-Lipschitz equivalent to a ball of a comparable diameter. Hence, nice essentially disjoint coveringsof sets need not exist. We overcome this obstacle by using maximal functions; see Lemma 3.3. In the case that the set
E under consideration in Theorem 1.1 is Ahlfors regular, we reach the stronger conclusion that f (E) has zero measurein the appropriate dimension; see Theorem 4.1 below.We also prove that Theorem 1.1 is sharp whenever the domain is Ahlfors regular, and that the collection of Sobolevmappings which increase the dimension of a given compact set E by the maximum possible amount is prevalent, a notionof genericity in Banach spaces (see [11], [2], [12], [22], [28]). Here the relevant Banach space is a Newtonian–Sobolevspace, defined in Section 3.
Theorem 1.2.
Let (X, d, µ) be a metric measure space that is locally Ahlfors Q-regular for some Q > 0. For 0 ≤ s ≤ Q and p > Q,
set

α = ps
p−Q + s .

Let E be a compact subset of X such that Hs(E) > 0. Then for all N ∈ N greater than α , there exists a continuous map
f : X → RN such that f has an upper gradient in Lp(X ) and dim f (E) ≥ α . Moreover, the set of such functions forms a
prevalent set in the Newtonian–Sobolev space N1,p(X ;RN ).
We now turn to the study of dimension increase under Sobolev mappings of generic leaves in parameterized familiesof subsets. Consider a continuous supercritical Sobolev mapping f : X → Y as in Theorem 1.1 and fix a dimension0 ≤ s ≤ Q and a target dimension s ≤ α ≤ ps/(p− Q + s). If X is foliated by subsets of dimension no greater than s,how many leaves of the foliation can be mapped by f onto sets of dimension at least α? The answer will be given interms of Hausdorff measures on the parameterizing space for the foliation.The preceding question has been thoroughly studied in Euclidean space. The first two authors together with Monti[5] studied supercritical (p > n) and borderline (p = n) Sobolev mappings on foliations arising from the orthogonalprojection of Rn onto a subspace of arbitrary dimension. In the same setting, Hencl and Honzík [20] considered thesub-critical case (p < n). Bishop and Hakobyan [9] have recently addressed finer questions for the behavior of planarquasiconformal mappings along lines.In this general metric setting, we must first give precise meaning to the notion of foliation. David and Semmes [13]introduced a class of mappings between metric spaces that is analogous to the class of submersions between differentiablemanifolds. In this paper, we study foliations arising from local versions of David–Semmes regular mappings.
Definition 1.3.Let s ≥ 0. A surjection π : X → W between proper metric spaces is said to be locally David–Semmes s-regular (forshort, locally s-regular) if for every compact subset K ⊆ X , π|K is Lipschitz and there is a constant C ≥ 1 and a radius
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Z.M. Balogh, J.T. Tyson, K. Wildrick

r0 > 0 such that for every ball B ⊆ W of radius r < r0, the truncated preimage π−1(B) ∩ K can be covered by at most
Cr−s balls in X of radius Cr.
An easy calculation shows that given a locally s-regular mapping π : X → W , a compact subset K ⊆ X , and a point
a ∈ W ,

Hs
X (π−1(a) ∩ K ) ≤ C,where C < ∞ depends only on the constant associated to K in Definition 1.3. In particular, the leaves π−1(a) haveHausdorff dimension no greater than s. However, leaves can have Hausdorff dimension strictly less than s; this situationoccurs naturally for certain foliations of the Heisenberg group, as we will see later.Let π : X → W be a locally s-regular mapping. The triple (X,W , π) will be called an s-foliation of X . If the value of sis unimportant, we will refer to an s-foliation as a metric foliation. Given a point a ∈ W , the set π−1(a) is called a leafof the foliation.

Theorem 1.4.
Let Q ≥ 1 and 0 < s < Q. Let (X, dX , µ) be a proper metric measure space that is locally Q-homogeneous, supports a
local Q-Poincaré inequality, and is equipped with an s-foliation (X,W , π). Let Y be any metric space. For p > Q, if
f : X → Y is a continuous mapping that has an upper gradient in Lploc(X ), then

dim{a ∈ W : dim(f (π−1(a))) ≥ α} ≤ (Q − s)− p(1− s
α

) (1.2)
for each α ∈

(
s, ps

p−Q+s
]
.

The metric setting presents several obstacles to a straightforward adaptation of the Euclidean proof given in [5, Theo-rem 1.3]. We make heavy use of the machinery of geometric measure theory in metric spaces espoused in [25].A motivating example of a metric measure space to which our results apply is the Heisenberg group H. Of particularinterest are foliations of H by either left or right cosets of a given horizontal subgroup. When the leaves are left cosets,they are also horizontal, and the natural parameterizing space is Euclidean. However, when the leaves are right cosets,they are rarely horizontal, and the natural parameterizing space is the Grushin plane, a sub-Riemannian metric spacehomeomorphic but not bi-Lipschitz equivalent to R2. In this case, the wide generality of Theorem 1.4 is needed. Theseand other examples are discussed in Section 6.Theorem 1.4 recovers the Euclidean result in the case of orthogonal projections onto subspaces, and is sharp in thatsetting [5, Theorem 1.4]. However, it is interesting to note that while the foliation of the Heisenberg group by left cosetsof a horizontal subgroup is a 2-foliation, the dimension of a leaf is only 1. This prevents Theorem 1.4 from being sharp,and indicates that the framework of David-Semmes foliations is not appropriate. In the article [7], we provide an alternateframework, based on the Radon-Nikodym theorem, which is more appropriate. Notably, this alternate framework cannotaccommodate foliations that are not parameterized by a Euclidean space, such as the foliation of the Heisenberg groupby right cosets of a horizontal subgroup.We now give an outline for this paper. In Section 2, we establish notation and recall relevant definitions from the theoryof analysis on metric spaces. Section 3 describes the version of Morrey’s inequality, a key tool in our proofs, that isvalid in the metric measure space setting. We prove Theorems 1.1 and 1.2 in Section 4. Section 5 contains the proofof Theorem 1.4. In Section 6 we provide examples of metric foliations and discuss the applications of our results. Thefinal Section 7 contains some open questions and problems motivated by this work.
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Dimension Distortion in Metric Spaces

2. The metric measure space settingIn a metric space (X, d), we denote the open ball centered at a point x ∈ X of radius r > 0 by
BX (x, r) = {y ∈ X : d(x, y) < r}

and the corresponding closed ball by
BX (x, r) = {y ∈ X : d(x, y) ≤ r}.When there is no danger of confusion, we often write B(x, r) in place of BX (x, r). A similar convention will be usedfor all objects that depend implicitly on the ambient space. For a subset A of X and a number ε > 0, we denote the

ε-neighborhood of A by
N (A, ε) = {x ∈ X : dist(A, x) < ε}.For an open ball B = B(x, r) and a parameter λ > 0, we set λB = B(x, λr).A metric space is proper if every closed ball is compact. We will only consider proper metric spaces in this paper.A metric measure space is a triple (X, d, µ) where (X, d) is a metric space and µ is a measure on X . The measure µ isassumed to be a Borel measure that gives positive and finite value to any non-empty open set. For E ⊆ X , we denoteby µbE the restriction of µ to E . Given a mapping f from X to some other metric space Y , we define the push-forwardmeasure of µ by f as

f]µ(U) = µ(f−1(U)),where U ⊆ Y .For t ≥ 0, the t-dimensional Hausdorff measure on a metric space X will be denoted by Ht
X or simply Ht . For ε > 0,the corresponding pre-measure will be denoted by Ht

ε,X or Ht
ε , and the corresponding content will be denoted by Ht

∞,Xor Ht
∞. Unless otherwise noted, for E ⊆ X we denote by dimE the Hausdorff dimension of the metric space (E, dX ).We refer to Mattila [25] for more details and information about geometric measure theory in metric spaces.Let Q > 0. We say that the metric measure space (X, d, µ) is locally Q-homogeneous if for every compact subset K ⊆ X ,there is a radius R > 0 and a constant C ≥ 1 such that

µ(B(x, r2))
rQ2 ≤ C µ(B(x, r1))

rQ1
whenever B(x, r1) ⊆ B(x, r2) are concentric balls centered in K . When the value of Q is unimportant, we say that(X, d, µ) is locally homogeneous.Any locally Q-homogeneous space has Hausdorff dimension at most Q. In fact, such spaces have Assouad dimension atmost Q; note that the Assouad dimension is always greater than or equal to the Hausdorff dimension. We will not makeuse of Assouad dimension in this paper.Every locally homogeneous metric measure space (X, d, µ) is locally doubling, which means that for every compact subset
K ⊆ X , there is a radius R > 0 and a constant C ≥ 1 such that

µ(B(x, 2r)) ≤ Cµ(B(x, r))
whenever B(x, r) is a ball centered in K with r ≤ R .The local homogeneity condition only provides lower bounds on measure. We will occasionally require upper boundsas well. The metric measure space (X, d, µ) is locally Ahlfors Q-regular if for every compact subset K ⊆ X , there is aradius R > 0 and a constant C ≥ 1 such that

rQ
C ≤ µ(Br) ≤ CrQ

whenever Br is a ball centered in K of radius r < R .We will often consider conditions on spaces and mappings defined using multiplicative constants. When estimatingquantities involving such constants, we use the notation A . B to mean that there is a constant C ≥ 1, depending onlyon certain specified and fixed quantities, such that A ≤ CB.
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3. Sobolev classes and Morrey’s estimateLet p > n, and let m ∈ N. Each mapping in the supercritical Sobolev space W1,ploc (Rn;Rm), p > n, has a (1− n
p )-Höldercontinuous representative satisfying Morrey’s estimate

diam f (Q) ≤ c(n, p) diamQ(−∫
Q
|Df |p dHn

) 1
p
, (3.1)

for each ball or cube Q ⊆ Rn; see, e.g., [31]. Here |Df | denotes the norm of the matrix of weak partial derivatives of thecoordinate functions of f , and c(n, p) is a positive constant depending only on n and p. This fact is the sole property ofSobolev mappings needed for the results in this paper. Note that by Hölder’s inequality,
W1,ploc (Rn;Rm) ⊆ W1,qloc (Rn;Rm)

for all 1 ≤ q < p. Hence, if f ∈ W1,ploc (Rn;Rm), the inequality (3.1) also holds with p replaced by any exponent q ∈ (n, p].We wish to state a version of the Morrey inequality in the metric measure space setting. Throughout this section, weassume that (X, d, µ) is a proper metric measure space and that (Y , dY ) is an arbitrary metric space.A robust approach to Sobolev spaces of mappings between metric spaces is based on the concept of an upper gradient[10], [18], [30]. Let f : X → Y be a continuous map, and let g : Y → [0,∞] be a Borel function. The function g is an
upper gradient of f if for every rectifiable curve γ : [0, 1]→ X ,

dY (f (γ(0)), f (γ(1))) ≤ ∫
γ
g ds.

We consider mappings f which have upper gradients in Lploc(X ). Such mappings are absolutely continuous on “most"rectifiable curves in X [30, Proposition 3.1]. When the target space Y is a Banach space, one can define a Banach spaceof Newtonian-Sobolev mappings N1,p(X ;Y ) consisting of equivalence classes of (not necessarily continuous) mappingsin Lp(X ;Y ) with an upper gradient in Lp(X ). For more details, see [30] or [19].If there are no rectifiable curves in X , then any mapping f : X → Y has the zero function as an upper gradient, and sothere is no hope for a Morrey estimate. The Q-Poincaré inequality remedies this [16], [18], [17].
Definition 3.1.Let p ≥ 1. A metric measure space (X, d, µ) satisfies a local p-Poincaré inequality if for every compact subset K ⊆ X ,there are constants C ≥ 1, σ ≥ 1, and R > 0 such that if f : X → R is a continuous function and g : X → [0,∞] is anupper gradient of f , then

−
∫
B
|f − fB| dµ ≤ C diamB(−∫

σB
gp dµ

)1/p

for each open ball B ⊆ X centered in K of radius less than R .
Theorem 3.2 (Hajłasz-Koskela, Heinonen et al.).
Assume that X is locally Q-homogeneous, Q ≥ 1, and supports a local Q-Poincaré inequality. If f : X → Y is a
continuous mapping with an upper gradient g ∈ Lploc(X ) for some p > Q, then for each compact subset K ⊆ X there
exist constants C ≥ 1, σ ≥ 1, and R > 0 satisfying

diam f (B) ≤ C (diamB)(−∫
σB
gp dµ

) 1
p

for each open ball B ⊆ X centered at a point of K of radius less than R .
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Dimension Distortion in Metric Spaces

In the above result, it is assumed a priori that the mapping f is continuous. In fact, one could instead assume only thatthe mapping f is locally integrable in a suitable sense; it then follows that f has a continuous representative satisfyingthe desired conclusion.It may occur that the quantity σ in Theorem 3.2 is necessarily strictly larger than one [16, Section 9]. This is aninconvenience when working with coverings. In many situations the following statement, which we learned from Koskelaand Zürcher, ameliorates this problem.
Lemma 3.3.
Assume that (X, d, µ) is a locally doubling metric measure space and let 1 ≤ q < p and 0 < τ ≤ 1. For each g ∈ Lploc(X ),
there is a Borel function g̃ ∈ Lp/qloc (X ) ⊆ L1loc(X ) such that for each compact set K ⊆ X there exists a constant C ≥ 1 and
a radius R > 0 so that

−
∫
B(x,r) gq dµ ≤ C−

∫
B(x,τr) g̃ dµ

for each x ∈ K and each 0 < r < R .

Proof. Let y ∈ B(x, τr). Then ∫
B(x,r) gq dµ ≤ µ(B(y, (1 + τ)r))M(gq)(y),

where M(gq) ∈ Lp/qloc (X ) is a suitably restricted maximal function of gq [17, Chapter 2]. Integrating the above inequalityover B(x, τr) yields
µ(B(x, τr)) ∫

B(x,r) gq dµ ≤
∫
B(x,τr) µ(B(y, (1 + τ)r))M(gq)(y) dµ(y) ≤ µ(B(x, (1 + 2τ)r))∫

B(x,τr) M(gq)(y).
The local doubling condition now implies that g̃ = M(gq) satisfies the requirements of the statement.
Hölder’s inequality, Theorem 3.2, and Lemma 3.3 imply the following statement, which will be the form of Morrey’sestimate most frequently applied in this paper.
Proposition 3.4.
Assume that X is locally Q-homogeneous, Q ≥ 1, and supports a local Q-Poincaré inequality. Let Q < q < p. If
f : X → Y is a continuous mapping with an upper gradient in Lploc(X ), then there exists a Borel function g ∈ Lp/qloc (X ) ⊆L1loc(X ) such that for each compact set K ⊆ X , there exists a constant C ≥ 1 and a radius R > 0 such that

diam f (B) ≤ C diamB(−∫
B(x,r/5) g dµ

)1/q
,

for each x ∈ K and 0 < r < R .

4. Universal bounds on dimension distortionIn this section, we prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. We first consider the case dimE < Q. Fix t ∈ (dimE,Q), and choose q ∈ (Q, p) so closeto p that

p dimE
p−Q + dimE < qt

q−Q + t <
pt

p−Q + t .

Let α = qt
q−Q+t ∈ (0, Q).
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The countable subadditivity of Hausdorff measure allows us to assume that E is contained in a ball B0, which hascompact closure. Hence, by Proposition 3.4, there is a constant C ≥ 1, a radius R > 0, and a Borel function g ∈ L p
qloc(X )such that for every x ∈ E and r < R ,

diam f (B(x, r)) ≤ Cr (−∫
B(x,r/5) g

)1/q
. (4.1)

Let ε, ε′ > 0. Since t > dimE , it holds that Ht(E) = 0. Hence, it follows from the definitions and the 5B-coveringtheorem [17, Theorem 1.2] that there is a collection {B(xk , rk )}k∈N of balls centered in E such that
•
∑

k∈N rtk < ε,
• supk∈N rk < ε′,
• E ⊆

⋃
k∈N B(xk , rk ) ⊆ B0,

• B(xk , rk /5) ∩ B(xj , rj /5) = ∅ if j 6= k .Since f is uniformly continuous on small sets, choosing ε′ small enough ensures that for all k ∈ N,
diam f (B(xk , rk )) < ε.

Reducing ε′ to be less than R if necessary, and using (4.1) and local homogeneity, we see that
Hα
ε (f (E)) ≤∑

k∈N

(diam f (B(xk , rk )))α .∑
k∈N

r
(1− Q

q
)
α

k

(∫
B(xk ,rk /5) g dµ

) α
q
.

Applications of Hölder’s inequality and the disjointness assumption now yield
Hα
ε (f (E)) . (∑

k∈N

rtk

)1− α
q (∫

B0 g dµ
) α

q
. ε1− α

q

(∫
B0 g dµ

) α
q
.

Since g ∈ Lp/qloc (X ) ⊂ L1loc(X ), letting ε tend to zero shows that dim f (E) ≤ α . Letting t tend to dimE now yields thedesired result.We now consider the case dimE = Q. Choose any q ∈ (Q, p). As before, we use Proposition 3.4 to find a constant
C ≥ 1, a radius R > 0, and a Borel function g ∈ L p

qloc(X ) such that
diam f (B(x, r)) ≤ Cr (−∫

B(x,r/5) g dµ
)1/q

for every x ∈ E and r < R . This implies that
diam f (B(x, r)) ≤ Cr(M(g)(x))1/q.

Since M(g) ∈ L p
qloc(X ), there is a sequence E1 ⊇ E2 ⊇ . . . of subsets of E such that for each n ∈ N, there is a number

Ln ≥ 1 such that diam f (B(x, r)) ≤ Lnrfor each x ∈ E\En and r < R , and µ(En) ≤ 1/n. Then N = ⋂n En satisfies µ(N) = 0, and
dim f (E\N) ≤ dimE = Q.

Note that local Q-homogeneity implies that HQbE is absolutely continuous with respect to µ. Hence HQ(N) = 0. Itsuffices to show that HQ(f (N)) = 0 as well; the proof of this is analogous to the proof in the previous case and is leftto the reader. This also proves the final statement of the Theorem.
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Dimension Distortion in Metric Spaces

In order to reach the stronger conclusion that the image of a given set has zero measure in the appropriate dimension,we assume the set has additional structure:
Theorem 4.1.
Assume the notation and hypotheses of Theorem 1.1, and further assume that µ(E) = 0 and there is 0 ≤ t < Q such
that HtbE is Ahlfors t-regular. Then

H
pt

p−Q+t (f (E)) = 0.
A simple modification of the proof of [23, Theorem 1], which is the Euclidean version of Theorem 1.1, shows thatTheorem 4.1 is true when the assumption of Ahlfors regularity is replaced by the assumption that E has the followingcovering property for sufficiently large values of the parameter σ :
Definition 4.2.Let σ ≥ 1. A subset E of a metric space (X, d) is σ-evenly coverable if there exists a constant C ≥ 1 such that for allsufficiently small ε > 0, there exists a cover {B(xk , rk ) : k ∈ N} of E by balls centered in E such thati) supk∈N rk ≤ ε,ii) ∑k∈N rdimE

k ≤ C ,iii) supx∈X∑k∈N χB(xk ,σrk )(x) ≤ C .
Hence, Theorem 4.1 follows from the following proposition.
Proposition 4.3.
Let (X, d) be a metric space, and let E ⊆ X be a bounded Ahlfors t-regular subset of X . Then E is σ-evenly coverable
for every σ ≥ 1.

Proof. Let σ ≥ 1. We assume that there is a constant K ≥ 1 such that for any r ≤ 2 diamE and x ∈ E ,
rt
K ≤ H

t
X (B(x, r) ∩ E) ≤ Krt .

In particular, this implies that Ht
X (E) <∞.Let ε > 0, and consider a maximal ε-separated set {x1, . . . , xN} in E . Then {B(xk , ε)}Nk=1 covers E , while {B(xk , ε2 )∩E}Nk=1is disjoint. Thus

N∑
k=1 ε

t ≤
N∑
k=1 2tKHt

X

(
B
(
xk ,

ε2) ∩ E) ≤ 2tKHt
X (E). (4.2)

This shows that {B(xk , ε)}Nk=1 satisfies conditions (i) and (ii) in the definition of σ-even coverability.Suppose that ⋂
k∈I

B(xk , σε) 6= ∅
where I is a subset of {1, . . . , N}. To see that condition (iii) is verified, we must show that the cardinality of I is boundedabove by a number that does not depend on ε. Let i0 ∈ I . Then our assumption yields⋃

k∈I

B(xk , σε) ⊆ B(xi0 , 3σε).
This implies that

(card I)εt ≤∑
k∈I

2tKHt
X

(
B
(
xk ,

ε2) ∩ E) ≤ 2tKHt
X (B(xi0 , 3σε) ∩ E) ≤ K 2(6σε)t .

The desired bound on the cardinality of I follows.
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We now turn to the question of sharpness in Theorem 1.1. We first prove Theorem 1.2 on the existence of mappingswith Lp upper gradients exhibiting optimal dimension increase. Note that the Q-Poincaré inequality is not assumed inTheorem 1.2.
Proof of Theorem 1.2. The proof is a modified version of those appearing in [23] and [5]. The main novelty is thatwe employ maximal separated sets in place of dyadic cubes; this in fact simplifies the proof. Let (X, d, µ) be a locally
Q-Ahlfors regular metric measure space and let E ⊆ X be a compact set with Hs(E) > 0 for some 0 ≤ s ≤ Q. Wemay assume without loss of generality that diamE < 1. By Frostman’s Lemma [25, Theorem 8.17], there is a finite andnontrivial Borel measure ν supported on E such that

ν(B(x, r)) ≤ rs (4.3)
for each x ∈ X and r > 0.For each n ∈ N, let Xn be a maximal 2−n-separated set in E ; we may assume that X1 ⊆ X2 ⊆ . . .. Define

Qn = {B(z, 2−n) : z ∈ Xn} and Q = ⋃
n∈N

Qn.

Note that each Qn is finite. The local doubling condition on X implies that there is a constant C ≥ 1 such that
∑
B∈Qn

χ100B(x) ≤ C (4.4)
for all x ∈ X and all n ∈ N.For each B ∈ Q, we may find a Lipschitz function ψB : X → [0, 1] such that ψB|B = 1, the support of ψB is contained in2B, and LipψB . (diamB)−1.
Here Lip f denotes the pointwise Lipschitz constant of the function f , defined by

Lip f (x) = lim sup
y→x

|f (y)− f (x)|
d(x, y) .

Let ξ : Q → BRN (0, 1) be a function. For each n ∈ N, define fξ,n : X → RN by
fξ,n(x) = ∑

B∈Qn

ν(100B)1/αψB(x)ξ(B).
Now, define fξ : X → RN by

fξ (x) =∑
n∈N

(1 + n)−2fξ,n(x).
Then fξ is continuous and bounded. Since fξ,n is locally Lipschitz, the function Lip fξ,n is an upper gradient of fξ,n [10].We claim that the sequence of norms {|| Lip fξ,n||Lp}n∈N is bounded. Using the bounded overlap condition (4.4), theFrostman condition (4.3), and Ahlfors Q-regularity, we calculate that

|| Lip fξ,n||pLp . 2np ∑
B∈Qn

ν(100B)p/αµ(2B) . 2n((p−Q)−s( pα −1)) ∑
B∈Qn

ν(100B).
Our choice of α implies that (p−Q)− s(pα − 1) = 0,
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and hence another application of the bounded overlap condition (4.4) shows that
|| Lip fξ,n||pLp . ∑

B∈Qn

ν(100B) . ν(X ).
These facts imply that Lip fξ ∈ Lp is an upper gradient of fξ .We now choose the vectors ξB randomly. More precisely, we assume that the functions {ξB}B∈Q are independent randomvariables distributed according to the uniform probability distribution on the closed unit ball BRN (0, 1), and hence theresulting function ξ : Q → BRN (0, 1) can also be considered as random variable; the expected value of this randomvariable is denoted by Eξ . We claim that dim fξ (E) ≥ α almost surely. The desired result follows from this claim.For t > 0 denote by It(λ) the t-energy of a compactly supported Radon measure λ on a metric space X , i.e.

It(λ) = ∫∫ d(x, y)−t dλ(x)dλ(y).
If It(λ) is finite, then the Hausdorff dimension of the support of λ is at least t [25, Theorem 8.7].We will prove that for every α ′ < α ,

Eξ
(
Iα ′ ((fξ )#(νbE))) <∞,

which implies that dim fξ (E) ≥ α ′ almost surely; letting α ′ tend to α will complete the proof.By the Fubini–Tonelli theorem, it suffices to prove that
∫∫

Eξ
(
|fξ (x)− fξ (y)|−α ′) dν(y)dν(x) <∞. (4.5)

We write
fξ (x)− fξ (y) = ∑

B∈Q

cB(x, y) ξB,
where

cB(x, y) = (1 + n)−2 ν(100B) 1
α (ψB(x)− ψB(y)) when B ∈ Qn.

We denote by ||c(x, y)||∞ the maximum of the set of numbers {cB(x, y)}B∈Q. Note that ||c(x, y)||∞ = |cQ0 (x, y)| for some
Q0 ∈ Q, since ∑B∈Q |cB(x, y)| is finite. By [5, Lemma 4.4], it holds that

Eξ
(
|fξ (x)− fξ (y)|−α ′) . ||c(x, y)||−α ′∞ .

In view of this, it remains to show that ∫
E

∫
E
||c(x, y)||−α ′∞ dν(y)dν(x) <∞.

We will in fact show the stronger statement
sup
x∈E

∫
||c(x, y)||−α ′∞ dν(y) <∞.

Since ν(E) <∞ this suffices.Fix x ∈ E . For each y ∈ E , define n(y) ∈ N by
2−n(y)+2 ≤ d(x, y) < 2−n(y)+3.
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Choose a ball B ∈ Qn(y) that contains x . Then y ∈ 100B\2B, and so
||c(x, y)||∞ ≥ |cB(x, y)| = (1 + n(y))−2ν(100B) 1

α .

For each n ∈ N, denote by En the set of points y ∈ E for which n(y) = n. As above En ⊂ 100Bn\2Bn, where Bn ∈ Qncontains x . Thus, by the above argument and the Frostman estimate (4.3),
∫
||c(x, y)||−α ′∞ dν(y) =∑

n∈N

∫
En
||c(x, y)||−α ′∞ dν(y) ≤∑

n∈N

n2α ′ν(100Bn)1− α′
α .

∑
n∈N

n2α ′2−ns(1− α ′α ).

Since α ′ < α , the final sum converges.We now show that the set of Sobolev mappings that distort the Hausdorff dimension of a given set in the maximal wayis prevalent, in the sense of Hunt–Sauer–Yorke [22], [28] (see also [26], [11], and [2]).To recall the notion of prevalence, let B be a complete metric vector space (typically infinite dimensional). A compactlysupported Borel measure λ on B is said to be transverse to a Borel set S ⊆ B if λ(S + x) = 0 for every x ∈ B. A set
S ′ ⊆ B is called to be shy if there exists a Borel set S such that S ′ ⊆ S ⊆ B and a Borel measure λ that is transverseto S. Using convolutions of measures it can be checked that the countable union of shy sets is again shy [22, 26]. Aset Y ⊆ B is called prevalent if its complement S = B \ Y is shy. Clearly, the countable intersections of prevalentsets is again prevalent and prevalent sets are dense in B. If B = Rn, then Y ⊆ Rn is prevalent if and only if it is afull Lebesgue measure set. The concept of prevalence has been introduced as a measure-theoretic notion of genericityin infinite dimensional spaces, especially function spaces. We will use this notion for the Newtonian–Sobolev space
B = N1,p(X ;RN ).We consider a compact subset E ⊆ X such that Hs(E) > 0, and wish to show that the set of Newtonian Sobolevmappings f ∈ N1,p(X ;RN ) with the property that dim f (E) ≥ α is prevalent. Notice first that it is enough to show that

dim f (E) ≥ α ′ for a prevalent subset Wα ′ of maps in N1,p(X ;RN ) (4.6)
for each α ′ < α . Indeed, assuming that this is true we obtain prevalent subsets Wn, n ∈ N, for which

dim f (E) ≥ α − 1
n for every f ∈ Wn. (4.7)

Now set W = ⋂
nWn, which is again prevalent in N1,p(X ;RN ) as the countable intersection of prevalent sets. Letting

n→∞ in (4.7) we obtain that dim f (E) ≥ α for all f ∈ W .Note that by (4.5) there exists a continuous mapping g ∈ N1,p(X ;RN ) with the property that
∫∫
|g(x)− g(y)|−α ′ dν(y)dν(x) <∞. (4.8)

Here ν denotes the Frostman measure on E , as in (4.3).Statement (4.6) is implied by the following lemma.
Lemma 4.4.
Let g ∈ N1,p(X ;RN ) satisfy (4.8). Denote by Z the set of all N ×N matrices with entries less than or equal to one in
absolute value. Then for all f0 ∈ N1,p(X ;RN ) the function fL = f0 + Lg satisfies

dim fL(E) ≥ α ′ for almost every L ∈ Z. (4.9)
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The proof of Lemma 4.4 is similar to the proof of Proposition 3.2 from [21]. For the convenience of the reader we providea sketch. The idea is again to use energy estimates: we shall show that∫∫
|fL(x)− fL(y)|−α ′ dν(y)dν(x) <∞, for almost every L ∈ Z, (4.10)

which in turn will follow from the boundedness of the triple integral∫
Z

∫∫
|fL(x)− fL(y)|−α ′ dν(y)dν(x)dL <∞. (4.11)

To prove (4.11) we will use the following
Lemma 4.5.
Let Φ be a linear transformation from the set of N ×N matrices to RN and let b ∈ RN be a fixed vector. Assume that
the image of Z under Φ contains a cube of width δ in RN . Then for α ′ < N we have∫

Z

dL
|Φ(L) + b|α ′ ≤

C
δα ′ , (4.12)

where C is a constant depending only on N and α ′.

A proof of Lemma 4.5 may be found in [21, Lemma 3.3] and [28, Lemma 2.6].We apply Lemma 4.5 to b := f0(x) − f0(y) and Φ(L) := L(g(x) − g(y)), noting that Φ(Z ) contains a cube of widthcomparable to δ = |g(x)− g(y)|. This implies∫
Z
|fL(x)− fL(y)|−α ′dL ≤ K

|g(x)− g(y)|α ′ . (4.13)
By the Fubini–Tonelli theorem we can estimate the integral in (4.11) using (4.13) and (4.8) as follows:∫

Z

∫∫
|fL(x)− fL(y)|−α ′ dν(y)dν(x)dL = ∫∫ ∫

Z
|fL(x)− fL(y)|−α ′ dL dν(y)dν(x)

≤ K
∫∫
|g(x)− g(y)|−α ′ dν(y)dν(x) <∞.

This finishes the proof of Lemma 4.4 and completes the proof of Theorem 1.2.
5. Regular foliations of a metric spaceIn this section we discuss bounds on dimension increase under Sobolev mappings for leaves in an s-foliation of a metricspace. In particular, we prove Theorem 1.4. Following the proof, we provide some comments regarding the limitations ofthat theorem and alternate methods to derive similar estimates.The first step in the proof of Theorem 1.4 is the following lemma, which enables us to use Frostman’s lemma.
Lemma 5.1.
Assume the notation and hypotheses of Theorem 1.4. Then, for any compact set K ⊆ X , the set

Eα = {a ∈ W : Hα (f (π−1(a) ∩ K )) > 0}
is a countable union of compact sets.
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Proof. As W is assumed to be proper, it suffices to show that Eα is a countable union of closed sets. Since the
α-dimensional Hausdorff measure and the α-dimensional Hausdorff content have the same null sets, it suffices to showthat for each n ∈ N, the set

Eα (n) = {a ∈ W : Hα
∞(f (π−1(a) ∩ K )) ≥ 1

n

}
is closed. Let {aj}j∈N ⊆ Eα (n) be a sequence converging to a point a ∈ W . Since f and π are continuous, for every
ε > 0, there is an index j(ε) ∈ N such that if j ≥ j(ε), then

f (π−1(aj ) ∩ K ) ⊆ NY (f (π−1(a) ∩ K ), ε).
If a /∈ Eα (n), then there is a cover {BY (yi, ri)}i∈N of f (π−1(a) ∩ K ) by open balls such that

∑
i∈N

rαi <
1
n .

Since f (π−1(a) ∩K ) is compact, we may find ε > 0 such that the neighborhood NY (f (π−1(a) ∩K ), ε) is also covered by
{BY (yi, ri)}i∈N. This implies that

Hα
∞(f (π−1(aj ) ∩ K )) < 1

nfor all j ≥ j(ε), which yields the desired contradiction.
Proof of Theorem 1.4. For ease of notation, denote

β = (Q − s)− p(1− s
α

)
.

As we only consider the case that α > s, it suffices to show that
dim{a ∈ W : Hα (f (π−1(a))) > 0} ≤ β.

Let K be an arbitrary compact subset of X , and set
Eα = {a ∈ W : Hα (f (π−1(a) ∩ K )) > 0}.

By the stability of Hausdorff dimension under countable unions and the properness assumption on X , the desired resultwill follow if dimEα ≤ β.Define a function φ : [β,∞)× (Q, p]→ R by
φ(t, q) = ((1− Q

q

)
α + t − s

(1− α
q

))
q

q− α .

Our assumptions imply that α < Q, and so φ is continuous.Now suppose, by way of contradiction, that dimEα > β, and let t ∈ (β, dimEα ). Note that φ(β, p) = β. Moreover, since
t > β,

φ(t, p) = β + (t − β) p
p− α > t. (5.1)

Since φ is continuous, we may find q ∈ (Q, p) such that
t′ := φ(t, q) > t. (5.2)
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The countable stability of Hausdorff dimension and Lemma 5.1 allows us to reduce to the case that Eα is compact. Since
t < dimEα , it holds that Ht(Eα ) = ∞, and so by [25, Theorem 8.19] there exists a compact subset E ⊆ Eα such that0 < Ht(E) < ∞. Frostman’s lemma [25, Theorem 8.17] yields a nonzero Borel measure m supported on E with theproperty that the upper mass bound m(BW (a, r)) ≤ rt is valid for every a ∈ W and all r > 0.Let δ, ε > 0. As t′ > t, it holds that Ht′ (E) = 0, and so we may find a countable cover {BW (ai, ri)}i∈N of E such that
ri < δ for all i ∈ N and ∑

i∈N

rt′i < ε. (5.3)
By choosing δ sufficiently small, we may apply the foliation condition to each ball BW (ai, ri), producing a constant
C ≥ 1 and a cover {Bi,j : j = 1, . . . , Ni} of π−1(BW (ai, ri)) ∩ K where

Ni ≤ Cr−si (5.4)
and the radius of the ball Bi,j is Cri. We apply the 5B covering theorem to the doubly indexed collection {Bi,j : i ∈
N, j = 1, . . . , Ni} to produce a set I ⊆ N and for each i ∈ I a (possibly empty) set Ji ⊆ {1, . . . , Ni} so that

π−1(E) ∩ K ⊆ π−1(⋃
i∈N

BW (ai, ri)) ∩ K ⊆⋃
i∈I

⋃
j∈Ji

5Bi,j , (5.5)
and so that Bi,j ∩ Bi′,j ′ = ∅ whenever (i, j) 6= (i′, j ′).Let τ > 0. By the uniform continuity of f on compact sets, if δ is sufficiently small, then for any a ∈ E ,

Hα
τ (f (π−1(a) ∩ K )) ≤∑

i∈I

∑
j∈Ji

χπ(Bi,j )(a)(diam f (Bi,j ))α . (5.6)
Further reducing δ if necessary so that we may apply Morrey’s estimate (in the form of Proposition 3.4) and the local
Q-homogeneity condition, we find a Borel function g ∈ L p

qloc such that
diam f (Bi,j ) . r1− Q

q
i

(∫
(1/5)Bi,j g dµ

) 1
q (5.7)

for each i ∈ I and j ∈ Ji. Integrating (5.6) and using (5.7), we see that∫
E
Hα
τ (f (π−1(a) ∩ K )) dm(a) .∑

i∈I

∑
j∈Ji

m(π(Bi,j ))(diam f (Bi,j ))α .∑
i∈I

∑
j∈Ji

m(π(Bi,j ))r(1− Q
q
)
α

i

(∫
(1/5)Bi,j g

) α
q

.

Here one may consider the integral as an upper integral to avoid tedious measurability issues.Since π is Lipschitz on the compact set
K ′ = ⋃

i∈I,j∈Ji

Bij ,

the Frostman condition on m implies that
m(π(Bi,j )) . rti ,again provided that δ is small enough. This estimate, together with (5.4) and two applications of Hölder’s inequality,implies that ∫

E
Hα
τ (f (π−1(a) ∩ K )) dm(a) .∑

i∈I

∑
j∈Ji

r
(1− Q

q
)
α+t

i

(∫
(1/5)Bi,j g dµ

) α
q

.
∑
i∈I

r
(1− Q

q
)
α+t−s(1− α

q
)

i

(∫
⋃
j∈Ji (1/5)Bi,j g dµ

) α
q

.

(∑
i∈I

rt′i

)1− α
q (∫

K ′
g dµ

) α
q
.
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In light of (5.3) and the local integrability of g, we conclude that
∫
E
Hα
τ (f (π−1(a) ∩ K )) dm(a) . ε.

Letting ε → 0 implies that for m-almost every a ∈ E ,
Hα
τ (f (π−1(a) ∩ K )) = 0 = Hα (f (π−1(a) ∩ K )).

This is a contradiction, as m is supported on E and E is a subset of Eα .
Remark 5.2.The wide generality allowed by the definition of a metric foliation comes at a price; the estimate of Theorem 1.4 is notalways optimal. Assume the hypotheses of Theorem 1.4. Denote

ŝ = sup
a∈W

dimπ−1(a).
As noted in the introduction, it could be that ŝ < s; see subsection 6.3 below for an example. By the universal dimensiondistortion bounds given in Theorem 1.1,

{a ∈ W : Hα (f (π−1(a))) > 0} = ∅
whenever α ≥ pŝ

p−Q+ŝ . When α = pŝ
p−Q+ŝ and ŝ < s, it holds that

(Q − s)− p (1− s
α
) = (p−Q)(sŝ − 1) > 0,

and so there is room for a possible improvement to the conclusion of Theorem 1.4 in this situation.The correct estimate in the case when α lies in the range [ŝ, s) is also unclear. Note that the proof of Theorem 1.4does not apply when α < s. If dimW ≤ Q − s, as is the case for all of the examples considered in this paper, then theright hand side of (1.2) is strictly larger than dimW whenever α < s, and hence the estimate (1.2) is true and trivial toprove in this case. In specific settings in the Heisenberg group, we can improve on this trivial estimate, using a differentmethod to give nontrivial and asymptotically sharp estimates even in the case that α ∈ [ŝ, s). See Section 6.3 belowand [7] for further details.
Remark 5.3.It seems likely that under additional assumptions on the foliation (X,W , π), the conclusion of Theorem 1.4 could beupgraded to

H(Q−s)−p(1− s
α )

W
(
{a ∈ W : dim f (π−1(a)) ≥ α}) = 0,

as in Theorem 4.1. We leave such a generalization to the interested reader.
6. Examples of metric foliationsIn this section we present various examples of metric foliations, and indicate the form that Theorem 1.4 takes in suchsettings.
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6.1. Euclidean foliationsAs mentioned above, the class of submersions between Riemannian manifolds provides the model example of metricfoliations. Note that the submersion assumption is necessary: any smooth surjection π : R→ R which is constant on aninterval fails to be a 0-foliation. The canonical metric foliation is given by the orthogonal projection map
PV : Rn → V ,

where V ⊆ Rn is a subspace; this defines an (n − dimV )-foliation. As mentioned in the introduction, the distortion ofdimension of leaves of these standard foliations by Sobolev mappings has been extensively studied in [5]. In particular,Theorem 1.4 is a generalization of [5, Theorem 1.3].
6.2. Foliations of Sierpiński carpetsWe define a compact subset of [0, 1]2 that is homeomorphic to the standard Sierpiński carpet as follows. Let a = {an}n∈Nbe a sequence of odd integers greater than or equal to three. Divide [0, 1]2 into a21 squares of side-length a−11 , andremove the open central square. Repeat this process on each remaining square, removing the central square of sidelength (a1a2)−1, and continue in this fashion ad infinitum. If∑

n∈N

a−2
n <∞, (6.1)

the resulting subset Sa of [0, 1]2 is Ahlfors 2-regular and supports a p-Poincaré inequality for every p > 1 [24]. Therestriction πSa of the orthogonal projection π : R2 → R × {0} to Sa defines a 1-foliation. Note that in this case thetypical leaf of the foliation is a Cantor set of positive length (although some leaves are finite unions of closed intervals).Applying Theorem 1.4 to this example results in the following statement, in which the estimates are the same as in thecase of the standard Euclidean projection in R2.
Corollary 6.1.
Suppose that a satisfies (6.1). Let p > 2 and α ∈

(1, p
p−1
]
. If f : Sa → Y is a continuous mapping with an upper

gradient in Lp(Sa). Then dim{a ∈ [0, 1] : dim f (π−1
Sa (a))} ≥ α} ≤ 1− p(1− 1

α

)
.

Corollary 6.1 can also be derived by extending each supercritical Sobolev mapping on Sa to a mapping defined on allof R2 of the same regularity, and then applying the results of [5]. This is possible as Sa supports a Poincaré inequalityand has positive two-dimensional measure. Our direct method seems to be simpler.
6.3. Foliations of the Heisenberg group by left cosets of homogeneous subgroupsWe describe several natural foliations in the Heisenberg group. These foliations play a starring role in our subsequentpaper [7].The nth Heisenberg group Hn, n ∈ N, is the unique step two nilpotent stratified Lie group with topological dimension2n + 1 and one dimensional center. We denote H1 = H. Denoting points in Hn by (x, t) ∈ R2n × R, the group law isgiven by (x, t) ∗ (x ′, t′) = (x + x ′, t + t′ + 2ω(x, x ′)) ,where ω(x, x ′) = ∑n

i=1(xn+ix ′i − xix ′n+i) denotes the standard symplectic form on R2n. The group Hn is equipped with aleft-invariant metric dH(p, q) = ||p−1 ∗ q||H via the Korányi norm

||(x, t)||H = (||x||4R2n + t2)1/4.
The metric space (Hn, dH) is proper and Ahlfors (2n + 2)-regular when equipped with its Haar measure (which agreesup to constants with both the Lebesgue measure in the underlying Euclidean space R2n+1 and the (2n+ 2)-dimensional
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Hausdorff measure in the Korányi metric dH). It is known that (Hn, dH,H2n+2) supports a p-Poincaré inequality forevery 1 ≤ p <∞; see [16, Chapter 11] and the references therein.The Heisenberg group Hn admits a one-parameter family of intrinsic dilations δr(x, t) = (rx, r2t), r > 0. These dilationscommute with the group law and are homogeneous of order one with respect to the Korányi norm, i.e.,
δr(p) ∗ δr(q) = δr(p ∗ q) and ||δr(p)||H = r||p||H.

A subgroup of Hn is homogeneous if it is invariant under intrinsic dilations. Homogeneous subgroups come in two types.A homogeneous subgroup is called horizontal if it is of the form V × {0} for an isotropic subspace V of the symplecticspace R2n. (Recall that V is isotropic if ω|V = 0.) It is easy to see that every homogeneous subgroup that is nothorizontal contains the t-axis. The latter subgroups are called vertical. Any horizontal subgroup V = V × {0} definesa semidirect decomposition Hn = V⊥ n V where V⊥ = V ⊥ × R is the vertical complement of V; here V ⊥ denotes theusual orthogonal complement of V in R2n.Since ω vanishes on isotropic subgroups, the restriction of the Korányi metric to horizontal homogeneous subgroupscoincides with the Euclidean metric. Consequently,
dimHn V = dimR2n+1 V = dimV

for each horizontal homogeneous subgroup; we write dimV without any subscript in this case. On the other hand,
dimHn V⊥ = dimR2n+1 V⊥ + 1 = dimV ⊥ + 2 = (2n+ 2)− dimV .

For example, when n = 1 we have dimV = 1 and dimH V⊥ = 3 for every horizontal line V ⊂ H.The semidirect decomposition Hn = V⊥ nV defines maps
πV : Hn → V and πV⊥ : Hn → (V⊥, dH)

by the formulas πV(p) = pV and πV⊥ (p) = pV⊥ , where p = pV⊥ ∗ pV. It is easy to see that πV is Lipschitz on compactsets. However, πV⊥ is not Lipschitz on compact sets (it is at best 12 -Hölder). Further information about the metric andmeasure-theoretic properties of these projection mappings can be found in [4].
Proposition 6.2.
The triple (Hn,V, πV) is a (dimHn V⊥)-foliation.

Proof. As already noted, πV : Hn → V is Lipschitz on compact sets. Consider a point a = (aV , 0) ∈ V and a radius
r > 0. Then

BV(a, r) = BH(a, r) ∩ V = (BR2n (aV , r) ∩ V )× {0}.
Moreover, as sets,

π−1
V (BV(a, r)) = P−1

V (BR2n (aV , r) ∩ V )× R,
where PV : R2n → V is the standard Euclidean orthogonal projection onto V . It follows by volume considerations thatfor each compact set K ⊆ Hn, there is a constant C ≥ 1 depending only on K , such that π−1

V (BV(a, r)) ∩ K may becovered by at most Cr− dimV⊥ Heisenberg balls of radius r.
Applying Theorem 1.4 to πV yields the following statement on dimension increase for cosets of a vertical complementarysubgroup.
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Corollary 6.3.
Let V be a horizontal homogeneous subgroup of Hn and let Y be an arbitrary metric space. Given a continuous mapping
f : Hn → Y with upper gradient in Lploc(Hn) for some p > 2n+ 2, and given

α ∈
(dimHn V⊥, p dimHn V⊥

p− dimV
]
,

we have the estimate dim{a ∈ V : dim(f (V⊥ ∗ a)) ≥ α} ≤ dimV− p(1− dimHn V⊥
α

)
.

For instance, for any horizontal line V in H1, any continuous map f : H1 → Y with upper gradient in Lploc(H1) for p > 4,and any α ∈ (3, 3p
p−1 ], we have the estimate

dim{a ∈ V : dim(f (V⊥ ∗ a)) ≥ α} ≤ 1− p(1− 3
α

)
. (6.2)

Note that the upper bound in (6.2) is identical to the one obtained in the classical Euclidean setting for the foliation of
R4 by a one-dimensional family of parallel hyperplanes.In contrast to V, the restriction of the Korányi metric to a complementary homogeneous vertical subgroup V⊥ differsdramatically from the restriction of the Euclidean metric. Moreover, as mentioned above, the map πV⊥ fails to beLipschitz on compact sets and can increase the Hausdorff dimension of sets. Thus πV⊥ : Hn → (V⊥, dHn ) is not locallyDavid–Semmes regular. To overcome this difficulty, we alter the choice of metric on V⊥.
Proposition 6.4.
The triple (Hn, (V⊥, dR2n+1 ), πV⊥ ) is a (dimV+ 1)-foliation of Hn.

Proof. The fact that πV⊥ is Lipschitz on compact sets follows from the fact that the identity map from Hn to R2n+1 isLipschitz on compact sets. Moreover, there exists a smooth diffeomorphism φ : R2n+1 → R2n+1 such that πV⊥ = PV⊥ ◦ φ,where PV⊥ denotes the Euclidean orthogonal projection onto V⊥. Hence, given a ∈ V⊥, r > 0, and a compact set
K ⊆ Hn, there is a constant C ≥ 1, depending only on K , such that the set π−1

V⊥ (BR2n+1 (a, r)) ∩ K can be covered by atmost Cr− dimV Euclidean balls of radius r. It follows by an application of the Ball-Box Theorem that there is anotherconstant C ′ ≥ 1, depending only on K , such that π−1
V⊥ (BR2n+1 (a, r)) ∩ K can be covered by C ′r−(dimV+1) balls in theKorányi metric dHn .

Observe that the Hausdorff dimension of each leaf of the foliation defined by πV⊥ is equal to dimV and not (dimV+ 1).As discussed in Remark 5.2, in this situation we do not expect a particularly good estimate to arise from Theorem 1.4.Nevertheless we record the following corollary.
Corollary 6.5.
Let V be a horizontal homogeneous subgroup of Hn and let Y be an arbitrary metric space. Given a continuous mapping
f : Hn → Y with upper gradient in Lploc(Hn) for some p > 2n+ 2, and given

α ∈
(dimV+ 1, p(dimV+ 1)

p− dimR2n+1 V⊥
]
,

we have the estimate

dimR2n+1{a ∈ V⊥ : dim(f (a ∗ V)) ≥ α} ≤ dimR2n+1 V⊥ − p
(1− dimV+ 1

α

)
. (6.3)
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Above we use the notation dimR2n+1 to emphasize that we consider the Hausdorff dimension of the set equipped with theEuclidean metric.By an application of the Dimension Comparison Theorem [6] we deduce from (6.3) the following estimate
dimHn{a ∈ V⊥ : dim(f (a ∗ V)) ≥ α} ≤ dimHn V⊥ − p(1− dimV+ 1

α

)
. (6.4)

For example, when n = 1 estimate (6.4) reads
dimH1{a ∈ V⊥ : dim(f (a ∗ V)) ≥ α} ≤ 3− p(1− 2

α

)
.

We now reiterate the ways in which the estimate in Corollary 6.5 is deficient. As mentioned above, for each a ∈ V⊥,the Heisenberg metric on the leaf a ∗ V coincides with the restriction of the Euclidean metric, and the resulting spaceis Ahlfors (dimV)-regular. Hence Theorem 4.1 implies that given f as in Corollary 6.5,{
a ∈ V⊥ : H p dimV(p−dimHn V⊥ ) (f (a ∗ V)) > 0} = ∅. (6.5)

However, applying Corollary 6.5 with α = p dimV(p−dimHn V⊥) yields only
dimR2n+1

({
a ∈ V⊥ : H p dimV(p−dimV⊥ ) (f (a ∗ V)) > 0}) < p− (2n+ 2)dimV ,

and the quantity on the right hand side is strictly greater than zero. Moreover, Theorem 1.4 can provide no informationof about the frequency with which a supercritical Sobolev mapping maps leaves onto sets of dimension at least α when
α ∈ [dimV, dimV+ 1].These deficiencies are addressed in [7], which presents a comprehensive study of dimension increase properties ofSobolev mappings of the Heisenberg group Hn on elements of such foliations.
6.4. Foliations of H1 by right cosets of horizontal linesAs a final example we specialize to the first Heisenberg group H and consider the foliation by right cosets of a horizontalline. As we shall see, this foliation is well behaved with respect to the underlying non-Riemannian geometry of boththe Heisenberg group and the parameterizing space, and leads to good estimates for dimension increase arising fromour main theorems.We recall that the sub-Riemannian geometry of H is defined via the horizontal distribution HH, the unique left-invariantrank two subbundle of the tangent bundle TH for which HeH = span{ ∂

∂x1 , ∂
∂x2 }, where e = (0, 0) denotes the identityelement of H. We denote by X1 and X2 the left-invariant vector fields on H whose values at e agree with ∂

∂x1 and ∂
∂x2respectively; then HpH = span{(X1)p, (X2)p}.A smooth curve γ : [a, b] → H is horizontal if γ ′(s) ∈ Hγ(s)H for all s. We define the length of γ by declaring X1and X2 to be an orthonormal frame in HH, and we introduce the Carnot-Carathéodory (CC) metric dcc on H as thegeodesic metric obtained by infimizing the lengths of horizontal curves joining two given points. It is well known that theCarnot-Carathéodory metric dcc and the Korányi metric dH are comparable; this fact easily follows from the observationthat both metrics are left invariant and homogeneous of order one with respect to intrinsic dilations.Let us fix a horizontal line V in H and consider the semidirect decomposition H = VoV⊥; note that the normal subgroup

V⊥ now appears on the right. The right cosets V ∗a, a ∈ V⊥, are typically not horizontal curves (only in the case when
a lies in the center of H, i.e., the t-axis, is V ∗ a a horizontal line). We define a map

πRV⊥ : H→ V⊥

by the formula πRV⊥ (p) = pRV⊥ , where p = pV ∗pRV⊥ . Identifying V⊥ with the collection X = {V∗a : a ∈ V} of right cosetsof V, the map πRV⊥ coincides with the quotient map p 7→ [p], where [p] denotes the unique right coset V ∗a containing p.
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The CC metric on H induces a well defined metric on X by the formula distcc(V∗a,V∗a′). Moreover, the left invarianceof the CC metric implies that right cosets are CC parallel: distcc(V ∗ a,V ∗ a′) = distcc(x ∗ a,V ∗ a′) for any x ∈ V.The Grushin plane G is the two-dimensional sub-Riemannian structure on R2 defined by the horizontal distribution HGgiven by H(u,v )G = R2 if u 6= 0 and H(0,v )G = R×{0}. A curve γ in G is horizontal if its tangent vectors lie everywherein the horizontal distribution, i.e., if the second component of γ ′(s)2 is zero whenever the first component of γ(s) is zero.The Carnot-Carathéodory metric dcc on G is defined as for the Heisenberg group:
dcc((u1, v1), (u2, v2)) = inf

γ

∫ b

a

√(u′(s))2 + (v ′(s))2(u(s))2 ds,
where the infimum is taken over all horizontal curves γ = (u, v ) : [a, b] → G that connect (u1, v1) to (u2, v2). Formally,this corresponds to the choice of the orthonormal frame {U,V } = { ∂

∂u , u
∂
∂v } for HG, note however that V(0,v ) = 0 for all

v ∈ R, so this is not a genuine frame.The following fact is well known, see e.g. Arcozzi–Baldi [1, Theorem 1]. It is a specific instance of the celebratedRothschild–Stein lifting theorem for families of Hörmander vector fields [27].
Theorem 6.6.
The space X is isometric to the Grushin plane (G, dcc).
Identifying X with G and considering πR = πRV⊥ as a map from H to G, we will show
Proposition 6.7.
The triple (H, G, πR ) is a 2-foliation.

Before giving the proof of Proposition 6.7 we indicate the estimates for dimension increase which follow from thatproposition in combination with Theorem 1.4.
Corollary 6.8.
Let Y be any metric space. For p > 4, if f : H→ Y is a continuous mapping that has an upper gradient in Lploc(H1), then

dim{w ∈ G : dim(f ((πR )−1(w))) ≥ α} ≤ 2− p(1− 2
α

) (6.6)
for each α ∈

(2, 2p
p−2
]
.

Note that the upper bound in (6.6) is identical to the one obtained in the classical Euclidean setting for the foliationof R4 by a two-dimensional family of parallel 2-planes. This is consistent with the fact that the Grushin plane hasHausdorff dimension two, the Heisenberg group has Hausdorff dimension four and the typical leaf in the foliation hasHausdorff dimension two.In the proof of Proposition 6.7, we will make use of the following explicit two-sided estimate for the CC metric in theGrushin plane G: there exists an absolute constant C1 ≥ 1 so that
1
C1 ≤

max{|u1 − u2|,min{√|v1 − v2|, |v1−v2|max{|u1 |,|u2|}}}
dcc((u1, v1), (u2, v2)) ≤ C1 (6.7)

whenever (u1, v1) 6= (u2, v2). See, for instance, Bellaïche [8] or Seo [29]. Here we interpret the quantity
|v1 − v2|max{|u1|, |u2|}

to be +∞ if u1 = u2 = 0.
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Proof of Proposition 6.7. Theorem 6.6 shows that the projection πR : H → G is a 1-Lipschitz mapping from(H, dcc) to (G, dcc). It follows that πR is Lipschitz from (H, dH) to (G, dcc).Now suppose that K is a compact subset of H and that B0 = Bcc(w0, r) is a ball in G with radius r < 1. We claim that(πR )−1(B0) ∩ K can be covered by C/r2 balls in the Korányi metric dH of radius Cr. Here C > 0 denotes a quantity,possibly varying at each instance, depending only on K . By the Ball-Box Theorem (cf. the proof of Proposition 6.4above), it suffices to show that (πR )−1(B0) ∩ K can be covered by C/r Euclidean balls of radius Cr. We will prove thelatter statement by volume considerations; it is enough to prove that the Lebesgue volume of (πR )−1(B0)∩K is less thanor equal to Cr2.In order to compute the volume, we need good control on the Lebesgue area of the Grushin CC ball Bcc(w0, r). Sincevertical translation is an isometry of G, it suffices to consider balls Bcc(w0, r) centered on the v-axis, i.e., w0 = (u0, v0)with v0 = 0. As πR is Lipschitz on compact sets, we may assume that |u0| < C . Denote by A(w0, r) the Lebesgue areaof Bcc(w0, r). For (u, v ) in this ball, (6.7) implies that
|u− u0| · |v | ≤ Cr max{r2, r(max{|u|, |u0|})}

≤ Cr
(
r2 + r(|u|+ |u0|))

≤ Cr
(
r2 + r(r + 2|u0|))

≤ C (r2 + r3)
≤ Cr2.

We conclude that A(w0, r) ≤ Cr2. By an argument similar to that in the proof of Proposition 6.4, it follows that theLebesgue volume of (πR )−1(B0)∩K is less than or equal to Cr2, as desired. This completes the proof of Proposition 6.7.
7. Open problems and questionsIn this final section we collect several open problems and questions motivated by the present work.Note that every s-foliation is also an s′-foliation for each s′ ≥ s. Let us call the minimal foliation exponent for a metricfoliation π : X → W the infimum of the values s for which π is an s-foliation. The following question is inspired byTheorem 1.2.
Question 7.1.Let X be a locally Ahlfors Q-regular metric space and assume that π : X → W is an s-foliation, where s is the minimalfoliation exponent. Assume also that ŝ = dimπ−1(a) is independent of a ∈ W . Let p > Q, let α ∈ [ŝ, pŝ

p−Q+s ], and let Nbe an integer greater than α . If W possesses a subset E that is evenly coverable and has dimension
β = (Q − s)− p(1− ŝ

α

)
,

then does there exists a continuous mapping f : X → RN with an upper gradient Lploc(X ) such that
dim(f (π−1(a))) ≥ α

for all a ∈ E?
We believe that the answer to this question is yes and give a similar construction in [7].As regards the positive result in Theorem 1.4, the discussion in Remark 5.2 shows that the estimates given in thattheorem are not natural in case

ŝ := sup{dimπ−1(a) : a ∈ W } < s.
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In view of Question 7.1, one might instead wish for the estimate
dim{a ∈ W : Hα (f (π−1(a))) > 0} ≤ (Q − s)− p(1− ŝ

α

) (7.1)
as the conclusion of Theorem 1.4. We are not able to prove the estimate (7.1) for the standard foliation of the Heisenberggroup H by horizontal lines, although in our forthcoming work [7] a very similar estimate is achieved for when α is closeto ŝ. One could also inquire if the yet weaker estimate

dim{a ∈ W : Hα (f (π−1(a))) > 0} ≤ (Q − ŝ)− p(1− ŝ
α

) (7.2)
holds; in [7] we achieve this estimate for the foliation of the Heisenberg group by horizontal lines when α is close tothe universal bound.
Question 7.2.In which situations are the estimates (7.1) and (7.2) valid?
The proof of Theorem 1.2 suggests a general meta-theorem deriving prevalence theorems for dimension increase fromspecific examples.Let (X, d) be a metric space and let real numbers s and α and an integer N satisfy 0 < s < dimX and s ≤ α < N . Letus say that a normed linear class F of mappings from X to RN is (s, α)-prevalence forcing in case the following conditionholds: if to each compact set E ⊂ X with Hs(E) > 0 there corresponds a mapping f ∈ F such that dim f (E) ≥ α , thenthe set of all mappings in F with that property is prevalent.Theorem 1.2 asserts that the Sobolev–Newtonian class N1,p(X ;RN ) on a locally Ahlfors Q-regular metric measure space(X, d, µ) is (s, ps

p−Q+s )-prevalence forcing for each 0 < s < Q < p.
Question 7.3.Let (X, d, µ) be a metric measure space and let N ∈ N. For given α and s satisfying the preceding constraints, whichnormed linear classes F of mappings from X to RN are (s, α)-prevalence forcing?
Finally, motivated by the discussion in Section 6.3, we pose
Question 7.4.Is there a 1-foliation of the Heisenberg group?
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