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Abstract

In this paper we prove a Lions-type compactness embedding result for symmetric unbounded do-

mains of the Heisenberg group. The natural group action on the Heisenberg group Hn = Cn × R
is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used

to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s

horizontal Sobolev space HW 1,2
0 (Hn). As an application, we study the multiplicity of solutions

for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to

subgroups of U(n)×{1}. In our approach we employ concentration compactness, group-theoretical

arguments, and variational methods.

Keywords: Heisenberg group; compact embedding; subelliptic problems; variational methods.

MSC: 35R03, 35A15.

1 Introduction

It is well-known that compactness of Sobolev embeddings on unbounded domains of Rn can be
recovered whenever the domain has appropriate symmetries. This approach is fruitful in the
study of variational elliptic problems in the presence of a suitable group action on the Sobolev
space. In such cases the principle of symmetric criticality can be applied to the associated energy
functional, allowing a variational treatment of the problem. Roughly speaking, if X denotes a
Sobolev space where the solutions are being sought, the strategy is to find a topological group
T, acting continuously on X, such that the following two properties simultaneously hold:

• the fixed point set of X with respect to T is an infinite dimensional subspace of X which
can be compactly embedded into a suitable Lebesgue space;

• the energy functional associated to the studied problem is T−invariant.

In the Euclidean setting, the above approach has been deeply exploited. For instance, if Ω =
Rn (n ≥ 2), then the space of radially (resp., spherically) symmetric functions of H1(Rn) is
compactly embedded into Lq(Rn), q ∈ (2, 2∗). Here, the symmetric functions represent the fixed
point set ofH1(Rn) with respect to the orthogonal group T = O(n) (resp., T = O(n1)×...×O(nl),
n = n1 + ... + nl, ni ≥ 2), see Strauss [20], Lions [14]. A similar argument works for strip-like
domains Ω = ω × Rn−m, where ω ⊂ Rm is bounded and n − m ≥ 2, obtaining the space of

1Z. M. Balogh was supported by the Swiss National Science Foundation, the European Science Foundation
Project HCAA and the FP7 EU Commission Project CG-DICE.

2A. Kristály was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-
UEFISCDI, project number PN-II-ID-PCE-2011-3-0241, and by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences.
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cylindrically symmetric functions on H1
0 (Ω) via the group T = IRm × O(n − m), see Esteban

and Lions [7], Kobayashi and Ôtani [11].
The purpose of the present paper is to develop counterparts of the aforementioned results via

appropriate group symmetries on the Heisenberg group Hn = Cn ×R (n ≥ 1) with applications
to the theory of singular subelliptic problems defined on unbounded domains of Hn. Subelliptic
problems involving the Kohn-Laplace operator on unbounded domains of stratified groups have
been intensively studied in recent years, see Garofalo and Lanconelli [9], Maad [15], Schindler
and Tintarev [19], Tintarev [21]. A persisting assumption for these results was that Ω is strongly
asymptotically contractive. This means that Ω ̸= Hn and for every unbounded sequence {ηk} ⊂
Hn there exists a subsequence {ηkj} such that either

(a) µ(lim inf(ηkj ◦ Ω)) = 0, or

(b) there exists a point η0 ∈ Hn such that for any r > 0 there exists an open set Mr b η0 ◦Ω, a
closed set Z of measure zero and an integer jr > 0 such that (ηkj ◦Ω)∩B((0, 0), r) ⊂Mr∪Z
for every j > jr.

Here µ(·) is the Lebesgue measure, ′ lim inf ′ is the Kuratowski lower-limit, and ′◦′ is the usual
group operation on Hn. Intuitively speaking, strongly asymptotically contractive domains are
thin at infinity. For instance [15] shows that if p ∈ [0, 1] and Ωp = {(z, t) ∈ Hn : |t| < 1 + |z|p},
then Ωp is strongly asymptotically contractive if and only if p ∈ [0, 1).

Once a domain Ω ⊂ Hn is not strongly asymptotically contractive, HW 1,2
0 (Ω) need not

be compactly embedded into a Lebesgue space. Therefore, in order to obtain compactness,
further assumptions are needed which will be formulated in terms of symmetries. Inspired from
Tintarev and Fieseler [22], via the concentration compactness principle, in §3 we state an abstract
compactness result for general Carnot groups where a topological group T acts continuously,
see Theorem 3.1. We apply this general principle to the Heisenberg group and its natural group
action by the unitary group T = U(n)× {1}.

To formulate our compactness result, let ψ1, ψ2 : [0,∞) → R be two functions that are
bounded on bounded sets, and ψ1(r) < ψ2(r) for every r ≥ 0. Let

Ωψ = {(z, t) ∈ Hn : ψ1(|z|) < t < ψ2(|z|)}, (1.1)

where |z| =
√
|z1|2 + ...+ |zn|2. Our compactness statement reads as follows.

Theorem 1.1 Let n ≥ 1 and Ωψ be from (1.1). Assume that n = n1 + ... + nl with ni ≥ 1,
l ≥ 1, and let T = U(n1)× ...× U(nl)× {1}. Then

HW 1,2
0,T (Ωψ) = {u ∈ HW 1,2

0 (Ωψ) : u(z, t) = u(g(z, t)), ∀g ∈ T},

is compactly embedded into Lq(Ωψ), q ∈ (2, 2∗Q).

Here, Q = 2n+ 2 is the homogeneous dimension of Hn, while 2∗Q = 2Q
Q−2 is the critical exponent

in the Heisenberg group. Note that

HW 1,2
0,T (Ωψ) = {u ∈ HW 1,2

0 (Ωψ) : u(z, t) = u(|zn1 |, ..., |znl |, t), zni ∈ Cni}.

By Theorem 1.1 compactness is induced by symmetries even if the domain Ωψ is large at infinity.
However, Ωψ cannot be ”arbitrarily large”, i.e., it cannot be replaced by the whole space Hn.
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Indeed, the space HW 1,2
0,T (Hn) = {u ∈ HW 1,2

0 (Hn) : u(z, t) = u(|zn1 |, ..., |znl |, t), zni ∈ Cni} is
not compactly embedded into Lq(Hn). This is due to shiftings along the t-direction, see Remark
3.3. A similar phenomenon has been pointed out by Birindelli and Lanconelli [3, Corollary 1.1]
concerning De Giorgi’s conjecture on Heisenberg groups.

In §4 we describe symmetrically different functions belonging to HW 1,2
0 (Ωψ) via groups of

the type U(n1) × ... × U(nl) × {1} for various splittings of the dimension n = n1 + ... + nl
(ni ≥ 1, l ≥ 2). The objective is to find as much mutually different subgroups of U(n) of the
form U(n1)× ...× U(nl) as possible such that the group generated by each two of them to act
transitively on the unit sphere of Cn. In this way, by exploiting a Rubik-cube technique (see
Kunkle and Cooperman [13]), we may construct [n2 ] + 1 subspaces of HW 1,2

0 (Ωψ) which are
compactly embedded into Lq(Ωψ), q ∈ (2, 2∗Q), and have completely different structures from
symmetrical point of view, see Proposition 4.1.

In §5 we apply the above results to study the singular subelliptic problem{
−∆Hnu− νV (z, t)u+ u = λK(z, t)f(u) in Ωψ,
u = 0, on ∂Ωψ,

(P νλ )

where ∆Hn is the Kohn-Laplace operator on the Heisenberg group Hn, and λ, ν ≥ 0. We assume
that (0, 0) ∈ Ωψ, and f ∈ Aq for some q ∈ (2, 2∗Q), where

Aq =

{
f ∈ C(R,R) : sup

s̸=0

|f(s)|
|s|+ |s|q−1

<∞

}
.

On the potentials V,K : Ωψ → R we assume:

(HV ) V is measurable, cylindrically symmetric, i.e., V (z, t) = V (|z|, t), and there exists CV > 0
such that

0 ≤ V (z, t) ≤ CV
|z|2

N(z, t)4
, ∀(z, t) ∈ Ωψ \ {(0, 0)};

(HK) K ∈ L∞(Ωψ) is cylindrically symmetric.

Two complementary cases will be considered depending on f : R → R: (a) f is superlinear at
infinity, and (b) f is sublinear at infinity.

For the superlinear case, we assume that f ∈ Aq for some q ∈ (2, 2∗Q). Denoting by F (s) =∫ s
0 f(t)dt, we assume:

(f1) f(s) = o(|s|) as |s| → 0;

(f2) there exists α > 2 such that sf(s) ≥ αF (s) > 0 for all s ∈ R \ {0}.

By means of the principle of symmetric criticality and mountain pass arguments, the construction
of the symmetrically distinct subspaces provides the following result.

Theorem 1.2 Let Ωψ ⊂ Hn be from (1.1) with (0, 0) ∈ Ωψ, ν ∈ [0, C−1
V n2) be fixed, and let

V,K : Ωψ → R be potentials verifying (HV ) and (HK) with infΩψ K > 0. Let f ∈ Aq for some
q ∈ (2, 2∗Q) verifying (f1) and (f2). Then, the following assertions hold:

3



(i) Given T = U(n1) × ... × U(nl) × {1} with n = n1 + ... + nl and ni ≥ 1, l ≥ 1, for every
λ > 0, the problem (P νλ ) has at least a nonzero weak solution in HW 1,2

0,T (Ωψ);

(ii) In addition, if f is odd, for every λ > 0 problem (P νλ ) has at least [n2 ] + 1 sequences of
distinct, weak solutions with mutually different symmetric structures.

In the sublinear case, we assume that f ∈ C(R,R) verifies

(f ′1) f(s) = o(|s|) as |s| → 0;

(f ′2) f(s) = o(|s|) as |s| → ∞;

(f ′3) there exists s0 ∈ R such that F (s0) > 0.

We consider the perturbed form of problem (P νλ ), namely,{
−∆Hnu− νV (z, t)u+ u = λK(z, t)f(u) + θK̃(z, t)f̃(u) in Ωψ,
u = 0, on ∂Ωψ,

(P νλ,θ)

and we prove a counterpart of Theorem 1.2 as follows.

Theorem 1.3 Let Ωψ ⊂ Hn be from (1.1) with (0, 0) ∈ Ωψ, ν ∈ [0, C−1
V n2) be fixed, and let

V,K : Ωψ → R be potentials verifying (HV ) and (HK) such that K ∈ L1(Ωψ) and infωK > 0
for some open set ω ⊂ Ωψ. Furthermore, let f ∈ C(R,R) be a function verifying (f ′1)− (f ′3), let
f̃ ∈ Aq for some q ∈ (2, 2∗Q), and K̃ ∈ L∞(Ωψ) be a cylindrically symmetric function. Then,
the following assertions hold:

(i) For λ ∈ [0, c−1
f ∥K∥−1

L∞), problem (P νλ ) = (P νλ,0) has only the zero solution;

(ii) Given T = U(n1)× ...× U(nl)× {1} with n = n1 + ...+ nl and ni ≥ 1, l ≥ 1, there exists
λ∗ > 0 such that for every λ > λ∗, there is δλ > 0 with the property that for θ ∈ [−δλ, δλ],
problem (P νλ,θ) has at least two distinct, nonzero weak solutions in HW 1,2

0,T (Ωψ);

(iii) In addition, if f and f̃ are odd, there exists Λ∗ > 0 such that for every λ > Λ∗, there is
δλ > 0 with the property that for θ ∈ [−δλ, δλ], the problem (P νλ,θ) has at least sn = 2([n2 ]+1)

distinct pairs of nonzero weak solutions {±uλ,θi } ⊂ HW 1,2
0 (Ωψ), i = 1, ..., sn.

The paper is organized as follows. In Section 2 we recall basic notions on stratified groups.
Section 3 is devoted to compactness; after formulating a general compactness result for Carnot
groups (whose proof is presented in the Appendix), we prove Theorem 1.1. In Section 4 we
study Rubik actions on the Heisenberg group Hn. In Section 5 we prove Theorems 1.2 and 1.3,
respectively.

2 Preliminaries on stratified groups

In this section we recall some notions and results from the theory of stratified groups, see
Bonfiglioli, Lanconelli and Uguzzoni [5]. A Carnot group is a connected, simply connected,
nilpotent Lie group (G, ◦) of dimension at least two (the neutral element being denoted by
0) whose Lie algebra G admits a stratification, i.e., G = V1 ⊕ ... ⊕ Vr with [V1, Vi] = Vi+1 for
i = 1, ..., r−1 and [V1, Vr] = 0. Here, the integer r is called the step of G. Let ⟨, ⟩0 be a fixed inner
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product on V1
∼= Rm with associated orthonormal basis X1, ..., Xm. By applying left-translations

to these elements on G, we introduce the horizontal tangent subbundle of the tangent bundle
TG with fibers span{X1(p), ..., Xm(p)}, p ∈ G, and extend ⟨, ⟩0 to the whole TG by group
translation. A left-invariant vector field X on G is horizontal if X(p) ∈ span{X1(p), ..., Xm(p)}
for every p ∈ G.

We introduce the set of horizontal curves of finite length connecting two arbitrary points
p1, p2 ∈ G, namely,

HΓp1,p2(G) =

{
γ : [0, 1] → G :

γ is piecewise smooth, γ̇(t) ∈ V1 a.e. t ∈ [0, 1],

γ(0) = p1, γ(1) = p2,
∫ 1
0

√
⟨γ̇(t), γ̇(t)⟩0dt <∞

}
.

Note that by Chow’s theorem, see Gromov [10], HΓp1,p2(G) ̸= ∅, and the Carnot-Carathéodory
distance is defined as

dCC(p1, p2) = inf

{∫ 1

0

√
⟨γ̇(t), γ̇(t)⟩0dt : γ ∈ HΓp1,p2(G)

}
,

which is a left invariant metric on G.
For λ > 0 we consider the map δλ : G → G by δλ(X) = λiX for X ∈ Vi which induces

an automorphism on G by the exponential map, denoted in the same way. This gives a one-
parameter family of anisotropic dilations of G such that dCC(δλ(p1), δλ(p2)) = λdCC(p1, p2) for
all p1, p2 ∈ G. The Jacobian of δλ is λQ, where the number Q =

∑m
i=1 i dimVi is called the

homogeneous dimension of G. Note that the Haar measure on G is induced by the exponential
map from the k-dimensional Lebesgue measure, where G ∼= Rk and k =

∑r
i=1 dimVi; thus, the

same notation µ will be used for both measures. Since G is diffeomorphic with G ∼= Rk, one can
identify elements g ∈ G with elements (x1, ..., xm, tm+1, ..., tk) ∈ Rk by g = exp(

∑m
i=1 xiXi +∑k

i=m+1 tiTi) where Tm+1, ..., Tk are non-horizontal vectors extending the family X1, ..., Xm to a
basis of G. The horizontal gradient on the Carnot group G is the vector ∇G = (X1, ..., Xm) while
the horizontal divergence of a vector fieldX =

∑m
i=1 fiXi+

∑k
i=m+1 hiTi is divGX =

∑m
i=1Xi(fi).

In particular, the subelliptic Laplacian (or, Kohn-Laplacian) is defined as △G = divG∇G =∑m
i=1X

2
i .

Let G0 ⊂ G be an open set. The Folland and Stein’s horizontal Sobolev space HW 1,2
0 (G0) is

the completion of C∞
0 (G0) with respect to the norm

∥u∥2
HW (G0) =

∫
G0

(

m∑
i=1

|Xiu|20 + u2). (2.1)

The inner product coming from the HW (G0)−norm will be denoted by ⟨, ⟩HW (G0). It is well-

known that the space HW 1,2
0 (G0) is continuously embedded into Lq(G0) for every q ∈ [2, 2∗Q),

where 2∗Q = 2Q/(Q − 2) when Q > 2 and 2∗Q = ∞ when Q = 2, see Folland and Stein [8]. If

G0 is bounded, the above embedding is compact. Note that HW 1,2(G) = HW 1,2
0 (G), and the

HW (G)−norm from (2.1) is invariant with respect to the left group translations

DG = {gη : u 7→ u ◦ η, η ∈ G},

where
(gηu)(p) = u(η ◦ p), p ∈ G, u ∈ HW 1,2(G). (2.2)

5



It turns out that (HW 1,2
0 (G), DG) is a dislocation pair in the sense of Tintarev and Fieseler, cf.

[22, Proposition 9.1, p. 222], and the elements of DG are unitary operators, i.e., g∗η = g−1
η .

If the Carnot group G is polarizable in the sense of Balogh and Tyson [2], according to
Kombe [12], one has the subelliptic Hardy inequality∫

G
|∇Gu|20 ≥

(
Q− 2

2

)2 ∫
G

|∇GN |20
N2

u2, ∀u ∈ C∞
0 (G), (2.3)

where N = u
1

2−Q
2 is the homogeneous norm associated to Folland’s fundamental solution u2 for

the sub-Laplacian △G. Moreover, the constant
(
Q−2

2

)2
is optimal in (2.3).

Our main example is the Heisenberg group Hn = Cn × R (n ≥ 1) which is the simplest
non-commutative (polarizable) Carnot group with step 2. The group operation is given by

(z, t) ◦ (z′, t′) = (z + z′, t+ t′ + 2Im⟨z, z′⟩),

where z = (z1, ..., zn) ∈ Cn, t ∈ R, and ⟨z, z′⟩ =
∑n

j=1 zjz
′
j is the Hermitian inner product.

Denoting by zj = xj + iyj , then (x1, ..., xn, y1, ..., yn, t) form a real coordinate system for Hn and
the system of vector fields

X1
j = ∂xj + 2yj∂t,

X2
j = ∂yj − 2xj∂t,

T = ∂t,

form a basis for the left invariant vector fields of Hn. Its Lie algebra has the stratification
Hn = V1 ⊕ V2 where the 2n−dimensional horizontal space V1 is spanned by {X1

j , X
2
j }j=1,...,n,

while V2 is spanned by T. The homogeneous dimension of Hn is Q = 2n + 2, thus the best

constant
(
Q−2

2

)2
in (2.3) for G = Hn becomes n2. The (2n+ 1)-dimensional Lebesgue measure

µ(·) on Hn is a Haar measure of the group.

LetN(z, t) = (|z|4+t2)
1
4 be the gauge norm on Hn, and the Korányi metric dK((z, t), (z′, t′)) =

N((z′, t′)−1 ◦ (z, t)). It is well-known that dCC and dK are equivalent metrics on Hn. The
Korányi ball of center (z0, t0) ∈ Hn and radius r > 0 is B((z0, t0), r) = {(z, t) ∈ Hn :
dK((z, t), (z0, t0)) < r}. A simple calculation shows that µ(B((z, t), r)) = rQµ(B((0, 0), 1)),

and |∇HnN(z, t)|0 = |z|
N(z,t) , (z, t) ∈ Hn \ {(0, 0)}.

3 Compact embeddings on stratified groups via symmetries

Let (G, ◦) be a Carnot group, and (T, ·) be a closed topological group with neutral element e.
We say that T acts continuously on G, T ∗G 7→ G, if

(TG0) e ∗ p = p for all p ∈ G;

(TG1) τ̂1 ∗ (τ̂2 ∗ p) = (τ̂1 · τ̂2) ∗ p for all τ̂1, τ̂2 ∈ T and p ∈ G,

and left-distributively if

(TG2) τ̂ ∗ (p1 ◦ p2) = (τ̂ ∗ p1) ◦ (τ̂ ∗ p2) for all τ̂ ∈ T and p1, p2 ∈ G.

6



A set G0 ⊂ G is T -invariant, if T ∗G0 = G0, i.e., τ̂ ∗ p ∈ G0 for every τ̂ ∈ T and p ∈ G0.
We shall assume that T induces an action on HW 1,2

0 (G), T#HW 1,2
0 (G) 7→ HW 1,2

0 (G), by

(τ̂#u)(p) = u(τ̂−1 ∗ p). (3.1)

Once (TG0) and (TG1) hold, the action of T on HW 1,2
0 (G) is continuous. The group T acts

isometrically on HW 1,2
0 (G) if

∥τ̂#u∥HW (G) = ∥u∥HW (G) for all τ̂ ∈ T, u ∈ HW 1,2
0 (G).

Let G0 be an open subset of G, and assume that

(H)G0
T : For every {ηk} ⊂ G such that dCC(0, ηk) →∞ and µ(lim inf(ηk ◦G0)) > 0, there exists a

subsequence {ηkj} of {ηk} and a subgroup T{ηkj }
of T such that card(T{ηkj }

) = ∞ and for

all τ̂1, τ̂2 ∈ T{ηkj }, τ̂1 ̸= τ̂2, one has

lim
j→∞

inf
p∈G

dCC((τ̂1 ∗ ηkj ) ◦ p, (τ̂2 ∗ ηkj ) ◦ p) = ∞. (3.2)

Hypothesis (H)G0
T can be viewed as a replacement of the strongly asymptotically contractiveness

of G0. Indeed, while a strongly asymptotically contractive domain is thin at infinity, hypothesis
(H)G0

T allows to deal with a class of domains which are large at infinity. In the sequel, we state

an abstract compactness result for Carnot groups whenever (H)G0
T holds.

Theorem 3.1 Let (G, ◦) be a Carnot group of homogeneous dimension Q ≥ 2, (T, ·) be a closed
infinite topological group acting continuously and left-distributively on G. Assume that T acts
isometrically on HW 1,2

0 (G) by (3.1). Let G0 be a T−invariant open subset of G and assume
that (H)G0

T holds. Then,

HW 1,2
0,T (G0) = {u ∈ HW 1,2

0 (G0) : τ̂#u = u, ∀τ̂ ∈ T}

is compactly embedded into Lq(G0) for every q ∈ (2, 2∗Q).

Remark 3.1 We shall apply this general Lions-type theorem to the Heisenberg group G = Hn

where T is the action of the unitary group U(n)×{1} on Hn. This statement is strongly related
to the results of Tintarev and Fieseler [22] who considered the case of group actions T by
translations. The proof of Theorem 3.1 follows the ideas from [22]. For the sake of completeness
we present it in the Appendix.

Recall that the unitary group is

U(n) = U(n; C) = {τ ∈ GL(n; C) : ⟨τz, τz′⟩ = ⟨z, z′⟩ for all z, z′ ∈ Cn},

where ⟨, ⟩ denotes the standard Hermitian inner product.
Let T = U(n) × {1} be the group with its natural multiplication law ’·’, and we introduce

the action T ∗Hn 7→ Hn as

τ̂ ∗ (z, t) = (τz, t) for τ̂ = (τ, 1) ∈ T and (z, t) ∈ Hn. (3.3)

7



Lemma 3.1 The group (T, ·) = (U(n) × {1}, ·) acts continuously and left-distributively on
(Hn, ◦) via the action (3.3), i.e., (TG0)-(TG2) hold.

Proof. (TG0) and (TG1) hold trivially. The definition of the unitary group U(n) gives

(τ̂ ∗ (z1, t1)) ◦ (τ̂ ∗ (z2, t2)) = (τz1, t1) ◦ (τz2, t2)

= (τz1 + τz2, t1 + t2 + 2Im⟨τz1, τz2⟩)
= (τ(z1 + z2), t1 + t2 + 2Im⟨z1, z2⟩)
= τ̂ ∗ ((z1, t1) ◦ (z2, t2)),

which proves (TG2). �

The following observation seems to be known to specialists; since we were not able to find a
reference, we include its proof for the sake of completeness.

Lemma 3.2 The group (T, ·) = (U(n)× {1}, ·) acts isometrically on HW 1,2
0 (Hn) by (3.1).

Proof. We prove that

∥τ̂#u∥HW (Hn) = ∥u∥HW (Hn), ∀τ̂ = (τ, 1) ∈ T, u ∈ HW 1,2
0 (Hn), (3.4)

where the operation ′#′ is given by (3.1). To check (3.4), let A(z, t) = A(x, y, t) be the (2n +
1) × (2n + 1) symmetric matrix with elements aij = δij if i, j = 1, ..., 2n; a(2n+1)j = 2yj if
j = 1, ..., n; a(2n+1)j = −2xj if j = n + 1, ..., 2n; and a(2n+1)(2n+1) = 4|z|2. In other words,

A(z, t) =

(
IR2n Jz

(Jz)T 4|z|2
)

, where J =

(
0 2IRn

−2IRn 0

)
is the symplectic matrix. Note that

∫
Hn
|∇Hnu|20dzdt =

∫
Hn
⟨A(z, t)∇u(z, t),∇u(z, t)⟩dzdt,

where ⟨, ⟩ is the inner product in R2n+1 and ∇ is the Euclidean gradient. In order to prove (3.4),
it is enough to check that∫

Hn
⟨A(z, t)∇v(z, t),∇v(z, t)⟩dzdt =

∫
Hn
⟨A(z, t)∇u(z, t),∇u(z, t)⟩dzdt,

where v(z, t) = (τ̂#u)(z, t) = u(τ−1z, t). Since

∇v(z, t) = (τ̂−1)T∇u(τ−1z, t),

where (τ̂−1)T denotes the transpose of τ̂−1, the last relation becomes∫
Hn
⟨A(z, t)(τ̂−1)T∇u(τ−1z, t), (τ̂−1)T∇u(τ−1z, t)⟩dzdt =

∫
Hn
⟨A(z, t)∇u(z, t),∇u(z, t)⟩dzdt,

that is∫
Hn
⟨τ̂−1A(z, t)(τ̂−1)T∇u(τ−1z, t),∇u(τ−1z, t)⟩dzdt =

∫
Hn
⟨A(z, t)∇u(z, t),∇u(z, t)⟩dzdt.

8



Changing the variable z to τz in the first integral (and keeping in mind that the Jacobian has
determinant 1), our claim is concluded once we prove that

τ̂−1A(τz, t)(τ̂−1)T = A(z, t). (3.5)

First, one has

τ̂−1A(τz, t)(τ̂−1)T =

(
τ−1 0
0 1

)
·
(

IR2n J(τz)
(J(τz))T 4|τz|2

)
·
(

(τ−1)T 0
0 1

)
=

(
τ−1(τ−1)T τ−1J(τz)

(J(τz))T (τ−1)T 4|τz|2
)
.

Then, since τ ∈ U(n) = O(2n) ∩ GL(n; C) ∩ Sp(2n; R), we have that τ−1(τ−1)T = IR2n and
τ−1Jτ = J , which proves our claim, thus (3.4). �

Remark 3.2 The above argument actually shows that the structure of the unitary group is
indispensable in the following sense: τ ∈ GL(n; C) verifies relation (3.5) for every (z, t) ∈ Hn if
and only if τ ∈ U(n). Roughly speaking, from ’invariance’ point of view, the unitary groups play
the same role in the Heisenberg setting as the orthogonal groups in the Euclidean framework.

Proof of Theorem 1.1. We are going to apply Theorem 3.1 with (G, ◦) = (Hn, ◦), T = U(n1)×
...× U(nl)× {1}, and G0 = Ωψ. In view of Lemmas 3.1 & 3.2, it remains to verify (H)G0

T .
Let ηk = (zk, tk) ∈ Cn × R = Hn, and assume that the sequence {ηk} is unbounded with

the property µ(lim inf(ηk ◦ Ωψ)) > 0. We claim that {zk} is unbounded. By contradiction, we
assume that {zk} ⊂ Cn is bounded; consequently, {tk} ⊂ R should be unbounded. Fix i ∈ N,
and let Ai = ∩k≥i(ηk ◦ Ωψ). Then,

(z′, t′) ∈ Ai ⇔ (z′, t′) ∈ ηk ◦ Ωψ, ∀k ≥ i

⇔ η−1
k ◦ (z′, t′) ∈ Ωψ, ∀k ≥ i

⇔ (z′ − zk, t
′ − tk − 2Im⟨zk, z′⟩) ∈ Ωψ, ∀k ≥ i

⇔ ψ1(|z′ − zk|) < t′ − tk − 2Im⟨zk, z′⟩ < ψ2(|z′ − zk|), ∀k ≥ i.

Since {z′−zk} is bounded and the functions ψ1 and ψ2 map bounded sets into bounded sets, the
sequence {t′ − tk − 2Im⟨zk, z′⟩} ∈ R is bounded as well, which contradicts the unboundedness
of {tk}. Consequently, Ai = ∅, so lim inf(ηk ◦ Ωψ) = ∪i≥1Ai = ∅, a contradiction with the
assumption. Therefore, the sequence {zk} ⊂ Cn is unbounded, as claimed above.

If zk = (zn1
k , ..., znlk ) with znik ∈ Cni , we can choose i0 ∈ {1, ..., l} and j0 ∈ {1, ..., ni0} such

that a subsequence {zni0 ,j0kj
} of {zni0 ,j0k } ⊂ C is unbounded, where z

ni0
k = (z

ni0 ,1

k , ..., z
ni0 ,ni0
k ).

Let T{ηkj }
be a subgroup of T defined by the S1−action in the unbounded component z

ni0 ,j0
kj

of zkj , where S1 = {eiϕ : ϕ ∈ [0, 2π)} is the circle group. With the above constructions in our
mind, we may choose

T{ηkj }
= ICn1+...+ni0−1+j0−1 × S1 × IC−j0+ni0

+...+nl × {1}.

It is clear that T{ηkj }
is a closed subgroup of T = U(n1)× ...× U(nl)× {1}, and for every

τ̂k = (τk, 1) = ICn1+...+ni0−1+j0−1 × τ ′k × IC−j0+ni0
+...+nl × {1} ∈ T{ηkj }

9



with τ ′k = cosϕk + i sinϕk, ϕk ∈ [0, 2π), k = 1, 2 and ϕ1 ̸= ϕ2, it yields that

inf
p∈Hn

dK((τ̂1 ∗ ηkj ) ◦ p, (τ̂2 ∗ ηkj ) ◦ p) = inf
p∈Hn

N((−p) ◦ (−τ2zkj ,−tkj ) ◦ (τ1zkj , tkj ) ◦ p)

≥ |τ ′2z
ni0 ,j0
kj

− τ ′1z
ni0 ,j0
kj

|

= [2− 2 cos(ϕ2 − ϕ1)]
1
2 |zni0 ,j0kj

| → ∞,

as j →∞. Since dCC is an equivalent metric with dK , relation (3.2) is verified. The conclusion
follows immediately. �

If T = U(n)× {1} in Theorem 1.1, the following can be stated:

Corollary 3.1 Let Ωψ be from (1.1). Then, the space of cylindrically symmetric functions of

HW 1,2
0 (Ωψ), i.e.,

HW 1,2
0,cyl(Ωψ) = {u ∈ HW 1,2

0 (Ωψ) : u(z, t) = u(|z|, t)},

is compactly embedded into Lq(Ωψ), q ∈ (2, 2∗Q).

Remark 3.3 The domain Ωψ cannot be replaced by the whole space Hn, i.e., the space

HW 1,2
0,T (Hn) = {u ∈ HW 1,2(Hn) : u(z, t) = u(|zn1 |, ..., |znl |, t), zni ∈ Cni}

is not compactly embedded into Lq(Hn), n = n1 + ... + nl with ni ≥ 1, l ≥ 1. Indeed, let
u0(z, t) = 1 + cosN(z, t) when N(z, t) ≤ π, and u0(z, t) = 0 when N(z, t) ≥ π. Then, the
sequence uk(z, t) = u0(z, t− k) is bounded in HW 1,2

0,T (Hn), it converges weakly to 0, but uk ̸→ 0
in Lq(Hn) for any q ∈ (2, 2∗Q) since ∥uk∥Lq = ∥u0∥Lq ̸= 0 for every k ∈ N. As we can see,

the lack of compactness of embedding of HW 1,2
0,T (Hn) into Lq(Hn) comes from the possibility of

translations along the whole t−direction, which is not the case for HW 1,2
0,T (Ωψ). This example

also shows the indispensability of the central hypothesis (H)G0
T from Theorem 3.1. For instance,

if ηk = (0, k) ∈ Hn, then dCC(0, ηk) → ∞ and µ(lim inf(ηk ◦ Hn)) = ∞; however, for every
p ∈ Hn and τ̂k = (τk, 1) ∈ U(n)× {1}, k = 1, 2, with τ1 ̸= τ2, one has

dCC((τ̂1 ∗ ηk) ◦ p, (τ̂2 ∗ ηk) ◦ p) = dCC(ηk ◦ p, ηk ◦ p) = 0,

i.e., relation (3.2) fails.

Remark 3.4 If the functions ψi (i = 1, 2) are bounded, the domain Ωψ is strongly asymptot-

ically contractive. In this case, not only HW 1,2
0,T (Ωψ) but also HW 1,2

0 (Ωψ) can be compactly
embedded into Lq(Ωψ), q ∈ (2, 2∗Q), see Garofalo and Lanconelli [9], Schindler and Tintarev [19].

4 Rubik actions and symmetries

In the previous subsection we proved that the subgroup U(n1) × ... × U(nl) of the unitary
group U(n) (with n = n1 + ... + nl) produces the compact embedding of T -invariant functions
of HW 1,2

0 (Ωψ) into Lq(Ωψ) where T = U(n1) × ... × U(nl) × {1} and q ∈ (2, 2∗Q). The main
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purpose of the present section is to describe symmetrical differences of functions belonging to
HW 1,2

0 (Ωψ) via subgroups of the type U(n1)× ...×U(nl) for various splittings of the dimension
n. In order to solve this question we exploit a Rubik-cube technique. Roughly speaking, the
space dimension n corresponds to the number of faces of the cube, while the sides of the cube
are certain blocks in the splitting group U(n1)× ...×U(nl). If we consider only one copy of such
a proper splitting, the Rubik-cube cannot be solved/restored because only some specific moves
are allowed, thus there is a lack of transitivity on the cube. However, combining appropriate
splittings simultaneously, different moves complete each other recovering the transitivity, thus
solving the cube. The precise construction is described in the sequel.

4.1 Transitivity of combined Rubik-type moves on subgroups of U(n)

Let n ≥ 2 and for i ∈ {1, ...,
[
n
2

]
} we consider the subgroup of the unitary group U(n):

Tn,i =

{
U(n2 )× U(n2 ), if n = 2i,
U(i)× U(n− 2i)× U(i), if n ̸= 2i.

In the sequel, [Tn,i;Tn,j ] will denote the group generated by Tn,i and Tn,j . Although Tn,i does
not act transitively on the sphere S2n−1 = {z ∈ Cn : |z| = 1}, we have

Lemma 4.1 Let i, j ∈ {1, ...,
[
n
2

]
} with i ̸= j. Then the group [Tn,i;Tn,j ] acts transitively on the

sphere S2n−1. Moreover, for every z1, z2 ∈ S2n−1 there exists τ ∈ [Tn,i;Tn,j ] such that z1 = τz2
and τ is the composition of at most 3 alternating elements from Tn,i and Tn,j, starting with an
element from Tn,max{i,j}.

Proof. For simplicity, set 0k = (0, ..., 0) ∈ Ck = R2k, k ∈ {1, ..., n}. We may assume that
j > i. Fix z = (z1, z2, z3) ∈ S2n−1 arbitrarily with z1, z3 ∈ Cj and z2 ∈ Cn−2j . [If j = n/2,
the term z2 simply disappears from z.] Since U(j) acts transitively on S2j−1, one can find
τ1
j , τ

2
j ∈ U(j) such that if τj = τ1

j × ICn−2j × τ2
j ∈ Tn,j , then

τjz = (0j−1, |z1|, z2, |z3|, 0j−1).

Now, we switch to the action with an element from Tn,i. Since j − 1 ≥ i, due to the transitivity
of U(n− 2i) on S2n−4i−1, there exists τ1

i ∈ U(n− 2i) such that

τ1
i (0j−i−1, |z1|, z2, |z3|, 0j−i−1) = (1, 0n−2i−1).

Therefore, if τi = ICi × τ1
i × ICi ∈ Tn,i then

τiτjz = (0i, 1, 0n−i−1).

Now, repeating the above argument for another element z̃ ∈ S2n−1, one can find τ̃i ∈ Tn,i
and τ̃j ∈ Tn,j such that

τ̃iτ̃j z̃ = (0i, 1, 0n−i−1).

Thus,
z = τ−1

j τ−1
i τ̃iτ̃j z̃ = τ−1

j τ iτ̃j z̃

where τ i = τ−1
i τ̃i ∈ Tn,i. �
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4.2 Symmetrically distinct elements of HW 1,2
0 (Ωψ)

Let n ≥ 2 be fixed. For every i ∈ {1, ..., [n2 ]}, we consider the matrix ζi as

ζi =

(
0 IC

n
2

IC
n
2

0

)
if n = 2i, and ζi =

 0 0 ICi

0 ICn−2i 0
ICi 0 0

 if n ̸= 2i.

A simple verification shows that ζi ∈ U(n) \ Tn,i, ζ2
i = ICn , and ζiTn,iζ

−1
i = Tn,i.

In the sequel, we will follow a construction from Bartsch and Willem [4]. Let T̂ ζin,i be the

group generated by T̂n,i = Tn,i × {1} and ζ̂i = (ζi, 1). On account of the above properties, the

group generated by T̂n,i and ζ̂i is

T̂ ζin,i
def
= [T̂n,i; ζ̂i] = T̂n,i ∪ ζ̂iT̂n,i, (4.1)

i.e., only two types of elements in T̂ ζin,i can be distinguished; namely, elements of the form τ̂ ∈ T̂n,i,
and ζ̂iτ̂ ∈ T̂ ζin,i \ T̂n,i (with τ̂ ∈ T̂n,i). The action of the group T̂ ζin,i on HW 1,2

0 (Ωψ) is defined by

(τ̃#u)(z, t) =

{
u(τ̂−1 ∗ (z, t)) if τ̃ = τ̂ ∈ T̂n,i;
−u((ζ̂iτ̂)−1 ∗ (z, t)) if τ̃ = ζ̂iτ̂ ∈ T̂ ζin,i \ T̂n,i,

(4.2)

for τ̃ ∈ T̂ ζin,i, u ∈ HW
1,2
0 (Ωψ) and (z, t) ∈ Ωψ, where ′∗′ comes from (3.3).

The following result provides a precise information on the mutually symmetric differences
for the spaces of T̂ ζin,i−invariant functions in HW 1,2

0 (Ωψ).

Proposition 4.1 Let n ≥ 2 and Ωψ be from (1.1). The following statements hold true:

(i) The space

HW 1,2

0,T̂
ζi
n,i

(Ωψ) = {u ∈ HW 1,2
0 (Ωψ) : τ̃#u = u, ∀τ̃ ∈ T̂ ζin,i},

where ′#′ is given in (4.2), is compactly embedded into Lq(Ωψ) for all q ∈ (2, 2∗Q) and
i ∈ {1, ..., [n2 ]};

(ii) HW 1,2

0,T̂
ζi
n,i

(Ωψ) ∩HW 1,2
0,cyl(Ωψ) = {0} for all i ∈ {1, ..., [n2 ]};

(iii) If n ≥ 4, then HW 1,2

0,T̂
ζi
n,i

(Ωψ) ∩HW 1,2

0,T̂
ζj
n,j

(Ωψ) = {0} for all i, j ∈ {1, ..., [n2 ]}, i ̸= j.

Proof. (i) On the one hand, the first relation of (4.2) implies that HW 1,2

0,T̂
ζi
n,i

(Ωψ) ⊂ HW 1,2

0,T̂n,i
(Ωψ).

On the other hand, on account of Theorem 1.1, the space HW 1,2

0,T̂n,i
(Ωψ) is compactly embedded

into Lq(Ωψ), q ∈ (2, 2∗Q).

(ii) Let us fix u ∈ HW 1,2

0,T̂
ζi
n,i

(Ωψ)∩HW 1,2
0,cyl(Ωψ). Since u is T̂ ζin,i−invariant, the second relation

from (4.2) implies in particular that u(z, t) = −u(ζ̂−1
i ∗(z, t)) = −u(ζ−1

i z, t) for every (z, t) ∈ Ωψ.
Since u is cylindrically symmetric, i.e., u(z, t) = u(|z|, t), and |z| = |ζ−1

i z|, we necessarily have
that u = 0.
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(iii) Let u ∈ HW 1,2

0,T̂
ζi
n,i

(Ωψ) ∩ HW 1,2

0,T̂
ζj
n,j

(Ωψ). Note that the latter fact means in particular

that u is both T̂n,i−, and T̂n,j−invariant, thus invariant with respect to [Tn,i;Tn,j ]× {1}. Since
[Tn,i;Tn,j ] acts transitively on S2n−1 by Lemma 4.1, it possesses only a single group orbit. This
means that u is actually a cylindrically symmetric function on Ωψ, thus u = 0 from (ii). �

5 Proof of Theorems 1.2 and 1.3

For f ∈ Aq, let F (s) =
∫ s
0 f(t)dt. Fix ν ∈ [0, C−1

V n2). For every λ > 0, we introduce the energy

functional Eλ : HW 1,2
0 (Ωψ) → R associated with problem (P νλ ), namely,

Eλ(u) =
1

2
∥u∥2

HW (Ωψ) −
ν

2

∫
Ωψ

V (z, t)u2dzdt− λF(u),

where

F(u) =

∫
Ωψ

K(z, t)F (u(z, t))dzdt. (5.1)

For the sake of simplicity of notations, we do not mention the parameter ν in the functional Eλ.
Since f ∈ Aq for some q ∈ (2, 2∗Q), on account of (HV ), (HK) and subelliptic Hardy inequality

(see (2.3)), the functional Eλ is well-defined, of class C1 and its critical points are precisely the
weak solutions for (P νλ ). Moreover, since ν ∈ [0, C−1

V n2), the norm ∥ ·∥HW (Ωψ) is equivalent with
the norm given by

∥u∥ν =

(
∥u∥2

HW (Ωψ) − ν

∫
Ωψ

V (z, t)u2dzdt

)1/2

. (5.2)

First, we prove Theorem 1.2. Note that hypothesis (f2) is the standard Ambrosetti and
Rabinowitz assumption (see [1]), which implies that for some s0 > 0 and c > 0, one has
|f(s)| ≥ c|s|α−1 for all |s| > s0, i.e., f is superlinear at infinity.

Proof of Theorem 1.2. (i) Fix λ > 0. Let ETλ be the restriction of the energy functional Eλ to the

space HW 1,2
0,T (Ωψ). On account of Theorem 1.1 and hypotheses (f1), (f2), one can apply in a

standard manner the mountain pass theorem of Ambrosetti and Rabinowitz [1] to ETλ , obtaining

a critical point uλ ∈ HW 1,2
0,T (Ωψ) of ETλ with positive energy-level; in particular, uλ ̸= 0. Due to

relation (3.4) and the cylindrical symmetry of V and K, the functional Eλ is T−invariant where
the action of T on HW 1,2

0 (Ωψ) is given by (3.1). Now, the principle of symmetric criticality of
Palais [16] implies that uλ is a critical point also for Eλ, thus a weak solution for (P νλ ).

(ii) Let n ≥ 2. First, since V and K are cylindrically symmetric, the functional Eλ is
U(n) × {1}−invariant with respect to the action defined by (3.1). Second, since f is odd,

Eλ is an even functional, thus Eλ is T̂ ζin,i−invariant with respect to the action from (4.2). Let E iλ
(i = 1, ..., [n2 ]) and Ecyl

λ be the restrictions of Eλ to the spaces HW 1,2

0,T̂
ζi
n,i

(Ωψ) and HW 1,2
0,cyl(Ωψ),

respectively. By exploiting Proposition 4.1 (i) and Corollary 3.1 as well as hypotheses (f1),
(f2), we can apply the symmetric version of the mountain pass theorem to E iλ (i = 1, ..., [n2 ])

and Ecyl
λ , respectively, see e.g. Willem [23, Theorem 3.6]. Therefore, one can guarantee the

existence of the sequences of distinct critical points {uλ,ik } ⊂ HW 1,2

0,T̂
ζi
n,i

(Ωψ) (i = 1, ..., [n2 ]) and

{uλk} ⊂ HW 1,2
0,cyl(Ωψ) of the functionals E iλ (i = 1, ..., [n2 ]) and Ecyl

λ , respectively. They are also

13



critical points of Eλ due to the principle of symmetric criticality. In view of Proposition 4.1 (ii) &
(iii), the symmetric structure of the elements in the aforementioned sequences mutually differ. �

Before proving Theorem 1.3 some remarks are in order on the assumptions (f ′1)− (f ′3).

Remark 5.1 (a) Hypotheses (f1) and (f ′1) coincide, which means that f is superlinear at the
origin. Hypothesis (f ′2) is a counterpart of the superlinearity assumption (f2). Due to (f ′1) and
(f ′2), we have f ∈ Aq for every q ∈ (2, 2∗Q). These hypotheses also imply that

lim
s→0

F (s)

s2
= lim

|s|→∞

F (s)

s2
= 0.

Moreover, if K ∈ L∞(Ωψ)∩L1(Ωψ), a simple verification shows that F defined in (5.1) inherits
similar properties as F , i.e.,

lim
∥u∥ν→0

F(u)

∥u∥2
ν

= 0; (5.3)

lim
∥u∥ν→∞

F(u)

∥u∥2
ν

= 0, (5.4)

where ∥ · ∥ν is defined in (5.2).

(b) The number cf = maxs ̸=0
|f(s)|
|s| is well-defined and positive.

(c) If X is a closed subspace of HW 1,2
0 (Ωψ) which is compactly embedded into Lq(Ωψ),

q ∈ (2, 2∗Q), then F|X has a compact derivative.

Remark 5.2 Let us keep the notations from the proof of Theorem 1.2 and assume that (f ′1)−
(f ′3) hold. Then, 0 is a local minimum point for the functionals ETλ and E iλ (i = 1, ..., [n2 ]), cf.
(5.3). Moreover, these functionals are coercive (cf. (5.4)), bounded from bellow, satisfying the
Palais-Smale condition; thus, all of them have a global minimum point with negative energy-level
for large values of λ. Consequently, the well-known critical point theorem of Pucci and Serrin
[17] gives a third critical point for these functionals. Summing up, for large values of λ > 0, one
can expect the existence of at least two nonzero weak solutions for (P νλ ) in HW 1,2

0,T (Ωψ), and at
least 2([n2 ] + 1) nonzero weak solutions for (P νλ ) whenever f is odd.

Theorem 1.3 gives a more precise information as the one stated in Remark 5.2; indeed, it
shows that the number of solutions described below is stable with respect to small subcritical
perturbations. In order to prove it, we recall a result established by Ricceri [18].

If X is a Banach space, we denote by WX the class of those functionals E : X → R having
the property that if {uk} is a sequence in X converging weakly to u ∈ X and lim infk→∞E(uk) ≤
E(u) then {uk} has a subsequence converging strongly to u.

Theorem 5.1 [18, Theorem 2] Let (X, ∥ · ∥) be a separable, reflexive, real Banach space, let
E1 : X → R be a coercive, sequentially weakly lower semicontinuous C1 functional belonging to
WX , bounded on each bounded subset of X and whose derivative admits a continuous inverse on
X∗. Let E2 : X → R be a C1 functional with compact derivative. Assume that E1 has a strict
local minimum point u0 with E1(u0) = E2(u0) = 0.
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Assume that ϱ < χ, where

ϱ := max

{
0, lim sup

∥u∥→∞

E2(u)

E1(u)
, lim sup

u→u0

E2(u)

E1(u)

}
, (5.5)

χ = sup
E1(u)>0

E2(u)

E1(u)
. (5.6)

Then, for each compact interval [a, b] ⊂ (1/χ, 1/ϱ) (with the conventions 1/0 = ∞ and 1/∞ = 0)
there exists κ > 0 with the following property: for every λ ∈ [a, b] and every C1 functional
E3 : X → R with compact derivative, there exists δ > 0 such that for each θ ∈ [−δ, δ], the
equation E′

1(u) − λE′
2(u) − θE′

3(u) = 0 admits at least three solutions in X having norm less
than κ.

Proof of Theorem 1.3. (i) Let u ∈ HW 1,2
0 (Ωψ) be a solution of (P νλ ). Multiplying (P νλ ) by u,

using the Green theorem, the subelliptic Hardy inequality (2.3) with hypothesis (HV ), the fact
that ν ∈ [0, C−1

V n2), and the definition of number cf > 0 (see Remark 5.1(b)), we obtain that∫
Ωψ

u2 ≤
∫

Ωψ

(|∇Hnu|20 − νV (z, t)u2 + u2)dzdt

= λ

∫
Ωψ

K(z, t)f(u)udzdt

≤ λ∥K∥L∞cf
∫

Ωψ

u2.

If 0 ≤ λ < c−1
f ∥K∥−1

L∞ , the above estimate implies u = 0.
In the sequel, we are going to prove (ii) and (iii) by applying Theorem 5.1. First, let

ω̂ = ∪{τ̂ω : τ̂ = (τ, 1), τ ∈ U(n)}, where the set ω is from the hypothesis of the theorem. Since
K is cylindrically symmetric, one has

inf
ω̂
K = inf

ω
K > 0. (5.7)

Moreover, one can find (z0, t0) ∈ Ωψ and R > 0 such that

R < 2|z0|(
√

2− 1) (5.8)

and
AR = {(z, t) ∈ Hn : ||z| − |z0|| ≤ R, |t− t0| ≤ R} ⊂ ω̂. (5.9)

Clearly, for every σ ∈ (0, 1], one has AσR ⊂ AR ⊂ ω̂ and µ(AσR) > 0.
(ii) Let T = U(n1)× ...×U(nl)×{1} with n = n1 + ...+ nl and ni ≥ 1, l ≥ 1. We are going

to apply Theorem 5.1 with the choices X = HW 1,2
0,T (Ωψ) and E1, E2, E3 : HW 1,2

0,T (Ωψ) → R
which are the restrictions of 1

2∥ · ∥
2
ν , F and F̃ to the space HW 1,2

0,T (Ωψ), respectively, where

F̃(u) =
∫
Ωψ
K̃(z, t)F̃ (u)dzdt, u ∈ HW 1,2

0 (Ωψ). Note that as a norm-type functional, E1 is

coercive, sequentially weakly lower semicontinuous, it belongs to W
HW 1,2

0,T (Ωψ)
, it is bounded

on each bounded subset of HW 1,2
0,T (Ωψ) and its derivative admits a continuous inverse on the
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dual space of HW 1,2
0,T (Ωψ). On account of Remark 5.1(c) and Theorem 1.1, E2 and E3 are C1

functionals with compact derivative. Moreover, u0 = 0 is a strict global minimum point of E1,
E1(0) = E2(0) = 0, and (5.3) and (5.4) yield ϱ = 0 (see relation (5.5)). In the sequel, we shall
prove that

χ = sup

{
2F(u)

∥u∥2
ν

: u ∈ HW 1,2
0,T (Ωψ) \ {0}

}
∈ (0,∞).

Let s0 ∈ R be the number from (f ′3). For every σ ∈ (0, 1) we consider the truncation function
uσ : Ωψ → R defined by

uσ(z, t) =
s0

1− σ

(
1−max

(
||z| − |z0||

R
,
|t− t0|
R

, σ

))
+

,

where r+ = max(r, 0). It is clear that uσ ∈ HW 1,2
0,cyl(Ωψ) ⊂ HW 1,2

0,T (Ωψ) and

(p1) suppuσ = AR;

(p2) ∥uσ∥L∞ ≤ |s0|;

(p3) uσ(z, t) = s0 for every (z, t) ∈ AσR.

The above properties, the subelliptic Hardy inequality (2.3), and hypotheses (HV ) and (HK)
imply that

∥uσ∥2
ν ≥

∫
Ωψ

u2
σ ≥ s20µ(AσR),

and

F(uσ) =

∫
AR

K(z, t)F (uσ(z, t))dzdt

=

∫
AσR

K(z, t)F (uσ(z, t))dzdt+

∫
AR\AσR

K(z, t)F (uσ(z, t))dzdt

≥ inf
AσR

K · F (s0)µ(AσR)− ∥K∥L∞ max
|t|≤|s0|

|F (t)|µ(AR \AσR).

If σ → 1, the right-hand sides of the above expressions are positive. Consequently, from (5.3)
and (5.4),

χ = sup

{
2F(u)

∥u∥2
ν

: u ∈ HW 1,2
0,T (Ωψ) \ {0}

}
∈ (0,∞),

and the number

λ∗ = inf

{
∥u∥2

ν

2F(u)
: u ∈ HW 1,2

0,T (Ωψ), F(u) > 0

}
<∞ (5.10)

is well-defined. Moreover, one has χ−1 = λ∗.
Applying Theorem 5.1, for every λ > λ∗ = χ−1 > 0, there exists δλ > 0 such that for each

θ ∈ [−δλ, δλ], the functional E1−λE2−θE3 has at least three critical points inHW 1,2
0,T (Ωψ). Since

the functional Eλ,θ = 1
2∥·∥

2
ν−λF−θF̃ is T−invariant where the action of T onHW 1,2

0 (Ωψ) is given
by (3.1), the principle of symmetric criticality implies that the critical points of E1−λE2− θE3

are also critical points for Eλ,θ, thus weak solutions for (P νλ,θ).
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(iii) If n = 1, the claim easily follows after a suitable modification of the proof of (ii); here,
the energy functional Eλ,θ = 1

2∥ · ∥
2
ν − λF − θF̃ is even, thus the solutions appear in pairs which

belong to HW 1,2
0,cyl(Ωψ). Now, let n ≥ 2, and fix i ∈ {1, ..., [n2 ]} arbitrarily. The difficulty relies

on the construction of a suitable truncation function in HW 1,2

0,T̂
ζi
n,i

(Ωψ) with properties similar to

(p1)-(p3). To complete this aim, we first introduce the auxiliary function ei : Ci × Ci × R → R
by

ei(z, z̃, t) =
2

R

√(
|z| − |z0|+

R

2

)2

+ |z̃|2 + (t− t0)2,

where z0, t0 and R > 0 are from (5.8) and (5.9). We also introduce the sets

S1 =
{
(z, z̃, t) ∈ Ci × Ci × R : ei(z, z̃, t) ≤ 1

}
and

S2 =
{
(z, z̃, t) ∈ Ci × Ci × R : ei(z̃, z, t) ≤ 1

}
.

A simple reasoning based on (5.8) shows that

S1 ∩ S2 = ∅. (5.11)

For every σ ∈ (0, 1], we introduce the set in Hn by

Si
σ =


{(z1, z2, t) ∈ Ci × Ci × R : ei(z1, z2, t) ≤ σ or ei(z2, z1, t) ≤ σ}, if n = 2i,{

(z1, z2, z3, t) ∈ Ci × Cn−2i × Ci × R :
ei(z1, z3, t) ≤ σ or ei(z3, z1, t) ≤ σ,
and |z2| ≤ σR

2

}
, if n ̸= 2i.

It is clear that the set Siσ is T̂ ζin,i−invariant (that is, τ̃Siσ ⊂ Siσ for every τ̃ ∈ T̂ ζin,i), S
i
σ ⊆ Si1,

µ(Siσ) > 0 for every σ ∈ (0, 1] and

lim
σ→1

µ(Si1 \ Siσ) = 0. (5.12)

Now, we prove that
Si1 ⊂ AR. (5.13)

We consider that n ̸= 2i, the case n = 2i is similar. Let (z1, z2, z3, t) ∈ Si1 such that ei(z1, z3, t) ≤
1 and |z2| ≤ R

2 . In particular, the first inequality implies that |t − t0| ≤ R
2 and (|z0| − R)2 ≤

|z1|2 + |z3|2 ≤ |z0|2. Consequently,

|z|2 = |z1|2 + |z2|2 + |z3|2 ≤ |z0|2 +

(
R

2

)2

< (|z0|+R)2,

|z|2 = |z1|2 + |z2|2 + |z3|2 ≥ (|z0| −R)2,

i.e., ||z| − |z0|| ≤ R. Thus, (z, t) = (z1, z2, z3, t) ∈ AR.
Let s0 ∈ R be the number from hypothesis (f ′3). Keeping the above notations, for a fixed

σ ∈ (0, 1), we construct the truncation function uiσ : Ωψ → R defined by

ui
σ(z, t) =


s0

1−σ [(1−max(ei(z1, z2, t), σ))+ − (1−max(ei(z2, z1, t), σ))+] if n = 2i,

s0

(1−σ)2 [(1−max(ei(z1, z3, t), σ))+ − (1−max(ei(z3, z1, t), σ))+]×
×
(
1−max( 2

R |z2|, σ)
)
+
, if n ̸= 2i.

Due to (5.11) we have the following properties:
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(p1’) suppuiσ = Si1;

(p2’) ∥uiσ∥L∞ ≤ |s0|;

(p3’) |uiσ(x)| = |s0| for every x ∈ Siσ.

Moreover, τ̃#uiσ = uiσ for every τ̃ ∈ T̂ ζin,i where the action ′#′ is from (4.2). Therefore, uiσ ∈
HW 1,2

0,T̂
ζi
n,i

(Ωψ). Since F is even, by using properties (p1’)-(p3’), one has

F(uiσ) =

∫
Siσ

K(z, t)F (uiσ(z, t))dzdt+

∫
Si1\Siσ

K(z, t)F (uiσ(z, t))dzdt

≥ inf
Siσ

K · F (s0)µ(Siσ)− ∥K∥L∞ max
|t|≤|s0|

|F (t)| · µ(Si1 \ Siσ).

On account of (5.7), (5.9), (5.12) and (5.13), if σ is close enough to 1, the right-hand side of the
latter term is positive. Thus, we can define the number

λ∗i = inf

{
∥u∥2

ν

2F(u)
: u ∈ HW 1,2

0,T̂
ζi
n,i

(Ωψ), F(u) > 0

}
<∞. (5.14)

Moreover, from (5.3) and (5.4), one has that

χi = sup

{
2F(u)

∥u∥2
ν

: u ∈ HW 1,2

0,T̂
ζi
n,i

(Ωψ) \ {0}
}
∈ (0,∞)

and χ−1
i = λ∗i .

As in (ii), we apply Theorem 5.1 to X = HW 1,2

0,T̂
ζi
n,i

(Ωψ) and to the functionals E1, E2, E3 :

HW 1,2

0,T̂
ζi
n,i

(Ωψ) → R which are the restrictions of 1
2∥ · ∥

2
ν , F and F̃ to HW 1,2

0,T̂
ζi
n,i

(Ωψ). Repeating

a similar argument as before, we state that for λ > λ∗i = χ−1
i > 0, there exists δλi > 0 such

that for each θ ∈ [−δλi , δλi ], the functional E1 − λE2 − θE3 has at least three critical points in
HW 1,2

0,T̂
ζi
n,i

(Ωψ). Since f and f̃ are odd functions, the energy functional Eλ,θ = 1
2∥ · ∥

2
ν − λF − θF̃

is even, thus T̂ ζin,i−invariant where the action of T̂ ζin,i on HW 1,2
0 (Ωψ) is given by (4.2). From the

principle of symmetric criticality it follows that the critical points of E1 − λE2 − θE3 are also
critical points for Eλ,θ, therefore, weak solutions for (P νλ,θ). Summing up the above facts, for

every i ∈ {1, ..., [n2 ]}, and for every λ > λ∗i and θ ∈ [−δλi , δλi ], problem (P νλ,θ) has at least two

distinct pairs of nonzero weak solutions {±uλ,θi,1 ,±u
λ,θ
i,2 } ⊂ HW 1,2

0,T̂
ζi
n,i

(Ωψ). A similar argument

also shows (see also (ii)) that there exists λ∗0 > 0 such that for every λ > λ∗0 there exists δλ0 > 0
such that for every θ ∈ [−δλ0 , δλ0 ], problem (P νλ,θ) has at least two distinct pairs of nonzero weak

solutions {±uλ,θ0,1 ,±u
λ,θ
0,2} ⊂ HW 1,2

0,cyl(Ωψ).

Now, if we choose Λ∗ = max{λ∗0, λ∗1, ..., λ∗[n
2
]} and δλ = min{δλ0 , δλ1 , ..., δλ[n

2
]}, the claim follows

from Proposition 4.1 (ii)&(iii). �
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6 Appendix: Proof of Theorem 3.1

Although the line of the proof of Theorem 3.1 is similar to Tintarev and Fieseler [22, Proposition
4.4], we present its proof to make our paper self-contained. The notations and notions in our
proof are taken from [22].

Let {uk} be a bounded sequence in HW 1,2
0,T (G0). By keeping the same notation, we naturally

extend the functions uk to the whole group G by zero on G \ G0. Thus, {uk} is bounded in
HW 1,2

0 (G) and since T ∗G0 = G0, we also have

τ̂#uk = uk, ∀τ̂ ∈ T. (6.1)

Since (HW 1,2
0 (G), DG) is a dislocation pair, we may apply the abstract version of the con-

centration compactness principle from Tintarev and Fieseler [22, Theorem 3.1, p. 62], which

guarantees the existence of a set N0 ⊂ N, w(n) ∈ HW 1,2
0 (G), g

(n)
k ∈ DG, g

(1)
k = id with k ∈ N,

n ∈ N0 such that for a renumbered sequence,

w(n) = w lim g
(n)−1

k uk; (6.2)

g
(n)−1

k g
(m)
k ⇀ 0, n ̸= m; (6.3)

uk −
∑
n∈N0

g
(n)
k w(n) DG⇀ 0. (6.4)

Let η
(n)
k ∈ G be the shifting element associated to g

(n)
k , see (2.2). Putting m = 1 in (6.3), one

has that g
(n)
k ⇀ 0 (n ≥ 2), thus {η(n)

k } has no bounded subsequence, i.e., dCC(0, η
(n)
k ) → ∞ as

k →∞. We claim that w(n) = 0 for every n ≥ 2. To prove this, we distinguish two cases:

Case 1. We assume that µ(lim inf(η
(n)
k ◦G0)) = 0. Fix p ∈ G arbitrarily. Since the Lebesgue

measure of the set lim inf(η
(n)
k ◦G0) is zero, we may assume that p /∈ lim inf(η

(n)
k ◦G0). Therefore,

from the definition of the Kuratowski lower-limit for sets, there exists a subsequence {η(n)
kj
} of

{η(n)
k } such that p /∈ η

(n)
kj

◦ G0, i.e., η
(n)−1

kj
◦ p /∈ G0. In particular, ukj (η

(n)−1

kj
◦ p) = 0. On the

other hand, up to a subsequence, from (6.2) we have that the sequence {g(n)−1

kj
ukj} converges

pointwise almost everywhere to w(n) on G. Combining these facts, we obtain that

w(n)(p) = lim
j

(g
(n)−1

kj
ukj )(p)

(2.2)
= lim

j
ukj (η

(n)−1

kj
◦ p) = 0,

which proves the claim.

Case 2. We assume now that µ(lim inf(η
(n)
k ◦G0)) > 0. From the hypotheses (H)G0

T it follows
that there exists a subsequence {ηkj} of {ηk} and a subgroup T{ηkj }

of T with card(T{ηkj }
) = ∞

verifying relation (3.2). Assume by contradiction that w(n) ̸= 0 for some n ≥ 2. Let L ∈ N, and
fix the mutually distinct elements τ̂1, ..., τ̂L ∈ T{ηkj }. It is clear that

∥∥∥∥∥ukj −
L∑
l=1

(τ̂l#w
(n))((τ̂l ∗ η

(n)
kj

) ◦ ·)

∥∥∥∥∥
2

HW (G)

≥ 0.

19



After the expansion of this expression, we obtain that

∥ukj∥
2
HW (G) − 2

L∑
l=1

I lj +

L∑
l1=1

L∑
l2=1

I l1,l2j ≥ 0, (6.5)

where
I lj := ⟨ukj , (τ̂l#w

(n))((τ̂l ∗ η
(n)
kj

) ◦ ·)⟩HW (G),

and
I l1,l2j := ⟨(τ̂l1#w(n))((τ̂l1 ∗ η

(n)
kj

) ◦ ·), (τ̂l2#w(n))((τ̂l2 ∗ η
(n)
kj

) ◦ ·)⟩HW (G).

First, we have that

I lj = ⟨ukj , (τ̂l#w
(n))((τ̂l ∗ η

(n)
kj

) ◦ ·)⟩HW (G)

= ⟨ukj ((τ̂l ∗ η
(n)
kj

)−1 ◦ ·), τ̂l#w(n)⟩HW (G) (cf. left invariance of ∥ · ∥HW (G))

= ⟨ukj ((τ̂l ∗ η
(n)−1

kj
) ◦ ·), τ̂l#w(n)⟩HW (G) (cf. (TG2))

= ⟨(τ̂−1
l #ukj )(η

(n)−1

kj
◦ (τ̂−1

l ∗ ·)), τ̂l#w(n)⟩HW (G) (cf. (TG2) and (3.1))

= ⟨ukj (η
(n)−1

kj
◦ (τ̂−1

l ∗ ·)), τ̂l#w(n)⟩HW (G) (cf. (6.1))

= ⟨(g(n)−1

kj
ukj )(τ̂

−1
l ∗ ·), τ̂l#w(n)⟩HW (G) (cf. (2.2))

= ⟨τ̂l#(g
(n)−1

kj
ukj ), τ̂l#w

(n)⟩HW (G) (cf. (3.1))

= ⟨(g(n)−1

kj
ukj ), w

(n)⟩HW (G). (T acts isometrically on HW 1,2
0 (G), τ̂l ∈ T )

Therefore, according to (6.2), one has for every l ∈ {1, ..., L} that

lim
j
I lj = lim

j
⟨g(n)−1

kj
ukj , w

(n)⟩HW (G) = ∥w(n)∥2
HW (G). (6.6)

Now, in order to estimate I l1,l2j , we distinguish two cases. First, let l1 = l2 =: l. Since
the HW (G)-norm is left-invariant with respect to translations and T acts isometrically on
HW 1,2

0 (G), we have

I l,lj = ∥w(n)∥2
HW (G). (6.7)

Second, let l1 ̸= l2. We claim that
lim
j
I l1,l2j = 0. (6.8)

Indeed, relation (3.2) from hypothesis (H)G0
T , the density of C∞

0 (G) in HW 1,2
0 (G), as well as the

Lebesgue dominance theorem imply relation (6.8). Roughly speaking, the geometrical meaning
of the above phenomenon is that the compact supports of the approximating functions for
τ̂li#w

(n) (i = 1, 2) are far from each other after ’distant’ left-translations. Now, combining
relations (6.5)-(6.8), it yields

∥ukj∥
2
HW (G) ≥ L∥w(n)∥2

HW (G) + o(1).

Since card(T{ηkj }
) = ∞, then L can be fixed arbitrary large, which contradicts the boundedness

of {ukj}. Therefore, w(n) = 0.
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Consequently, in both cases we have w(n) = 0 for every n ≥ 2. Now, from (6.4), up to a

subsequence, it yields that uk
DG⇀ w(1). By using Tintarev and Fieseler [22, Lemma 9.12, p. 223],

it follows that uk → w(1) strongly in Lq(G), q ∈ (2, 2∗Q). The trivial extension of uk to G \ G0

by zero yields that uk → w(1)|G0 strongly in Lq(G0), q ∈ (2, 2∗Q), which concludes the proof. �
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