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Abstract

We study Hausdorff and Minkowski dimension distortion for images of generic affine sub-
spaces of Euclidean space under Sobolev and quasiconformal maps. For a supercritical
Sobolev map f defined on a domain in R

n, we estimate from above the Hausdorff di-
mension of the set of affine subspaces parallel to a fixed m-dimensional linear subspace,
whose image under f has positive Hα measure for some fixed α > m. As a consequence,
we obtain new dimension distortion and absolute continuity statements valid for almost
every affine subspace. Our results hold for mappings taking values in arbitrary metric
spaces, yet are new even for quasiconformal maps of the plane. We illustrate our results
with numerous examples.
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1. Introduction

Every continuous Sobolev mapping is ACL, i.e., its components are absolutely con-
tinuous when restricted on almost every line. In particular, almost every line parallel to
any fixed vector is mapped onto a locally rectifiable curve, and hence onto a curve of
Hausdorff dimension one. Moreover, every supercritical Sobolev mapping satisfies Lusin’s
condition N, i.e., sets of Lebesgue measure zero are mapped to sets of measure zero.

It is natural to investigate similar regularity properties of Sobolev maps on subspaces
of intermediate dimension. For a fixed set this was done by Kaufman [29] and earlier by
Astala [2] and Gehring–Väisälä [16] for quasiconformal maps. In this paper, we study
absolute continuity and dimension distortion properties for the restriction of Sobolev and
quasiconformal maps to generic affine subspaces. Our main results are Theorems 1.3,
1.4 and 1.6.

The literature on generic dimension estimates is extensive. A rich line of inquiry into
dimensions of generic projections of Euclidean sets was initiated by Marstrand in his
fundamental paper [33] and furthered by Kaufman, Mattila, Falconer and many others.
We refer to Mattila’s book [36] for a history of these developments and a for a list of
references. Mattila [34], [35] later proved an important series of results on dimensions of
generic intersections of translates or rigid motions of Euclidean sets. These results gave
signficant impetus and visibility to the subject of generic dimension estimates. Recently,
Falconer [12], [14] investigated the dimensions of invariant sets for generic elements in
parameterized families of self-affine iterated function systems. See also the papers by
Solomyak [43] and Falconer–Miao [11] for further work on this subject. Ideas from these
papers were taken up by the authors in [5], [6] and [4] for the study of dimensions of
generic invariant sets associated to sub-Riemannian iterated function systems.

Our goal in this paper is to apply techniques from geometric measure theory used in
the proof of such theorems towards the understanding of the generic dimension distortion
behavior of Sobolev maps on affine subspaces. Our main results suggest many extensions
and generalizations. Section 6 contains open problems and questions motivated by this
study.

We consider the foliation of Rn by m-dimensional affine subspaces

Va := V + a,
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where V is an m-dimensional linear subspace of Rn, i.e., an element of the Grassmannian
G(n,m), and a ranges over the orthogonal complement V ⊥ of V . We assume throughout
this paper that m and n are integers satisfying

(1.1) 1 ≤ m ≤ n− 1.

The notion of genericity is measured by suitable Hausdorff measures on V ⊥. For instance,
the ACL property of a Sobolev map f : Ω → R

m asserts that, for a given V ∈ G(n, 1),

(1.2)
f |Va∩Ω : (Va ∩ Ω,H1) → (f(Va ∩ Ω),H1) is absolutely continuous

for Hn−1 almost every point a in V ⊥ ∈ G(n, n− 1).

Since f(Va ∩Ω) has locally finite Hausdorff 1-measure at such points a, we also conclude

(1.3) dim f(Va ∩Ω) ≤ 1 for Hn−1 almost every a ∈ V ⊥.

Throughout this paper, we denote by Hs the s-dimensional Hausdorff measure and by
dim the Hausdorff dimension.

In this paper, we shall prove a sweeping generalization of (1.2) and (1.3) for families
of affine subspaces of arbitrary dimension.

We take advantage of recent developments in analysis in metric spaces to formulate
our results for Sobolev maps taking values in arbitrary metric spaces. The notion of a
metric space-valued Sobolev map has been introduced by Ambrosio [1] and Reshetnyak
[39]. It was used in [46] and [26] to provide an analytic characterization of quasisymmetric
maps in metric spaces, and in [3] to investigate properties of quasiconformal maps with
Sobolev boundary values from the perspective of conformal densities.

Despite this general framework, we stress that our results are already new for Sobolev
and quasiconformal maps between Euclidean domains, even domains in the plane.

Definition 1.1. Let Ω be a domain in some Euclidean space and let B be a Banach
space. A map f : Ω → B is said to lie in W 1,p(Ω, B) if 〈b∗, f〉 ∈ W 1,p(Ω) for every b∗

in the dual space B∗, and if the weak gradients of the functions 〈b∗, f〉, ||b∗|| ≤ 1, are
uniformly dominated in Lp(Ω).

Let Y be a separable metric space. A map f : Ω → Y is said to lie in W 1,p(Ω, Y )
if ι ◦ f lies in the Sobolev space W 1,p(Ω, �∞), where ι : Y → �∞ denotes an isometric
embedding.

Fix n and m as in (1.1). Let Ω and Y be as in Definition 1.1, and let f be in
W 1,p(Ω, Y ). For the moment we restrict our attention to the case of supercritical map-
pings, i.e., the case p > n. The Sobolev embedding theorem in this case implies that f
is Hölder continuous. The following proposition gives an a priori estimate for the dis-
tortion of dimension of an m-dimensional affine subspace under a supercritical Sobolev
map. Kaufman [29] proved a more general statement covering subsets of arbitrary Haus-
dorff dimension. See Proposition 2.5. Although Kaufman’s paper is the first place where
we have seen this explicit result in print, the underlying principle (increased Sobolev
regularity implies improved dimension distortion bounds), had apparently already been
recognized for some time. In the quasiconformal category, it was used by both Astala [2]
and Gehring–Väisälä [16].
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Proposition 1.2 (Kaufman). Let f ∈ W 1,p(Ω, Y ) for p > n and let V ∈ G(n,m). Then
f(Va ∩ Ω) has zero Hpm/(p−n+m) measure for each a ∈ V ⊥. In particular,

(1.4) dim f(Va ∩ Ω) ≤ pm

p− n+m
.

Note that a naive application of the (1− n/p)-Hölder regularity of f would yield the
weaker estimate

dim f(Va ∩ Ω) ≤ pm

p− n
.

Proposition 1.2 provides an upper bound, strictly smaller than n, for the dimension
of the image of an arbitrary m-dimensional subspace under a supercritical W 1,p mapping
f . How frequently can the intermediate values

m < α <
pm

p− n+m

be exceeded? Our first main theorem provides a quantitative measurement of this fre-
quency.

Fix n and m satisfying (1.1). For p ≥ 1 and m ≤ α ≤ pm
p−n+m , set

(1.5) β(p, α) := (n−m)−
(
1− m

α

)
p.

The following theorem, which is the primary result of this paper, asserts anHβ-almost
everywhere upper bound on the dimensions of images of affine subspaces parallel to a
fixed m-dimensional linear subspace of Rn under a supercritical Sobolev map.

Theorem 1.3. Let Ω ⊂ R
n be a domain, f ∈ W 1,p(Ω, Y ), p > n, V ∈ G(n,m), and

(1.6) m < α ≤ pm

p− n+m
.

Then f(Va ∩Ω) has zero Hα measure for Hβ-almost every a ∈ V ⊥, where β = β(p, α).

Since β(p, α) = 0 if and only if α = pm
p−n+m , Theorem 1.3 includes Proposition 1.2 as

a special case. Theorem 1.3 implies both the dimension estimate

(1.7) dim f(Va ∩ Ω) ≤ α

as well as the absolute continuity of

(1.8) f |Va∩Ω : (Va ∩ Ω,Hm) → (f(Va ∩Ω),Hα)

for Hβ-a.e. a ∈ V ⊥.
Theorem 1.3 is sharp. In the following theorem, we construct a W 1,p map which

increases from m to α the dimension of each element in a β(p, α)-dimensional set of
parallel affine m-dimensional subspaces of Rn. In order to describe precisely the class
of sets to which the theorem applies, we fix some useful notation. For a bounded set
E ⊂ R

n and for r > 0, we denote by N(E, r) the smallest number of balls of radius r
needed to cover E.

4



Theorem 1.4. Let p ≥ 1, let α satisfy m < α ≤ pm
p−n+m for p > n−m and m < α for

p ≤ n−m, and define β(p, α) by the formula (1.5). Let E ⊂ R
n−m be any bounded Borel

set for which

(1.9) lim sup
r→0

rβN(E, r) < ∞

with β = β(p, α). Then for any integer N > α, there exists f ∈ W 1,p(Rn,RN ) so that
f({a} × R

m) has Hausdorff dimension at least α, for Hβ-a.e. a ∈ E.

Note that we only assume p ≥ 1 in the statement of Theorem 1.4. Choosing p > n
and a set E ⊂ R

n−m with positive and finite Hausdorff Hβ measure which satisfies the
assumptions of the theorem shows that Theorem 1.3 is sharp. Sets of this type exist in
abundance. For instance, we may take any compact subset E ⊂ R

n−m which is Ahlfors
regular of dimension β(p, α), e.g., a self-similar Cantor set.

The map in Theorem 1.4 is obtained by a random construction. We exhibit a large
family of W 1,p maps and show that almost every map in this family has the desired
property.

Theorem 1.3 holds in particular for Euclidean quasiconformal maps. We obtain almost
sure dimension estimates for the size of the exceptional set of points a in V ⊥ for which
the quasiconformal m-manifold f(Va ∩Ω) has positive Hα measure. By Gehring’s higher
integrability theorem [15], quasiconformal maps in R

n lie in W 1,p for some p > n. Since

β(p, α) < β(n, α) = m
(n
α
− 1

)
for all p > n, we obtain the following

Corollary 1.5. Let f : Ω → Ω′ be a quasiconformal map between domains in R
n, let

V ∈ G(n,m), and let m < α < n. Then Hα(f(Va ∩ Ω)) = 0 for Hm(n
α−1)-a.e. a ∈ V ⊥.

In particular,

(1.10) dim f(Va ∩ Ω) ≤ α

for Hm(n
α−1)-a.e. a ∈ V ⊥.

Estimates for quasiconformal dimension distortion are often obtained via conformal
modulus techniques. Our proof makes no explicit use of modulus, although it is mo-
tivated by modulus arguments used in estimates of conformal dimension (Remark 3.4).
Quasiconformal and quasisymmetric dimension distortion is a classical subject ([16], [45],
[2]), but we are unaware of prior theorems yielding simultaneous dimension estimates for
the images of a large family of parallel subspaces. See Remark 5.8 for more details.

Remarkably, even Corollary 1.5 is sharp, provided we replace Hausdorff dimension by
upper Minkowski dimension in (1.10). To simplify the exposition here in the introduction,
we only state the following theorem in the case m = 1, i.e., for parameterized families of
lines and their images. A similar result holds for higher dimensional subspaces, but only
for a restricted choice of image dimensions α. See Remark 5.6.

Theorem 1.6. Let n ≥ 2. For each α ∈ (1, n) and each ε > 0, there exists a Borel
set E ⊂ R

n−1 of Hausdorff dimension at least
(
n
α − 1

) − ε and a quasiconformal map
f : Rn → R

n such that f({a} × R) has upper Minkowski dimension at least α, for all
a ∈ E.
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We recall that the upper Minkowski dimension of E is the infimum of those values
β > 0 for which (1.9) is satisfied.

Theorem 1.6 provides the first example of which we are aware of a quasiconformal
map which simultaneously increases the (Minkowski) dimension of a family of parallel
subspaces of optimal size. We do not know any example of a quasiconformal map which
simultaneously increases the Hausdorff dimension of such a large family of subspaces,
although previous examples of Bishop [7], David–Toro [10] and Kovalev–Onninen [32]
should be noted. We review the examples of Bishop, David–Toro and Kovalev–Onninen
in Remark 5.8.

Theorem 1.3 refers to supercritical Sobolev maps, i.e., W 1,p maps with p > n. The
situation for weaker integrability criteria is more intriguing. Recently, Hencl and Honźık
[28] extended Theorem 1.3 to certain subcritical Sobolev spaces by proving that the
conclusion of Theorem 1.3 continues to hold on the level of Hausdorff dimension for the
p-quasicontinuous representatives of W 1,p mappings when m < α < p ≤ n. See Theorem
5.9 for a precise statement. The method of proof in [28] is rather new and relies on
pointwise estimates, similar in spirit to but more intricate than the Sobolev embedding
theorem, for such mappings. They also provide an elaboration on Theorem 1.4 which
further highlights the necessity of the restriction p > α.

When p ≤ m the situation is still not completely clear. In Example 5.11 we construct
mappings in

W 1,m([0, 1]n, �2),

for any 2 ≤ m < n, with the property that every image f(Va∩[0, 1]n), a ∈ V ⊥, is infinite-
dimensional. In fact, every such image coincides with a fixed infinite-dimensional cube.
The construction makes use of space-filling Sobolev mappings with metric space targets,
as constucted by Haj�lasz–Tyson [24] and Wildrick–Zürcher [47], [48]. The methods can
be adapted to construct a mapping in W 1,p for

(1.11) m < p < n

with similar properties, but at present, a complete understanding of the generic dimension
distortion behavior ofm-dimensional affine subspaces byW 1,p maps fromR

n for arbitrary
p remains a challenging open problem.

Outline of the paper. In Section 2 we review the Ambrosio/Reshetnyak framework
for metric space-valued Sobolev maps, emphasizing dimension distortion and absolute
continuity properties. Section 3 contains the proof of Theorem 1.3. We use the technique
of energy integrals to obtain generic lower bounds on dimension.

In section 4 we prove Theorem 1.4. The desired Sobolev map is obtained via a random
method, as a generic representative in a parameterized family of mappings. The idea
goes back to Kaufman [29].

Section 5 is devoted to examples. Here we prove Theorem 1.6. The quasiconformal
map in Theorem 1.6 is constructed in a piecewise fashion on a Whitney decomposition
of the complement of a codimension one subspace. The construction is a refined version
of an earlier one by Heinonen and Rohde [27], who constructed a quasiconformal map of
the unit ball in R

n sending an (n− 1)-dimensional family of radial segments onto curves
of infinite length.
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In Section 5 we also discuss subcritical Sobolev mappings. The space-filling con-
structions of Haj�lasz–Tyson [24] yield an example of a W 1,m mapping f from R

n to the
Hilbert space �2 for which f(Va) is infinite-dimensional for every a ∈ V ⊥ ∈ G(n, n−m).
In subsection 5.2 we generalize the constructions from [24] to build similar maps in W 1,p

for m < p < n.
Section 6 is reserved for open problems and questions arising out of this study.

Remark. An earlier draft of this paper included versions of Theorem 1.3 in certain
borderline Sobolev spaces such as the Sobolev–Lorentz class W 1,n,1 and the space of
continuous pseudomonotone W 1,n maps. As these results of ours have now been super-
seded by the work of Hencl and Honźık (see Theorem 5.9) we do not include them in this
final version.

Conventions. We denote by #S the cardinality of a finite set S. The Lebesgue measure
in R

n will be written Ln. We denote unspecified positive constants by C or c. We write
C = C(a, b, . . .) to mean that C depends on the data a, b, . . .. We employ the following
convention: we write C if we wish to emphasize that a certain constant is finite, and we
write c if we wish to emphasize that it is positive.

Acknowledgements. Research for this paper was completed while the second and third
authors were visitors in the Mathematics Institute of the University of Bern. The hos-
pitality of the institute is acknowledged. We would like to thank Kari Astala, Tadeusz
Iwaniec and István Prause for helpful comments related to Problem 6.2. We also wish to
acknowledge Luigi Ambrosio, Pekka Koskela, and Ilya Molchanov for useful discussions
on the topic of this paper.

We extend our grateful appreciation to the referee, whose detailed comments and
corrections greatly improved the paper. In particular, we would like to thank the referee
for providing the elegant statement and proof of Lemma 4.4; our original version of
this lemma was significantly more technical. We also thank the referee for directing our
attention to the work of Hencl and Honźık [28], and we thank Stanislav Hencl for his
valuable comments on this related work.

2. Sobolev maps valued in metric spaces

Our results are naturally phrased in the modern language of metric space-valued
Sobolev mappings (see Definition 1.1). This notion was introduced by Ambrosio [1] in
1990 and later studied by Reshetnyak [39]. For the reader’s convience, we repeat the
definition.

Let B be a Banach space, let 1 ≤ p < ∞, and let Ω be a domain in R
n, n ≥ 2. The

Bochner–Lebesgue space Lp(Ω, B) consists of all weakly measurable, essentially separably
valued maps f : Ω → B satisfying

∫
Ω
||f(x)||p dx < ∞.

Definition 2.1. A map f : Ω → B in the Bochner–Lebesgue space Lp(Ω, B) belongs to
the Ambrosio–Reshetnyak–Sobolev space W 1,p(Ω, B) if there exists g ∈ Lp(Ω) so that for
every b∗ ∈ B∗ with ||b∗|| ≤ 1, we have 〈b∗, f〉 ∈ W 1,p(Ω) and |∇〈b∗, f〉| ≤ g a.e.
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A function g as in the definition will be called an upper gradient for f . Thus
W 1,p(Ω, B) consists of those functions in Lp(Ω, B) which admit an Lp upper gradient.

We may equip W 1,p(Ω, B) with the norm

(2.1) ||f ||1,p := ||f ||Lp(Ω,B) + inf
g
||g||Lp(Ω).

Here the infimum is taken over all upper gradients g ∈ Lp(Ω) for f . Endowed with this
norm, W 1,p(Ω, B) is a Banach space. See, for example Theorem 3.13 in [26].

Furthermore, when 1 < p < ∞ there exists an upper gradient gf ∈ Lp(Ω) so that

||f ||1,p = ||f ||Lp(Ω,B) + ||gf ||Lp(Ω).

Moreover, gf is unique up to modification on a set of measure zero. The existence of
such a minimal upper gradient gf follows by a standard convexity argument.

The space W 1,p(Ω, B) admits the following weak characterization.

Proposition 2.2. Let B be the dual of a separable Banach space. Then W 1,p(Ω, B)
coincides with the space of all functions f ∈ Lp(Ω, B) which have weak partial derivatives
in Lp(Ω, B).

As usual, we say that f : Ω → B has gi : Ω → B as a weak i-th partial derivative if

(2.2)

∫
Ω

(∂iϕ)f dx = −
∫
Ω

ϕgi dx

for all C∞ functions ϕ which are compactly supported in Ω. Here i ∈ {1, . . . , n} and the
identity (2.2) is understood in the sense of the Bochner integral, as an equality between
elements of B. For a proof of Proposition 2.2, see for example [24].

Now suppose that (Y, d) is a separable metric space. Fix an isometric embedding ι of
Y into �∞. In this case, we say that f : Ω → Y is in the Ambrosio–Reshetnyak–Sobolev
space W 1,p(Ω, Y ) if ι ◦ f ∈ W 1,p(Ω, �∞). Since �∞ is the dual of the separable Banach
space �1, the membership of ι◦f in W 1,p(Ω, �∞) can be understood in the weak sense via
Proposition 2.2. When 1 < p < ∞ we write gf = gι◦f and call this the minimal upper
gradient of f .

The existence of isometric embeddings of separable metric spaces in �∞ is well known.
For instance, we may use the Kuratowski embedding [25, Chapter 12].

The space W 1,p(Ω, Y ) is naturally equipped with a metric by the rule

d(f1, f2) = ||ι ◦ f1 − ι ◦ f2||1,p,
where || · ||1,p denotes the norm in (2.1). We emphasize that this metric depends on the
choice of the isometric embedding ι. While membership in the class W 1,p(Ω, Y ) turns
out to be independent of the choice of ι, the metric structure of the space is highly
dependent on that choice. This fact has been explored in detail by Haj�lasz [19], [20],
[22] who has shown, for example, the surprising result that the question of density of
Lipschitz mappings in the Sobolev space can admit a different answer depending on the
choice of ι.

For additional information on this notion of metric space-valued Sobolev space, we
recommend the clear and readable survey [21] by Haj�lasz.
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Sobolev maps from Ω to Y are absolutely continuous along almost every line, and
restrict to Sobolev maps on almost every affine subspace of dimension at least two. We
record this fact in the following proposition. It is easily deduced from Proposition 2.2 by
standard arguments. See Theorem 2.1.4 and Remark 2.1.5 in [49].

Proposition 2.3. Let f ∈ W 1,p(Ω, Y ), p ≥ 1. Then f has an ACL representative f .
In particular, for any V ∈ G(n, 1), the set of a ∈ V ⊥ for which f |Va∩Ω is not absolutely
continuous from (Va ∩Ω,H1) to (f(Va ∩ Ω),H1) has zero Hn−1-measure. Moreover, for
any V ∈ G(n,m), m ≥ 2, the set of a ∈ V ⊥ for which f |Va∩Ω ∈ W 1,p(Va ∩ Ω, Y ) has
zero Hn−m-measure.

By the Morrey–Sobolev embedding theorem, each supercritical mapping f ∈ W 1,p(Ω, Y ),
p > n, has a representative which is locally (1− n/p)-Hölder continuous. In the remain-
der of the paper we always work with this representative. In the following proposition,
we summarize several basic properties of supercritical Sobolev mappings.

Proposition 2.4. Let Y be a separable metric space, Ω ⊂ R
n, and f ∈ W 1,p(Ω, Y ),

p > n, represented as above. Let gf denote the minimal upper gradient for f . Then for
all cubes Q compactly contained in Ω, we have

(2.3) diam f(Q) ≤ C(n, p)(diamQ)1−n/p

(∫
Q

gpf dx

)1/p

.

Also, f satisfies the following quantitative version of Lusin’s condition N:

(2.4) Hn(f(E)) ≤ C(n, p)Ln(E)1−n/p||gf ||nLp(Ω)

for all measurable sets E ⊂ Ω.

The local Hölder continuity and the estimate in (2.3) are established by standard
arguments as in the Euclidean case, beginning from the Sobolev–Poincaré inequality
for supercritical Sobolev functions. For details, we refer to Ziemer [49, Theorem 2.4.4]
or Haj�lasz–Koskela [23]. We prove the quantitative Lusin property (2.4). While this
argument is also standard, it serves as a model for other proofs which occur in this
paper.

We make repeated use of the fact that Hausdorff dimension can be computed using
dyadic coverings. By a dyadic cube of size 2−j, j ∈ Z, we mean a closed cube in R

n

with sides parallel to the coordinate axes, with side length 2−j and vertices in the set
2−j · Zn. The s-dimensional dyadic Hausdorff measure Hs

dyadic is defined by the usual
Carathéodory procedure to be

Hs
dyadic(E) = lim

δ→0
Hs

dyadic,δ(E)

where Hs
dyadic,δ(E) is the infimum of the expressions

∑
j(diamQj)

s over all coverings
{Qj} of E by dyadic cubes of diameter no more than δ. The inequalities

(2.5) Hs
δ(E) ≤ Hs

dyadic,δ(E) ≤ (4
√
n)sHs

δ(E), E ⊂ R
n, 0 ≤ δ ≤ ∞,

show that the dyadic Hausdorff measures generate the same dimension value as do the
standard Hausdorff measures. See Mattila [36, §5.2] for details. We recall that the

9



dyadic cubes of a fixed size form a nonoverlapping decomposition of Rn (that is, they
have disjoint interiors).

To prove (2.4), let ε > 0, choose δ > 0 sufficiently small relative to ε, and consider
an arbitrary covering {Qi} of E by nonoverlapping dyadic cubes with side length ri < δ.
Then f(E) is covered by the sets {f(Qi)}, and

(2.6) diam f(Qi) ≤ C(n, p)r
1−n/p
i (

∫
Qi

gpf dx)
1/p ≤ C(n, p, ||gf ||Lp(Ω))δ

1−n
p

which is less than ε by (2.3), provided δ is chosen appropriately. Summing the n-th powers
of (2.6) over i, applying Hölder’s inequality together with the essential disjointedness of
the family {Qi}, and taking the infimum over all such coverings {Qi} yields

(2.7) Hn
ε (f(E)) ≤ C(n, p)||gf ||nLp(Ω)Hn

dyadic,δ(E)1−n/p.

Letting δ and ε tend to zero and recalling the equivalence of Hs and Hs
dyadic completes

the proof of (2.4).
Kaufman [29] generalized the preceding proposition to cover the full range of Haus-

dorff measures Hs, 0 < s < n. Proposition 1.2 is a special case of the following theorem.

Proposition 2.5 (Kaufman). Let E ⊂ Ω be a set of σ-finite Hα measure for some
0 < α < n. Let f ∈ W 1,p(Ω, Y ) for some p > n. Then f(E) has zero Hpα/(p−n+α)

measure.

The proof of Proposition 2.5 proceeds along exactly the same lines as that of Propo-
sition 2.4 with one additional modification. Since α < n, we have that E is a null set for
the Lebesgue measure in Ω. Instead of (2.7) we obtain

Hpα/(p−n+α)
ε (f(E)) ≤ C(n, p, α)||gf ||

pα
p−n+α

Lp(U) Hα
dyadic,δ(E)

p−n
p−n+α

for each open set U containing E. Taking the infimum over all such open sets and using
the outer regularity of the Lebesgue measure yields the desired conclusion.

3. Exceptional sets for Sobolev maps

In this section, we prove Theorem 1.3.
For δ > 0 we denote by Hα

δ the α-dimensional Hausdorff premeasure at scale δ. In
particular, Hα

∞ denotes the α-dimensional Hausdorff content. See [36, Chapter 4] for
definitions.

Using countable stability of Hausdorff measure and the invariance of Hausdorff mea-
sure under rigid motions of Rn, it suffices to assume that Ω is bounded and V = {0}×R

m.
Since the null sets for Hα and Hα∞ coincide [36, Lemma 4.6], the exceptional set of points
from the statement of Theorem 1.3 consists of those points a ∈ V ⊥ for which

Hα
∞(f(Va ∩ Ω)) > 0.

Let us denote this set by Excf (α).
Our first task is to show that Excf (α) is a Borel set. This will permit us to use

Frostman’s lemma in later proofs.
10



Lemma 3.1. For each α ∈ [m,n), Excf (α) is a Borel set.

For a linear subspace W ⊂ R
n, let PW : Rn → W denote the orthogonal projection

onto W .

Proof. As described above, we may assume that Ω is bounded. Exhaust Ω with an
increasing sequence of compact sets {Ki}. For δ > 0, let E(α, i, δ) be the set of points
a ∈ V ⊥ with the following property: whenever f(Va∩Ki) is covered by a countable family
of open sets, {Ak}, then

∑
k(diamAk)

α > δ. Then

Excf (α) =
⋃
i

⋃
δ>0

E(α, i, δ).

We will prove that E(α, i, δ) is a closed set.
Let (aj) be a sequence of points in E(α, i, δ) with limj→∞ aj = a. Let {Ak} be a

countable family of open sets covering f(Va ∩Ki). For each k, let Bk = f−1(Ak). Since
f is continuous and Va ∩ Ki is compact, it follows from the Tube Lemma [37, Lemma
5.8] that there exists a neighborhood U of a in V ⊥ so that P−1

V ⊥(U) ∩Ki ⊂ ∪kBk. For
sufficiently large j, aj ∈ U and hence f(Vaj ∩Ki) ⊂

⋃
k Ak. Since

∑
k(diamAk)

α > δ
we conclude that a ∈ E(α, i, δ). This completes the proof.

Denote by BV ⊥(a, r) the ball in V ⊥ with center a and radius r > 0. We will deduce
Theorem 1.3 from the following proposition.

Proposition 3.2. Let α satisfy (1.6), let p > n, and define β = β(p, α) by the formula
(1.5). Let E ⊂ V ⊥ be a set of finite Hβ measure and assume that μ is a positive Borel
measure supported on E and satisfying the growth condition

(3.1) μ(BV ⊥(a, r)) ≤ rβ for all a ∈ V ⊥ and r > 0.

Finally, let f ∈ W 1,p(Ω, Y ). Then Hα(f(Va ∩Ω)) = 0 for μ-a.e. a ∈ E.

Proof. We may assume without loss of generality that Ω = (0, 1)n and that E ⊂
PV ⊥(Ω). Fix δ > 0. Since β < n − m, E can be included in an open set Uδ ⊂ R

n−m

of Hn−m measure at most δ. Let gf denote the minimal Lp upper gradient for f . Since
gf ∈ Lp(Ω),

(3.2) lim
δ→0

∫
Uδ×(0,1)m

gpf dx = 0.

Consider a nonoverlapping collection of dyadic cubes, {Ri}, contained in Uδ and
covering E, for which ∑

i

rβi < Hβ
dyadic,δ(E) + δ.

Here ri denotes the side length of Ri; we assume without loss of generality that ri < δ
for all i. For each i, let {Qij}Ni

j=1 be a family of nonoverlapping dyadic cubes in R
n, each

of which has side length ri, with the property that
⋃

j Qij = Ri × (0, 1)m. For fixed i,

the number Ni of cubes Qij is r−m
i .

11



By Proposition 2.4(i),

(3.3) diam f(Qij) ≤ Cr
1−n/p
i

(∫
Qij

gpf dx

)1/p

≤ C||gf ||Lp(Qij)δ
1−n/p =: ε.

For each a ∈ E, we have

Hα
ε (f(Va ∩Ω)) ≤

Ni∑
j=1

(diam f(Qij))
α

for each i so that a ∈ Ri. For fixed i and a ∈ E, let

χ(i, a) =

{
1, if a ∈ Ri,

0, else.

Then Hα
ε (f(Va ∩ Ω)) ≤ ∑

i χ(i, a)
∑Ni

j=1(diam f(Qij))
α and so

∫ ∗

V ⊥
Hα

ε (f(Va ∩ Ω)) dμ(a) ≤
∫ ∗

V ⊥

∑
i

χ(i, a)

Ni∑
j=1

(diam f(Qij))
α dμ(a)

=
∑
i

μ(Ri)
∑
j

(diam f(Qij))
α

≤ C(n, p)
∑
i

rβi r
α(1−n/p)
i

∑
j

(∫
Qij

gpf dx

)α/p

,

where we used (2.3) and (3.1). (Here we employed the upper integral
∫ ∗

to avoid the
difficult issue of measurability of the integrand a �→ Hα

ε (f(Va ∩ Ω)).)
Applying Hölder’s inequality to the inner sum, we obtain∫ ∗

V ⊥
Hα

ε (f(Va ∩ Ω)) dμ(a)

≤ C(n, p)
∑
i

r
β+α(1−n/p)
i (Ni)

1−α/p

⎛⎝ Ni∑
j=1

∫
Qij

gpf dx

⎞⎠α/p

≤ C(n, p)
∑
i

r
β+α(1−n/p)−m(1−α/p)
i

(∫
Ri×(0,1)m

gpf dx

)α/p

.

Applying Hölder’s inequality again yields∫ ∗

V ⊥
Hα

ε (f(Va ∩ Ω)) dμ(a)

≤ C(n, p)

(∑
i

∫
Ri×(0,1)m

gpf dx

)α
p
(∑

i

r
(β+α(1−n

p )−m(1−α
p )) p

p−α

i

)1−α
p

.
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Since β = β(p, α), (
β + α(1 − n

p )−m(1− α
p )
)(

p

p− α

)
= β.

Thus

∫ ∗

V ⊥
Hα

ε (f(Va ∩ Ω)) dμ(a) ≤ C(n, p)

(∫
Uδ×(0,1)m

gpf dx

)α
p
(∑

i

rβi

)1−α
p

≤ C(n, p)||gf ||αLp(Uδ×(0,1)m)

(
Hβ

dyadic,δ(E) + δ
)1−α

p
.

(3.4)

Letting δ → 0 and using the Monotone Convergence Theorem, the equivalence of Hs

and Hs
dyadic, and (3.2), we conclude that

∫ ∗
V ⊥ Hα(f(Va ∩Ω)) dμ(a) is equal to zero. This

completes the proof of the proposition.

Remark 3.3. The reader may have noticed that we only used the condition α < p in
the preceding proof, while the hypotheses include the stronger restriction

(3.5) α <
pm

p− n+m
.

The reason for (3.5) is implicit in the proof: recall that (3.5) holds if and only if β > 0. In
practice, the desired measure μ will be obtained by an application of Frostman’s lemma,
which requires the growth exponent β to be positive.

Remark 3.4. Some aspects of the preceding proof are modelled on a lemma of Bourdon
[9] (see also Pansu [38]) which provides lower estimates for the conformal dimension of
a metric space. This formal similarity is not surprising. Lower bounds on the conformal
dimension of a metric space indicate that a large family of (quasisymmetrically equiva-
lent) spaces have uniformly large dimension, while Theorem 1.3 indicates restrictions on
the set of parameters a for which the dimensions of the fiber images f(Va ∩ Ω) are all
uniformly large.

Proof of Theorem 1.3. Let β = β(p, α). Suppose Excf (α) has positive Hβ measure.
By Lemma 3.1 and Theorem 8.13 in [36], there exists a compact set E ⊂ Excf (α) so that
0 < Hβ(E) < ∞. By Frostman’s lemma ([36, Theorem 8.9]), there exists a positive Borel
measure μ = 0 supported on E such that μ(BV ⊥(a, r)) ≤ rβ for all a ∈ E and r > 0.

Then μ is absolutely continuous with respect to Hβ E, so μ(E) < ∞. By Proposition
3.2, Hα(f(Va ∩Ω)) = 0 for μ-a.e. a ∈ E. This contradicts the definition of Excf (α).

Remark 3.5. Quasiconformal self-maps of Rn, n ≥ 2, lie in W 1,p for some p > n. This
is Gehring’s higher integrability theorem [15]. Corollary 1.5 follows from this fact and
Theorem 1.3. More precisely, if f is K-quasiconformal then

(3.6) dimExcf (α) ≤ (n−m)−
(
1− m

α

)
p(n,K)
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where p(n,K) > n denotes the sharp exponent of higher integrability for the partial
derivatives of a K-quasiconformal mapping. We say that f is K-quasiconformal if
Hf (x) ≤ K for all x ∈ Ω, where

Hf (x) = lim sup
r→0

sup{|f(x)− f(y)| : |x− y| = r}
inf{|f(x)− f(z)| : |x− z| = r}

denotes the metric dilatation of a homeomorphism f : Ω → Ω′ between domains in R
n.

A celebrated theorem of Astala [2] asserts that

(3.7) p(2,K) =
2K

K − 1
;

the corresponding value p(n,K) = nK
K−1 remains a conjecture when n ≥ 3.

Astala’s theorem yields sharp bounds on dimension distortion by planar quasiconfor-
mal maps. If f is a K-quasiconformal map between planar domains Ω,Ω′ and E ⊂ Ω,
then

(3.8)
1

K

(
1

dimE
− 1

2

)
≤ 1

dim f(E)
− 1

2
≤ K

(
1

dimE
− 1

2

)
.

We deduce from (3.6) and (3.7) that

(3.9) dimExcf (α) ≤ 2K − (K + 1)α

α(K − 1)

whenever f is a K-quasiconformal map between planar domains, V ∈ G(2, 1), and α ∈
[1, 2). Note that the right hand side of (3.9) is equal to zero precisely when

α =
2K

K + 1
= 1 +

(
K − 1

K + 1

)
.

This agrees with the upper bound in (3.8) for the dimension of the image of any 1-
dimensional set under a planar K-quasiconformal map. In fact, the proof of (3.8) given
in [2] uses only the higher Sobolev integrability of f .

We discuss the case of quasiconformal mappings further in Problem 6.2.

4. Sobolev maps which increase the dimension of many affine subspaces

In this section we prove Theorem 1.4. Our proof is modelled closely on that of an
analogous result of Kaufman [29, Theorem 3], which exhibits Sobolev maps which increase
maximally the dimension of a fixed subset. Our situation is complicated by the fact that
we work with the orthogonal splitting of Rn into V = {0} × R

m and V ⊥ = R
n−m × {0}

and look for a map which simultaneously increases the dimension of many fibers.
Recall that our goal is to construct a W 1,p map of Rn which increases the dimensions

of all of the fibers Va over the points a in a certain set E ⊂ V ⊥ from m to α. To achieve
this, we will use a random construction. We will define a family of maps (fξ) parame-
terized by sequences ξ of independent and identically distributed random variables. All
of these maps will lie in the Sobolev class W 1,p, and we will show that, almost surely

14



with respect to ξ, such maps have the desired property. We do not know whether a
deterministic construction can be given.

Recall also that in the statement of Theorem 1.4 we assume that the set E satisfies
the growth condition

(4.1) N(E, r) ≤ Cr−β

for all r < r0, for some constants C and r0 > 0. Here β = β(p, α) is the value given in
(1.5). In particular, Hβ(E) < ∞ and so

(4.2) dimE ≤ β.

We fix an integer N > α; this value will be the dimension of the target space. When
p > n, we may set N = n.

Proof of Theorem 1.4. Let E be a bounded subset of Rn−m satisfying (4.1) for all
0 < r < r0, for suitable constants C and r0. By applying a preliminary homothety, we
may assume that E ⊂ [0, 1]n−m. The maps fξ ∈ W 1,p(Rn,RN ) which we shall construct
will satisfy

(4.3) Hα′
(fξ(Va ∩ [0, 1]n)) = ∞

for Hβ-almost every a ∈ E and almost surely in ξ, for each α′ < α. This clearly suffices
to obtain the desired conclusion dim fξ(Va) ≥ α for Hβ-a.e. a ∈ E, almost surely in ξ.

Before continuing with the proof, we pause to review terminology from symbolic
dynamics.

Let W = {1, . . . , 2n}, let W j be the set of (ordered) j-tuples of elements of W , and
let

W ∗ =
⋃
j≥0

W j

be the set of all finite sequences of elements of W (including the empty sequence). We
call the elements of W ∗ words comprised of the letters in W . If v = (v1, . . . , vj) and
w = (w1, . . . , wk) are words with j ≥ k, we say that w is a subword of v if vi = wi for all
i = 1, . . . , k. The length |w| of a word w ∈ W j is equal to j.

We use W ∗ to index the cubes in the standard dyadic decomposition

D = {Qw}w∈W∗

of Q = [0, 1]n. We choose this indexing in such a way that the side length s(Qw) of Qw

is equal to 2−j if w has length j, and also that Qw ⊂ Qv if v is a subword of w. For each
j, the cubes {Qw}w∈W j form a nonoverlapping decomposition of Q.

We also introduce a second collection of cubes, obtained by dilating the elements of
D. For each w ∈ W ∗, let Q′

w = 100Qw. It is important to note that, for fixed j, the
collection {Q′

w}w∈W j has bounded overlap: no points of Rn lies in more than C of the
cubes in this collection, where C is a constant depending only on the dimension n.

We project these cubes into the subspaces V and V ⊥. In order to maintain a consis-
tent notation we write

QV ⊥
w = PV ⊥(Qw) and QV

w = PV (Qw)
15



for such projections. We view these as cubes in R
n−m and R

m respectively. Similarly,

we define (QV ⊥
w )′ and (QV

w )
′ to be the corresponding dilated cubes. Note that Qw, Q

V ⊥
w

and QV
w all have the same side length 2−|w|. Similarly, Q′

w, (Q
V ⊥
w )′ and (QV

w )
′ all have

the same side length 100 · 2−|w|. In particular, we denote by QV = PV (Q) the unit cube

[0, 1]m and by QV ⊥
= PV ⊥(Q) the unit cube [0, 1]n−m.

For each w ∈ W ∗, let ψw be a function in C∞
0 (Rn) satisfying the following conditions:

(i) 0 ≤ ψw ≤ 1,

(ii) ψw ≡ 1 on Qw,

(iii) ψw ≡ 0 on the complement of 5
4Qw,

(iv) |∇ψw| ≤ C
s(Qw) = C2|w|.

Let ξ = (ξw) be a countable sequence of elements, indexed by the words w in W ∗, each
lying in the unit ball B ⊂ R

N . We define the mappings fξ. For each j ≥ 0, we first
define mappings fξ,j : R

n → R
N by the formula

fξ,j(a, x) = 2−jm/α
∑

w∈W j

QV ⊥
w ∩E �=∅

ψw(a, x)ξw , x ∈ V, a ∈ V ⊥.

Note that

(4.4) Hm((QV
w )

′) = C(m)2−jm

whenever w ∈ W j , for some fixed constant C(m).

Lemma 4.1. For all ξ as above and all j ≥ 0, the map fξ,j is in W 1,p(Rn,RN ), with
||fξ,j ||1,p bounded above by a finite constant independent of ξ and j.

We now define fξ : R
n → R

N by the formula

(4.5) fξ(a, x) =
∑
j≥0

(1 + j)−2fξ,j(a, x).

Corollary 4.2. For all ξ as above, fξ is in W 1,p(Rn,RN ), with ||fξ||1,p bounded above
by a finite constant which is independent of ξ.

To simplify the notation, we henceforth write

W j(E) := {w ∈ W j : QV ⊥
w ∩ E = ∅}

and W ∗(E) =
⋃

j≥0 W
j(E).

Proof of Lemma 4.1. It is easy to see that the functions fξ,j are uniformly bounded,
so it suffices to check the integrability of the gradient

∇fξ,j(a, x) = 2−jm/α
∑

w∈W j(E)

∇ψw(a, x)ξw .
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Since the cubes { 5
4Qw} have bounded overlap, we obtain∫
Q

|∇fξ,j |p ≤ C

∫
Q

2−jmp/α
∑

w∈W j(E)

|∇ψw(a, x)|p da dx

≤ C2j(p−n−mp/α)#W j(E).

(4.6)

Let T = {1, . . . , 2n−m}, T ∗ =
⋃

j≥0 T
j, and let {Rt}t∈T∗ denote the usual dyadic decom-

position in QV ⊥
. Then we have

#W j(E) =
∑
t∈T j

Rt∩E �=∅

#{w ∈ W j : QV ⊥
w = Rt},

where #{w ∈ W j : QV ⊥
w = Rt} is bounded by 2jm times a constant independent of t. So

we obtain #W j(E) ≤ C2j(m+β), by (4.1), and, returning to (4.6), we find∫
Q

|∇fξ,j|p ≤ C2j(β+p−n+m−mp
α ) = C

with C independent of ξ and j. This completes the proof of the lemma.

In the second part of the proof, we show that a generic choice of ξ yields a map fξ
with the desired property. To this end, we now view ξ = (ξw) as a sequence of inde-
pendent random variables, identically distributed according to the uniform probability
distribution on B.

For α > 0, denote by

Iα(μ) :=

∫∫
|x− y|−α dμ(x) dμ(y)

the α-energy of a finite Borel measure μ in R
N . The Riesz s-capacity, s > 0, of a set

A ⊂ R
n is defined by

Cs = sup
{
Is(μ)

−1 : μ ∈ M(A) and μ(Rn) = 1
}
,

where M(A) is the set of Radon measures in R
n with compact support contained in A.

We need the following version of Frostman’s Lemma [36, Theorem 8.9(1)]:

Lemma 4.3. If s > 0 and Hs(A) < ∞, then Cs(A) = 0.

For each a ∈ E, consider the measure (fξ)#(Hm Va), i.e., the pushforward of the
Hausdorff m-measure on the affine subspace Va via the map fξ. We claim that the
expectation

(4.7) Eξ

(∫
E

Iα′((fξ)#(Hm Va)) dHβ(a)

)
is finite for each α′ < α. If we can prove this claim, then almost surely with respect to
ξ, we have ∫

E

Iα′((fξ)#(Hm Va)) dHβ(a) < ∞
17



and hence Iα′((fξ)#(Hm Va)) is finite for Hβ-a.e. a ∈ E. By considering a sequence
α′
n ↗ α and using the countable stability of the Hausdorff measures and Frostman’s

lemma, we reach our desired conclusion (4.3).
It remains to verify the finiteness of the value in (4.7). By Tonelli’s theorem, (4.7)

equals ∫
[0,1]m

∫
[0,1]m

∫
E

Eξ(|fξ(a, x)− fξ(a, y)|−α′
) dHβ(a) dHm(x) dHm(y).

To estimate the integrand, we write

fξ(a, x)− fξ(a, y) =
∑

w∈W∗(E)

cw(a, x, y)ξw

where the coefficients are given by

(4.8) cw(a, x, y) := (1 + j)−22−jm/α

(
ψw(a, x)− ψw(a, y)

)
, w ∈ W j .

For a ∈ V ⊥ and x, y ∈ V , we let c(a, x, y) = (cw(a, x, y)) be the sequence of co-
efficients defined in (4.8). Clearly, c(a, x, y) is a summable sequence. We denote by
||c(a, x, y)||∞ the supremum of the terms in c(a, x, y).

We require the following elementary lemma from probability theory.

Lemma 4.4. Let {Xi} be a countable sequence of independent random variables, iden-
tically distributed according to the uniform distribution on the unit ball B in R

N . Let
c = (ci) ∈ �1. Finally, let 0 < α < N . Then there exists a constant C = C(N,α) so that

(4.9) E

(∣∣∣∣∑
i

ciXi

∣∣∣∣−α
)

≤ C||c||−α
∞ .

Proof. In view of the homogeneity of (4.9) it suffices to prove that

E

(∣∣∣∣∑
i

ciXi

∣∣∣∣−α
)

≤ C

when ||c||∞ = 1. Without loss of generality, assume that ||c||∞ = |c1|. We introduce the
multiple random variable X̂ = (X2, X3, . . .) and the random variable Y = −∑∞

i=2 ciXi.
Since X1 and Y are independent,

E

(∣∣∣∣∑
i

ciXi

∣∣∣∣−α
)

= EX̂

(
EX1

(∣∣∣∣X1 − Y

∣∣∣∣−α
))

by the law of iterated expectations. Since α < N , a simple symmetrization argument
yields

EX1

(∣∣∣∣X1 − y

∣∣∣∣−α
)

≤ 1

|B|
∫
B

|x|−α dx = C(N,α) < ∞

for every y ∈ R
N . The expectation over X̂ does not increase this bound any further.

The proof is complete.
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Using this lemma, we finish the proof of Theorem 1.4. Applying Lemma 4.4 to
the sequences ξ and c(a, x, y), and noting that Hβ(E) is finite, we observe by another
application of Tonelli’s theorem that it suffices to prove the estimate∫

[0,1]m
||c(a, x, y)||−α′

∞ dHm(y) ≤ C < ∞,

where C denotes a constant which is independent of a ∈ E and x ∈ [0, 1]m.
Fix a ∈ E and x ∈ [0, 1]m = QV . For y ∈ QV , let j(y) be the largest integer j ≥ 0

with the property that x and y lie in identical or adjacent dyadic cubes QV
w of level j.

It follows from the construction that there exists a word w0 in W j(y)+1 so that x ∈ QV
w0

and y ∈ (QV
w0

)′, but y ∈ 5
4Q

V
w0

. Furthermore, we may choose the word w0 so that

QV ⊥
w0

∩ E = ∅, i.e., w0 ∈ W ∗(E). Observe that

||c(a, x, y)||∞ ≥ |cw0(a, x, y)| = (2 + j(y))−2(100 · 2−j(y)−1)m.

Let Fj denote the set of points y ∈ QV for which j(y) = j. Note that Fj ⊂ (QV
w0

)′. We
have ∫

QV

||c(a, x, y)||−α′
∞ dHm(y) =

∑
j≥0

∫
Fj

||c(a, x, y)||−α′
∞ dHm(y)

≤ C
∑
j≥0

(2 + j)2α
′
2−jm(1−α′/α)

by (4.4). Since α′ < α, the series converges. The proof of Theorem 1.4 is complete.

5. Examples

5.1. Quasiconformal maps which increase the Minkowski dimension of many lines

Theorem 1.3 applies in particular to quasiconformal maps. It is natural to ask how
sharp the theorem is in that category.

In this section, we prove Theorem 1.6. We construct a quasiconformal mapping for
which the exceptional set associated to upper Minkowski dimension distortion has close-
to-optimal dimension. We do not have a corresponding example asociated to Hausdorff
dimension distortion.

Let us recall the definition of the Minkowski dimension.

Definition 5.1. Let S be a bounded subset of Rn. The upper Minkowski dimension of
S is

dimMS := lim sup
r→0

logN(S, r)

log 1/r
.

The lower Minkowski dimension of S, denoted dimMS, is defined similarly, with lim inf
replacing lim sup. In case the limit exists, the corresponding value is called theMinkowski
dimension.
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Theorem 1.6 corresponds to the case m = 1 in the following more general theorem.
As we will see in the proof, we may choose

δn,1 = 1− 1

n

and so the full range 1 < α < n is allowed. Note that Minkowski dimension is only
defined for bounded sets, which explains the reason why we only consider the compact
set f({a} × [0, 1]m) in the conclusion of the theorem.

Theorem 5.2. Let n ≥ 2 and 1 ≤ m ≤ n − 1 be integers. Then there exists a positive
constant δn,m so that for each α satisfying m < α < m/(1 − δn,m) and for each ε > 0,
there exists a compact set E ⊂ R

n−m of Hausdorff dimension at least m
(
n
α − 1

)− ε and

a quasiconformal map f : Rn → R
n so that dimMf({a} × [0, 1]m) ≥ α for all a ∈ E.

To simplify the exposition, we will only prove the case n = 2, m = 1 in what
follows. In Remarks 5.5 and 5.6 we comment on the changes required to cover the
general situation.

Recall that
dimE ≤ dimME ≤ dimME

for bounded sets E, with equality throughout if E is nice, for instance, if E is Ahlfors
regular. While Hausdorff dimension is countably stable (the dimension of any countable
union is the supremum of the dimensions of the pieces), Minkowski dimension is only
finitely stable (the dimension of any finite union is the maximum of the dimensions of
the pieces).

We begin with a lemma of Heinonen and Rohde. The quasiconformal map gT in
the following lemma maps an interior segment of the unit square in the xy-plane onto a
nonrectifiable arc of von Koch snowflake type. The image of this segment under gT has
an increased (Minkowski or Hausdorff) dimension. Nearby segments are mapped onto
smooth arcs, hence we realize no increase in their Hausdorff dimension. However, such
nearby segments are stretched significantly by the mapping (due to local quasisymmetry),
which increases their contribution to the covering numberN(gT ({a}×R), ε). To complete
the proof of Theorem 5.2, we sum these contributions over all squares in a Whitney-style
decomposition of the x-axis.

In the following lemma, we write A � B to indicate that two quantities A and B are
comparable up to an absolute multiplicative constant.

For an arbitrary square T ⊂ R
2 with sides parallel to the coordinate axes, we use the

following notation: ϕT : Q → T denotes the unique homothety of positive ratio from the
unit squareQ = [0, 1]2 onto T , sT denotes the side length of T , andMT = ϕT ({ 1

2}×[ 14 ,
3
4 ])

denotes a vertical segment in the middle of T of length 1
2sT . For a ∈ R, we denote by

γa the set {a} × R.

Lemma 5.3 (Heinonen–Rohde). Fix a real number D, 1 < D < 2. Let T be any
square in the plane. Then there exists a homeomorphism gT : T → T with the following
properties:

(i) gT is quasiconformal on the interior of T ,

(ii) gT |∂T is the identity,
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(iii) if p, q ∈ T are within distance 1
8sT from MT and

|p− q| ≥ max{dist(p,MT ), dist(q,MT )},
then

(5.1) |gT (p)− gT (q)| � |p− q|1/Ds
1−1/D
T .

(iv) if a ∈ R satisfies d := dist(γa,MT ) ≤ 1
8sT , then

(5.2) N(gT (γa ∩ T ), cd1/Ds
1−1/D
T ) ≥ sT

d

for some positive constant c.

We remark that the quantities N(gT (γa ∩ T ), cd1/Ds
1−1/D
T ) and sT /d from (5.2) are

in fact comparable, in view of the local quasisymmetry of gT . However, we only need
the stated lower bound in what follows.

Proof. Parts (i), (ii) and (iii) of this lemma coincide with Lemma 3.2 on page 401 in
[27]; see also the discussion on page 402. Briefly, the map gT is constructed as follows.
Choose a quasiconformal map h of R2 which sends MT onto a D-dimensional snowflake
curve of von Koch type contained in the interior of T . Such a map can be chosen so that
the estimate in (5.1) holds for all p, q ∈ MT . For a construction of such a map h, see for
instance [44, p. 151]. Next, by a standard technique from quasiconformal function theory,
we may choose a map gT : R2 → R

2 which is equal to the identity on the complement of
T , and which agrees with h on a neighborhood of MT . This is the desired map.

To complete the proof, we need only verify part (iv). Let a be a point satisfying the
stated conditions, choose an integer N satisfying

sT
N

≥ d >
sT

N + 1
,

and chooseN+1 points p0, . . . , pN on γa∩T so that |pi−pi−1| = sT /N for all i = 1, . . . , N .
If i = j, then |pi − pj | ≥ sT

N ≥ d and hence (by part (iii)),

|gT (pi)− gT (pj)| ≥ 1

C
|pi − pj |1/Ds

1−1/D
T ≥ 1

C

(sT
N

)1/D

s
1−1/D
T

for some constant C. Hence we require at least N + 1 balls of radius c
(
sT
N

)1/D
s
1−1/D
T

to cover gT (γa ∩ T ), where c = 1
3C . A fortiori, we require at least N + 1 balls of radius

cd1/Ds
1−1/D
T to cover gT (γa ∩ T ). We conclude the proof by observing that N +1 > sT

d .

In the proof of Theorem 5.2 we will use the following calculation of the Hausdorff
dimension of certain Cantor sets. See, e.g., Example 4.6 in [13].

Proposition 5.4. Let W1,W2, . . . be finite sets with Mj := #Wj ≥ 2 for each j, let
W ∗ =

⋃
j≥0(W1 × · · · ×Wj), and let {Iw}w∈W∗ be a family of closed intervals satisfying

the following conditions:

(i) Iw ⊂ Iv whenever v is a subword of w,
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(ii) max{|Iw| : w ∈ W1 × · · · ×Wj} → 0 as j → ∞, and

(iii) there exists a decreasing sequence (εj) of positive real numbers so that dist(Iv, Iw) ≥
εj whenever v, w ∈ W1 × · · · ×Wj are distinct.

Let E =
⋂

j≥1

⋃
w∈W1×···×Wj

Iw. Then

(5.3) dimE ≥ lim inf
j→∞

∑j
i=1 logMi

− log(εj+1Mj+1)
.

Proof of Theorem 5.2. Let α ∈ (1, 2) and ε > 0 be fixed. Without loss of generality,
we may assume that ε < 2

α − 1. Choose a rational number b > 1 satisfying

α

2− α
< b <

α

2− (1 + ε)α

and define

D := α

(
b− 1

b− α

)
.

Observe that
1

b
>

(
2

α
− 1

)
− ε

and also that α < D < 2.
Let (nj)j≥1 be any increasing sequence of positive integers with the following prop-

erties:

(i) nj+1 − bnj is an integer for each j ≥ 1, and

(ii) the limit of
∑j

i=1 ni

nj+1
as j → ∞ is equal to zero.

For instance, if b = P
Q in lowest terms, we may choose nj = QP j22

j

.

We associate to the sequence (nj) a sub-Whitney decomposition W of the upper half
plane, or more precisely, of the domain Ω = (0, 1)× (−2, 2) relative to the x-axis. This
means that we begin with the standard Whitney decomposition of Ω relative to the x-
axis, and subdivide all squares in this decomposition with size between 2−nj and 2−nj+1

into subsquares of size 2−nj+1 . Note that the resulting squares T have the property that
diamT is bounded above by a constant multiple of the distance d from T to the x-axis,
however, diamT may be significantly smaller than d.

Define a map f : Ω → Ω by setting f |T = gT for each T ∈ W . Since gT is the identity
on the boundary of T , this map is well-defined and continuous. Extend it to a map f of
R

2 to itself by the identity. Then f is quasiconformal.
We now define a Cantor set on the x-axis by an iterative procedure. For each j ≥ 1

and each square T ∈ W with sT = 2−nj and T ∩ {(x, y) : y = 2−nj} = ∅, the projection
P of the set T ∩ {(x, y) : y = 2−nj} onto the x-axis consists of 2nj+1−nj nonoverlapping
closed intervals, each of length 2−nj+1 . Note that the total length of all of these intervals
is equal to 2−nj , which is the side length of P . Select the subcollection of these intervals,
centered around the middle of P , of total length 2−bnj . Observe that this subcollection
consists of 2nj+1−bnj intervals each of length 2−nj+1 . In the inductive step, we consider
only squares in some vertical column corresponding to one of these intervals and repeat
the construction.
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For each j, let
Wj = {1, . . . , 2nj−bnj−1}

and denote by Iw , w ∈ W1 × · · · ×Wj , the intervals at the jth level in the construction
in the previous paragraph. The Cantor set in question is

E =
⋂
j≥1

⋃
w∈W1×···×Wj

Iw.

Using Proposition 5.4 with Mj = 2nj−bnj−1 and εj � 2−nj we find

dimE ≥ lim
j→∞

nj − (b− 1)
∑j−1

i=1 ni

bnj
=

1

b
> (

2

α
− 1)− ε.

Now suppose that a ∈ E and fix an integer j ≥ 1. Then a is contained in a unique
interval Iw with w ∈ W1 × · · · × Wj+1 which in turn is contained in a unique interval
Iŵ with ŵ ∈ W1 × · · · ×Wj . Let T be any square from W lying above the interval Iŵ.
Then the distance from γa to MT is bounded above by 1

22
−bnj which is smaller than

1
8sT = 1

82
−nj provided that j is chosen sufficiently large. Note that there are

2nj−nj−1 − 1

such squares T . We define a sequence of scales (δj) depending on the point a; the
desired estimate for the upper Minkowski dimension of f(γa) will come from analyzing
the covering number on this sequence of scales by an application of Lemma 5.3.

Let
δj = c dist(γa,MT )

1/Ds
1−1/D
T = c|a−mj |1/D2−nj(1−1/D),

where mj denotes the x-coordinate of the midline MT . By Lemma 5.3(iv), we have

N(gT (γa ∩ T ), δj) ≥ sT
dist(γa,MT )

=
2−nj

|a−mj | .

Summing this over all of the relevant squares gives

N(f(γa ∩Q), δj) ≥ (2nj−nj−1 − 1)
2−nj

|a−mj | ≥
2−nj−1

2|a−mj | .

We conclude that

(5.4) dimMf(γa ∩Q) ≥ lim sup
j→∞

− log2 |a−mj | − nj−1 − 1

− 1
D log2 |a−mj|+ (1− 1

D )nj + C
.

Observing that |a−mj | ≤ 2−bnj−1 and that the expression inside the limit on the right
hand side of (5.4) is nondecreasing in the variable − log2 |a−mj |, we conclude that

dimMf(γa ∩Q) ≥ D · lim sup
j→∞

bnj − nj−1

(b+D − 1)nj +DC +D
=

bD

b+D − 1
= α

by the choice of D. This completes the proof.
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Remark 5.5. For general n (still assuming m = 1) the proof is similar. We require
the existence of D-dimensional von Koch snowflake curves in R

n for each 1 < D < n.
More precisely, we require a curve Γ ⊂ R

n such that Γ = g(R), where g : Rn → R
n is a

quasiconformal map so that |g(x)−g(y)| � |x−y|1/D for all x, y ∈ R with |x−y| ≤ 1. For
a construction of such curves in R

3, see Bonk and Heinonen [8]. A similar construction
has been given by Ghamsari and Herron [17]. Using this construction, the proof of
Theorem 5.2 for m = 1 and general n proceeds in a similar fashion.

Remark 5.6. The case m ≥ 2 in Theorem 5.2 is more challenging. We require the
existence of D-dimensional quasiconformal submanifolds of Rn of von Koch type. More
precisely, we require a topological m-manifold Σ ⊂ R

n so that Σ = g(Rm), where g :
R

n → R
n is a quasiconformal map so that

(5.5) |g(x)− g(y)| � |x− y|m/D, ∀x, y ∈ R
m, |x− y| ≤ 1.

Such snowflaked quasiconformal submanifolds were constructed by David and Toro [10]
for a small range of values D ∈ [m,m+εn,m). Using such submanifolds, one can establish
an analog for Lemma 5.3 and thereby establish Theorem 5.2 for generalm satisfying (1.1).
The value of δn,m in Theorem 5.2 depends on the size of the interval [m,m + εn,m) of
dimensions of such snowflaked quasiconformal submanifolds. We leave to the interested
reader the computation of a precise relationship between δn,m and εn,m.

Snowflaked quasiconformal submanifolds were previously used in [8] and [30] to study
the effect of smoothness on branching phenomena for quasiregular mappings.

Remark 5.7. Bishop [7] previously constructed a quasiconformal map g of R3 so that
g(W ) contains no rectifiable curves, where W ∈ G(3, 2) is a fixed plane. In particular,
choosing V ∈ G(3, 1) with V ⊂ W and expressing R

3 as an orthogonal sum

(5.6) V ⊕ (V ⊥ ∩W )⊕W⊥

exhibits a one-dimensional family of parallel lines Va, a ∈ V ⊥ ∩W , all of whose images
under g have no nontrivial rectifiable subcurves. The construction in [7], however, did
not guarantee any dimension increase for the sets g(Va).

Using the aforementioned result of David and Toro and expressing R
n as an orthog-

onal sum of the form (5.6) for some V ∈ G(n, k), k < m, V ⊂ W , we can exhibit an
(m− k)-dimensional family of parallel lines Va, a ∈ V ⊥ ∩W , all of whose images under
g have Hausdorff dimension at least a fixed value D > m.

Remark 5.8. Kovalev and Onninen [32, Corollary 1.6] have recently shown that, to
every countable family of parallel lines {Va} in the plane, there corresponds a reduced
quasiconformal map f of R2 with the property that each curve f(Va) has no nontriv-
ial rectifiable subcurve. (See Definition 1.4 in [32] for the definition of reduced planar
quasiconformal map.) It is not clear how to extend their construction to higher dimen-
sions. Reduced quasiconformality implies that the image curves f(Va) necessarily have
Hausdorff dimension equal to one [32, Theorem 1.7]. In Theorem 1.6, the curves f(Va)
are nonrectifiable but locally rectifiable and also have Hausdorff dimension equal to one.
However, the size of the family of lines allowed in Theorem 1.6 is substantially larger
than that in [32].
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5.2. Space-filling maps in subcritical Sobolev classes

We continue with a discussion of the critical and subcritical cases, i.e., the case

p ≤ n.

We are interested in understanding the frequency of Hausdorff dimension distortion by
a map f in W 1,p(Ω, Y ). The first point to emphasize is that the problem is not precisely
defined in this setting. Indeed, Sobolev maps in the critical class W 1,n need not have
continuous representatives. Varying the representative of f can affect the dimension
distortion properties.

It is a standard fact of Sobolev space theory [49, Corollary 3.3.4] that W 1,p maps
admit p-quasicontinuous representatives, i.e. representatives which are continuously de-
fined on the complement of sets of zero Bessel capacity B1,p. We omit the definition of
the Bessel capacity B1,p but we recall that B1,p(E) = 0 whenever Hn−p(E) < ∞, and
B1,p(E) = 0 implies that Hn−p+ε(E) = 0 for any ε > 0; see [49, Theorem 2.6.16]. It is
natural to restrict our attention to p-quasicontinuous representatives. Recently, Hencl
and Honźık [28] proved the following extension of Theorem 1.3.

Theorem 5.9 (Hencl–Honźık). Let m < α < p ≤ n and define β = β(α, p) as in (1.5).
Let f be the p-quasicontinuous representative of a mapping in W 1,p(Ω,RN ), Ω ⊂ R

n.
Then for each V ∈ G(n,m) we have

dim{a ∈ V ⊥ : dim f(Va ∩ Ω) ≥ α} ≤ β.

In other words, the conclusion of our main Theorem 1.3 holds on the level of Hausdorff
dimensions, even for (certain) integrability exponents p below the critical value n. The
restriction on p stems from the fact that the dimension of the exceptional set for the
p-quasicontinuous representative is at most n− p, which is strictly smaller than β(α, p)
provided p > α.

The situation for smaller values of p, and in particular for p ≤ m, is more intriguing.
For such a representative f we have no information whatsoever about the behavior of f
on the (n− p)-dimensional exceptional set. Examples 5.11 and 5.12 below indicates the
extent to which our results on dimension bounds can fail. The constructions in these
examples are based on the following result taken from [24, Theorem 1.3].

Example 5.10 (Haj�lasz–Tyson). Let n ≥ 2. There exists a continuous map g ∈
W 1,n(Rn, �2) which is constant on the complement of [0, 1]n and a set F ⊂ [0, 1]n of
Hausdorff dimension zero so that dim g(F ) = ∞. In particular, dim g([0, 1]n) = ∞.

In other words, there exists a continuous W 1,n map on the unit cube in R
n with

infinite-dimensional target.
Next, we use Example 5.10 to illustrate what type of dimension distortion behavior

can occur for maps in W 1,m. Note that here, in contrast with the rest of this paper,
we require m ≥ 2, since we appeal to Example 5.10. It is easy to see that Example
5.10 cannot extend to the case n = 1. Indeed, every W 1,1 map from R is absolutely
continuous and the target has dimension at most one.

Example 5.11. Let n ≥ 3 and 2 ≤ m ≤ n−1 be integers. Then there exists a continuous
map f ∈ W 1,m(Rn, �2) which is constant on the complement of [0, 1]n with the property
that dim f({a} × [0, 1]m) = ∞ for all a ∈ [0, 1]n−m.
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Proof. Let g : [0, 1]m → �2 be a continuous map in the class W 1,m which is constant
on the boundary of [0, 1]m and for which dim g([0, 1]m) = ∞. Define f : [0, 1]n → �2 by

f(a, x) = g(x), a ∈ R
n−m, x ∈ R

m.

Extend f to be constant on the complement of [0, 1]n. Then f ∈ W 1,m(Rn, �2) and f
is continuous. Moreover, for each a ∈ [0, 1]n−m, the set f({a} × [0, 1]m) = g([0, 1]m) is
infinite-dimensional.

We next modify the preceding example to illustrate what can happen for maps in
W 1,p, m < p < n, with regard to almost sure dimension distortion of parallel subspaces.
To accomplish this, we will need to modify the details of the construction of Example
5.10.

Example 5.12. Fix integers 1 ≤ m < n and let m < p < n. Then there exists a
continuous map f ∈ W 1,p(Rn, �2) which is constant on the complement of [0, 1]n and
there exist compact sets F ⊂ [0, 1]m and E ⊂ [0, 1]n−m so that

1. the Hausdorff dimension of F is strictly less than m
p+1 ,

2. the Hausdorff dimension of E is in the interval
(
n− p− m

p+1 , n− p
]
,

3. dimE × F = dimE + dimF = n− p, and

4. dim f({a} × F ) = ∞ for all a ∈ E.

The proof will show that when p is an integer, we may choose dimF = 0 and dimE =
n− p.

We begin with some remarks.
The construction in Example 5.10 uses the fact that the n-capacity of a point in

R
n is equal to zero. This allows us to build a W 1,n map from a domain in R

n whose
image is large with very small n-energy. In fact, the map is constructed first on the
zero dimensional Cantor set F and then is extended to all of [0, 1]n while preserving the
finiteness of the n-energy.

The corresponding construction in Example 5.12 will use the p-capacity. The details
are more technical, however, since we must work explicitly with the precise value of this
capacity and relate it to the cardinality of various prefractals associated to the Cantor
set F .

Let us recall the definition of capacity.

Definition 5.13. Let F ⊂ R
n be an open set and let E be a compact subset of F . The

p-capacity, p ≥ 1, of the pair (E,F ) is the value

Capp(E,F ) = inf

∫
Rn

|∇ϕ|p,

where the infimum is taken over all functions ϕ ∈ C∞
c (Rn) so that ϕ|E = 1 and ϕ|Rn\F =

0.

We require knowledge of the behavior of the p-capacity of a ring domain. The follow-
ing lemma is standard. Denote by Qn(r) = {x ∈ R

n : |xi| ≤ r ∀i = 1, . . . , n} the closed
cube of side length 2r centered at the origin, and denote by Qn(r)o its interior.
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Lemma 5.14. Let 0 < r < R < ∞ and 1 < p < ∞. Then

Capp(Q
n(r), Qn(R)o) =

⎧⎨⎩c(n, p)
∣∣∣R p−n

p−1 − r
p−n
p−1

∣∣∣1−p

, if p = n,

c(n)(logR/r)1−n, if p = n.

In particular, if 1 < p < n and 2r < R, then

(5.7) C−1rn−p ≤ Capp(Q
n(r), Qn(R)o) ≤ Crn−p

for some constant C = C(n, p).
Let ϕr,R;n,p ∈ C∞

0 (Rn) be quasiextremal for the p-capacity of the ring domain
(Qn(r), Qn(R)o), i.e.,

(5.8) ϕr,R;n,p|Qn(r) = 1,

(5.9) ϕr,R;n,p|Rn\Qn(R) = 0,

and

(5.10)

∫
Rn

|∇ϕr,R;n,p|p ≤ Crn−p

for some constant C = C(n, p).
We now begin the construction of the mapping described in Example 5.12. The target

will be the (compact) Hilbert cube

Y =
{
y = (yi) ∈ �2 : |yi| ≤ 1

i

}
.

In fact, any compact infinite-dimensional subset of �2 would work for our purposes.
There exists an increasing sequence of positive integers (Nj) and an increasing se-

quence of finite sets Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · ⊂ Y with the following properties:

• Yj is 2−j-dense in Y , i.e., every point of Y lies within distance 2−j from a point of
Yj , and

• we can assign to each element y of Yj a parent in Yj−1 which lies at distance 2−j

from y, so that each point in Yj−1 has at most 2Nj children. The parent of any
y ∈ Y1 is 0 ∈ �2.

From the second condition, it follows that the cardinality of Yj is at most 2Ñj , where

Ñj = N1 +N2 + · · ·+Nj.

We may assume that each of the integers Nj is a multiple of m.
For each point y ∈ Yj , denote by γy the line segment in �2 joining y to its parent ŷ.

The length of γy is at most 2−j . We parameterize γy at constant speed by the interval
[0, 2−j], in such a way that γy(2

−j) = y and γy(0) = ŷ. As a map from [0, 2−j] to �2, γy
is 1-Lipschitz.
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We now return to the source space. Let k be the smallest integer greater than or
equal to p−m and write

R
n = R

n−m−k × R
k × R

m.

We will write points of Rn according to this splitting in the form (a1, a2, x) = (a, x),
where a ∈ R

n−m and x ∈ R
m.

First, we construct a Cantor set in R
k+m. Let Q = [0, 1]k+m be the unit cube in

R
k+m. We partition Q into 2(

k
m+1)N1 nonoverlapping subcubes of side length 2−N1/m.

We denote these subcubes by Pw, where w is an index ranging over

W1 = {1, . . . , 2kN1/m} × {1, . . . , 2N1}.

Next, fix λ < 1. Inside each of the above subcubes, consider two further subcubes
Qw ⊂ Q′

w ⊂ Pw so that

1. Q′
w has side length R1 = β1 = λ · 2−N1

m ,

2. Qw has side length r1 = α1 = λ · 2−
m+k

m+k−p ·N1

m , and

3. the distance between any two distinct cubes in {Q′
w}w∈W1 is comparable to 2−N1/m.

For instance, we may choose Qw and Q′
w to be concentric with each other and with the

original cube Pw.
We now describe the inductive step. Assume that we are given a collection of disjoint

cubes {Qw} indexed by the elements w in W1 × · · · ×Wj , where

Wi = {1, . . . , 2kNi/m} × {1, . . . , 2Ni}.

We further assume that each of the cubes Qw has side length rj = α1 · · ·αj where

αi = λ · 2−
m+k

m+k−p ·Ni

m .

Let Rj = α1 · · ·αj−1 · βj , where

βi = λ · 2−Ni

m .

We partition each of the cubes Qw into 2(
k
m+1)Nj+1 nonoverlapping subcubes Pwwj+1 of

side length 2−Nj+1/m, which we index by a parameter wj+1 ranging over Wj+1.
Inside each of these subcubes, consider two further subcubes Qwwj+1 ⊂ Q′

wwj+1
⊂

Pwwj+1 so that

1. Q′
wwj+1

has side length Rj+1 = rjβj+1,

2. Qwwj+1 has side length rj+1 = rjαj+1, and

3. the distance between any two distinct cubes in {Q′
w}w∈W1×···×Wj+1 is comparable

to 2−Nj+1/mrj .

The Cantor set in question is

C =
⋂
j≥1

⋃
w∈W1×···×Wj

Qw.
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For each j, map Wj to the set Vj := {1, . . . , 2Nj} by projecting to the second factor.
This induces a map from W1 × · · · ×Wj to V1 × · · · × Vj .

By the choice of the sets Yj , we can choose a surjective map from V1 × · · · × Vj to Yj

for all j so that the following diagram commutes:

W1 × · · · ×Wj+1 → V1 × · · · × Vj+1 → Yj+1

↓ ↓ ↓
W1 × · · · ×Wj → V1 × · · · × Vj → Yj

.

Here the left hand and central vertical maps are the natural projections, while the right
hand map is the one which assigns to each point y ∈ Yj+1 its parent ŷ ∈ Yj . We denote
by yw the point in Yj which corresponds to a given w ∈ W1 × · · · ×Wj .

We now define a map g : Rk+m → �2. If w ∈ W1 × · · · ×Wj and (a2, x) ∈ Q′
w \Qw,

then

g(a2, x) = γyw

(
2−jϕrj ,Rj;m+k,p((a2, x)− cw)

)
,

where cw denotes the center of the square Qw. Observe that g|∂Q′
w
= γyw(0) = ŷw and

g|∂Qw = γyw(2
−j) = yw by (5.8) and (5.9), respectively. Thus we may extend g to the

sets Qw \⋃wj+1
Q′

wwj+1
for each w, and also to the set Rk+m \Q in a continuous fashion,

by setting g to an appropriate constant value in each of those sets. This defines g on
the complement of C; we extend g by continuity to all of Rk+m. Observe that for each
a2 ∈ PRk(C), the closed set g({a2} × PRm(C)) contains each of the sets Yj , and hence
contains all of Y .

We now define a map f : Rn → �2 by setting f(a, x) = f(a1, a2, x) = g(a2, x) for all
a1 ∈ [0, 1]n−m−k and extending by a suitable constant value for other values of a1.

We claim that f is in the Sobolev space W 1,p. Since f is bounded, it suffices to
verify that it has an upper gradient in Lp. For any w and for all (a1, a2, x) in the set
[0, 1]n−m−k × (Q′

w \Qw),

|∇f(a1, a2, x)| = |∇g(a2, x)| ≤ 2−j|∇ϕrj ,Rj ;m+k,p((a2, x)− cw)|.

At other points, ∇f vanishes. Thus we can estimate∫
Rn

|∇f |p =
∑
w

∫
[0,1]n−m−k×(Q′

w\Qw)

|∇f |p

≤
∞∑
j=1

2−jp
∑

w∈W1×···×Wj

||∇ϕrj ,Rj ;m+k,p||pLp(Rk+m)

≤ C

∞∑
j=1

2−jprm+k−p
j #(W1 × · · · ×Wj)

by (5.10)

≤ C

∞∑
j=1

2−jprm+k−p
j 2(

k
m+1)Ñj = C

∞∑
j=1

2−jp

j∏
i=1

(
αm+k−p
i 2(

k
m+1)Ni

)
.
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By the choice of αi, we easily see that

αm+k−p
i 2(

k
m+1)Ni = λm+k−p ≤ 1,

so the above product is bounded above by one and the sum converges. This shows that
f is an element of the Sobolev space W 1,p.

Let F be the projection of C into the R
m factor, let E2 be the projection of C into

the R
k factor, and let E = [0, 1]n−m−k × E2. Using again the estimate in [13, Example

4.6], we find

dimF = lim
j→∞

log 2Ñj

log(1/rj)
= m− pm

m+ k
<

m

p+ 1

and

dimE = n−m− k + lim
j→∞

log 2
k
mÑj

log(1/rj)
= n−m− pk

m+ k
.

Recalling that k is the smallest integer greater than or equal to p−m, we leave the details
of the remaining claims to the reader. Note that f({a} × F ) ⊃ Y whenever a ∈ E.

6. Open problems and questions

Problem 6.1. Our main theorem estimates the size of the collection of parallel affine
subspaces whose image under a fixed supercritical Sobolev mapping f exhibits a pre-
specified dimension jump. Do similar results hold for other parameterized families of
subspaces?

As a sample of the type of problems which could be posed, we present the following
variation on our main theme.

The Grassmanian manifold G(n,m) is a smooth manifold of dimension m(n − m).
How many subspaces V ∈ G(n,m) can have the property that their image under f
exhibits a prespecified dimension jump? To be more precise, fix p > n and α satisfying
m < α < pm

p−n+m . We ask for an estimate from above for the dimension of the set of

subspaces V ∈ G(n,m) for which dim f(V ) ≥ α. In fact, we seek an estimate of the form

dim{V ∈ G(n,m) : dim f(V ) ≥ α} ≤ m(n−m)− δ,

where δ = δ(n,m, α, p) > 0.
The Grassmanian G(n, 1) coincides with the real projective space Pn−1

R
, which has

dimension n−1. Using local triviality of the tautological line bundle overG(n, 1), one can
recast the above problem into the framework of the product decomposition considered
in our main theorem. The eventual conclusion matches that from Theorem 1.3, in the
case m = 1. We omit the details, reserving discussion of this question for a later paper.

Problem 6.2. We anticipate that (3.9) is not sharp. Indeed, the dimension bounds in
(3.8) can be improved in the case when E is a line. Smirnov [42] has shown that

(6.1) dim f(E) ≤ 1 +

(
K − 1

K + 1

)2
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whenever E ⊂ R
2 is a line segment and f : R2 → R

2 is a K-quasiconformal map. We
expect that (3.9) can be improved in the planar case to an estimate which recovers (6.1)
at the borderline, when the exceptional set has zero dimension.

Problem 6.3. Does Theorem 1.6 hold with Minkowski dimension replaced by Hausdorff
dimension?

Problem 6.3 asks about the existence of a planar quasiconformal map which sends
a family of parallel lines, parameterized by a set of positive Hausdorff dimension, onto
curves all of which have a specified lower bound on their Hausdorff dimension. Even a
much weaker problem remains unsolved.

Problem 6.4. Does there exist a planar quasiconformal map f and an uncountable
family of parallel lines {�i} so that f(�i) contains no nontrivial rectifiable arc for any i?

Problem 6.5. What can be said for other source spaces? The notion of Sobolev space
defined on a metric measure space is by now well understood, see for instance [41], [18],
[26], [21]. Even in the potentially simplest non-Euclidean setting, when the source is the
sub-Riemannian Heisenberg group, it is unclear whether results analogous to those of this
paper hold. We make substantial use of several purely Euclidean features, such as the
Besicovitch covering theorem and the fact that the projection mappings PV : Rn → V
are Lipschitz. In the Heisenberg group, the Besicovitch covering theorem is false and
retractions along the fibers of a horizontal foliation are never Lipschitz. See [31] or [40]
for details. At present, it appears that these complications preclude the development
of a theory similar to that presented in this paper, in more general, non-Riemannian,
contexts.
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Sci. Fenn. Ser. A I Math. 14 (1989), 177–212.
[39] Reshetnyak, Y. G. Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh.

38 (1997), 657–675.
[40] Rigot, S. Counter example to the Besicovitch covering property for some Carnot groups equipped
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[48] Wildrick, K., and Zürcher, T. Space filling with metric measure spaces. Math. Z. 270 (2012),
103–131.

[49] Ziemer, W. P. Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1989.

33


	1

