
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
4
2
1
9
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
6
.
1
0
.
2
0
2
1

J
H
E
P
1
0
(
2
0
1
3
)
1
2
5

Published for SISSA by Springer

Received: June 28, 2013

Revised: August 19, 2013

Accepted: September 9, 2013

Published: October 21, 2013

Factorization and N3LLp+NNLO predictions for the

Higgs cross section with a jet veto

Thomas Becher,a Matthias Neubertb and Lorena Rothena

aAlbert Einstein Center for Fundamental Physics,

Institut für Theoretische Physik, Universität Bern,

Sidlerstrasse 5, CH-3012 Bern, Switzerland
bPRISMA Cluster of Excellence & Mainz Institut for Theoretical Physics,

Johannes Gutenberg University,

Staudingerweg 7, D-55099 Mainz, Germany

E-mail: becher@itp.unibe.ch, neubertm@uni-mainz.de,

rothen@itp.unibe.ch

Abstract: We have recently derived a factorization formula for the Higgs-boson produc-

tion cross section in the presence of a jet veto, which allows for a systematic resummation

of large Sudakov logarithms of the form αn
s ln

m(pvetoT /mH), along with the large virtual

corrections known to affect also the total cross section. Here we determine the ingredients

entering this formula at two-loop accuracy. Specifically, we compute the dependence on

the jet-radius parameter R, which is encoded in the two-loop coefficient of the collinear

anomaly, by means of a direct, fully analytic calculation in the framework of soft-collinear

effective theory. We confirm the result obtained by Banfi et al. from a related calcula-

tion in QCD, and demonstrate that factorization-breaking, soft-collinear mixing effects

do not arise at leading power in pvetoT /mH , even for R = O(1). In addition, we extract

the two-loop collinear beam functions numerically. We present detailed numerical predic-

tions for the jet-veto cross section with partial next-to-next-to-next-to-leading logarithmic

accuracy, matched to the next-to-next-to-leading order cross section in fixed-order pertur-

bation theory. The only missing ingredients at this level of accuracy are the three-loop

anomaly coefficient and the four-loop cusp anomalous dimension, whose numerical effects

we estimate to be small.
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1 Introduction

With firm evidence for a Higgs boson with a mass aroundmH = 125GeV, the primary focus

of particle physics has now shifted to the study of the properties of this new particle, in

particular of its couplings. An important channel in this context is Higgs-boson production

with subsequent decay into a W+W− pair, for which both ATLAS and CMS have recently

reported 4σ evidence [1–3]. With a branching ratio of about 22%, this is the second largest

decay channel of the Higgs boson. Because of the missing energy in the final state, the

W+W− channel is not particularly well suited for a Higgs mass measurement, but it offers

the possibility for a precise Higgs coupling measurement and spin studies. A challenge is

posed by the large background from tt̄ production, which, after the top-quarks decay, results

in a W+W− pair in association with two b-quark jets. This background is significantly

reduced by rejecting events containing jets with transverse momentum above a certain

threshold pvetoT , which is chosen around 25–30GeV in current experimental analyses.

Imposing such a jet veto enhances the higher-order QCD corrections to the Higgs-

boson production cross section by Sudakov logarithms of the form αn
s ln

m(pvetoT /mH), with

m ≤ 2n. One might argue that these logarithms are not particularly large for the relevant
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values of pvetoT ; however, even the total Higgs production rate suffers from large corrections,

and additional enhancements can easily lead to unreliable predictions. For the fixed-order

predictions of the production cross section with a jet veto, it was observed that there is

a numerical cancellation between the negative corrections from Sudakov logarithms and

the large positive virtual corrections to the total rate, which leads to artificially small

scale uncertainties [4]. To avoid this cancellation and get a more reliable estimate of the

theoretical uncertainties, it was subsequently proposed to add in quadrature the scale

uncertainties of the total cross section and the cross section with one or more jets in the

final state, which leads to an uncertainty of 17% on the Higgs production cross section

with a jet veto [5]. This uncertainty is about twice as large as the experimental systematic

errors and of the same size as the current statistical uncertainty. To make full use of the

coming LHC data, the theoretical uncertainty should thus be reduced significantly.

There has been a lot of progress in the theoretical description of the Higgs-boson

production rate with a jet veto over the past year, starting with the work [6], where it

was shown that the Sudakov logarithms associated with the jet veto can be resummed

at next-to-leading logarithmic (NLL) order. Subsequently, we have derived an all-order

factorization theorem [7] using soft-collinear effective theory (SCET) [8–11], which allows

for resummation to any desired accuracy, given the necessary perturbative input. We have

also explicitly carried out the resummation at NNLL order. One of the necessary ingredi-

ents at this level of accuracy is the two-loop coefficient dveto2 (R) of the so-called collinear

anomaly [7, 12], which we had extracted from partial NNLL results of [6] under the as-

sumption that these results remained valid in the limit where the jet-radius parameter R

is taken to infinity. It was subsequently shown by Banfi et al. that this assumption does

not hold [13]. The limits mH → ∞ and R → ∞ do not commute, and taking the large-R

limit naively one misses an R-independent term in dveto2 (R). After correcting the value

of the two-loop coefficient accordingly, there is full agreement between the NNLL results

presented in [7] and [13].

The validity of factorization formula put forward in [7] was questioned by the authors

of [14], who claimed that this formula breaks down unless the jet radius R is assumed to be

parametrically small, such that R ∼ pvetoT /mH ≪ 1. However, for small R the perturbative

corrections to the cross section are enhanced by logarithms of the jet radius, and these

logarithms cannot be resummed by means of the factorization formula obtained in [7].

Reference [14] concluded that one is “stuck between a rock and a hard place”, because

one would either face factorization-breaking corrections or large unresummed logarithms

of R. However, immediately after the paper [14] appeared a NNLL resummation formula

was published in [13], and it was verified numerically that it correctly predicts the relevant

logarithms up to O(α3
s), even for R ∼ 1. To NNLL accuracy, our factorization formula

precisely matches the result of [13].

The purpose of the present paper is three-fold. First, we will compute the two-loop

anomaly coefficient dveto2 (R) directly within the SCET framework. We find complete agree-

ment with the QCD result of [6], which demonstrates explicitly and analytically that our

factorization formula, which does not include soft-collinear mixing terms, is correct up to

NNLL order. We provide a completely analytic result for the expansion of the two-loop
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anomaly coefficient in R, whose R-independent piece was only obtained in numerical form

in previous papers [6]. Secondly, we will show that the soft-collinear mixing contributions

obtained in [14] are absent if one ensures that the computation is done in such a way that

there is no double counting among the different momentum regions in the effective theory.

This double counting is avoided from the beginning if loop and phase-space integrals in

the effective theory are properly expanded in the different momentum regions. If the jet

measure is left unexpanded, as was done in [14], then non-zero soft-collinear mixing contri-

butions can arise in individual integrals, but they cancel if the necessary subtractions are

performed to remove the soft-collinear overlap regions from the integrals. We discuss these

issues in detail, give arguments that factorization breaking will also not arise at higher

logarithmic accuracy, and conclude that all the available evidence indicates that the fac-

torization theorem proposed in [7] is valid to all orders. Thirdly, we present an updated and

improved phenomenological analysis of the Higgs-boson production cross section with a jet

veto. Since the two-loop anomaly coefficient turns out to be numerically large for the val-

ues of R used by the experimental collaborations, the predictions obtained at NNLL order

still suffer from significant scale uncertainties. We show that all the ingredients required

to increase the accuracy to N3LL order are either already known or can be extracted nu-

merically, except for the three-loop anomaly coefficient and the four-loop cusp anomalous

dimension. We estimate the effect of these missing coefficients and find that they only have

a small numerical impact on the results. We thus obtain predictions with N3LLp accuracy,

where the subscript “p” (for “partial”) indicates that two of the ingredients for a complete

N3LL calculation are yet unknown. We also include power-suppressed terms by matching

our results to the NNLO fixed-order cross section, finding that these power corrections are

numerically small. This indicates that the expansion about small pvetoT is well behaved at

the experimentally relevant values of the jet-veto scale.

Our paper is organized as follows: we first review in section 2 the factorization theorem

for the cross section with a jet veto and collect the necessary perturbative ingredients.

In section 3, we then discuss the clustering of particles in different momentum regions

and show that factorization-breaking terms are absent. After this general discussion, we

present the explicit calculation of the two-loop anomaly coefficient dveto2 (R) in section 4.

The numerical extraction of the two-loop beam functions and the fixed-order matching are

discussed in section 5. With these ingredients at hand, we present in section 6 our numerical

results for the jet-veto cross section for Higgs production at the LHC. Our conclusions are

summarized in section 7. In the appendix, we give some details on the analytic calculation

of the two-loop anomaly coefficient as an expansion in the jet-radius parameter R.

2 Factorization theorem for the jet-veto cross section

Using arguments based on SCET, we have shown in [7] that the Higgs-boson production

cross section defined with a jet veto pjetT < pvetoT can be factorized, to all orders in pertur-

bation theory and at leading power in the small ratio pvetoT /mH , in a way that separates

the short-distance scales mt and mH from the scale pvetoT of the jet veto. We work with the

usual class of sequential recombination jet algorithms (for a review, see [16]), with distance
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measure

dij = min(pnTi, p
n
Tj)

√

∆y2ij +∆φ2ij

R
, diB = pnTi , (2.1)

where n = 1 corresponds to the kT algorithm [17, 18], n = 0 to the Cambridge-Aachen

algorithm [19, 20], and n = −1 to the anti-kT algorithm [21]. The two particles with

the smallest distance are combined into a new “particle”, whose momentum is the sum

of the momenta of the parent particles. If the smallest distance is diB, then particle i is

considered a jet and removed from the list. The procedure is iterated until all particles are

grouped into jets, i.e., the algorithm is inclusive. In the following, the jet-radius parameter

is assumed to obey the inequalities

pvetoT

mH
≪ R≪ ln

mH

pvetoT

, (2.2)

and we work in the limit where λ = pvetoT /mH is a small expansion parameter. Then these

inequalities are satisfied as long as R is treated as an O(1) number, independent of λ. For

too small values of R (meaning R ∼ λ or smaller), large logarithms lnnR arise, which would

require a special treatment. These “clustering logarithms” have a complicated structure in

higher orders [22, 23], and it is currently not understood how to resum them. For too largeR

(meaning R ∼ ln(1/λ) or larger), on the other hand, the factorization formula breaks down.

The factorization formula is obtained by factorizing the contributions of hard, collinear,

anti-collinear, and soft modes in SCET. Denoting by y the rapidity of the Higgs boson in

the proton-proton center-of-mass frame, one first derives the preliminary result

dσ(pvetoT )

dy
=σ0(µ)C

2
t (m

2
t , µ)

∣
∣CS(−m2

H , µ)
∣
∣
2[Bc(ξ1, p

veto
T , µ)Bc̄(ξ2, p

veto
T , µ)S(pvetoT , µ)

]

q2=m2

H

,

(2.3)

where ξ1,2 = (mH/
√
s) e±y and

σ0(µ) =
m2

H α2
s(µ)

72π(N2
c − 1)sv2

. (2.4)

The Wilson coefficient Ct = 1 + O(αs) arises when one approximates the fermion-loop

contribution to the gluon fusion amplitude by an effective, local Hgg operator, as is rou-

tinely done in calculations of the Higgs-boson production amplitude. The hard matching

coefficient CS = 1 +O(αs) appears when the scalar two-gluon operator is matched onto a

corresponding operator in SCET [24]. Both coefficients are known to three-loop order in

perturbation theory, but for our purposes we only need the two-loop expressions derived

in [25, 26] and [24, 27], respectively. The resulting expressions can also be found in eqs. (12)

and (17) of [24].

The emissions of (anti-)collinear and soft gluons, which are then grouped into jets

according to the jet algorithm, are accounted for by the beam functions Bc, Bc̄ and the

soft function S in the factorization theorem (2.3). Besides the veto scale, these functions

also depend on the jet definition and in particular on the jet-radius parameter R. This
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dependence is suppressed in our notation. The collinear matrix element relevant for Higgs

production reads [7]

Bc,g(z, p
veto
T , µ) = −z n̄ · p

2π

∫

dt e−iztn̄·p
∑
∫

Xc, reg.

Mveto(p
veto
T , R, {pc})

× 〈P (p)| Aµ,a
c⊥ (tn̄) |Xc〉 〈Xc| Aa

c⊥µ(0) |P (p)〉 ,
(2.5)

where Ac⊥ denotes the gauge-invariant collinear gluon field in SCET. The matrix element

in the second line is exactly the same as that entering the definition of the standard

parton distribution function (PDF) for the gluon. The only difference is that the sum over

intermediate states in (2.5) is constrained by the jet veto, whose effect is encoded in a

“measurement function” Mveto, which depends on the momenta {pc} of the particles in

the final state. Likewise, the soft function is defined as

S(pvetoT , µ) =
1

dR

∑
∫

Xc, reg.

Mveto(p
veto
T , R, {ps})〈 0 |

(
S†nSn̄

)ab
(0) |Xs〉 〈Xs|

(
S†n̄Sn

)ba
(0) |0〉 ,

(2.6)

with dR = N2
c −1. It involves Wilson lines of soft gluon fields in the adjoint representation,

integrated along the beam directions n and n̄.

Like in the case of the transverse-position dependent PDFs studied in [12], the presence

of a measurement function probing parton transverse momenta leads to additional light-

cone (or rapidity) divergences, which are not regularized in dimensional regularization. The

sums over collinear states Xc in (2.5) and soft states Xs in (2.6) are therefore regularized

analytically. To this end, we use the phase-space regularization prescription of [28], which

amounts to replacing the usual phase-space measure by

∫

ddk δ(k2) θ(k0) →
∫

ddk

(
ν

k+

)α

δ(k2) θ(k0) =
1

2

∫

dy

∫

dd−2k⊥

(
ν

kT

)α

e−αy , (2.7)

where y = 1
2 ln(k+/k−) = ln(k+/kT ) and kT = |~k⊥|. The regularization softens the light-

cone singularities arising in the evaluation of the matrix elements. It introduces a new

scale ν, which plays an analogous role to the scale µ entering in dimensional regularization.

Once the light-cone singularities in the (anti-)collinear and soft functions have been

regularized, they show up as poles in the analytic regulator α, which cancel in the product

of the three matrix elements in (2.3). However, after the cancellation large logarithms of

the scale ratio mH/p
veto
T arise, which need to be resummed to all orders in perturbation

theory. This effect has been called the “collinear factorization anomaly” [12]. The re-

summation of the anomalous logarithms can be accomplished by means of solving simple

differential equations, which express the fact that the product of the three functions must

be regularization independent [7]. One finds that

[
Bc(ξ1, p

veto
T , µ)Bc̄(ξ2, p

veto
T , µ)S(pvetoT , µ)

]

q2=m2

H

=

(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

e2hA(pvetoT ,µ) B̄g(ξ1, p
veto
T ) B̄g(ξ2, p

veto
T ) ,

(2.8)

– 5 –
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where the anomalous dependence on the hard scale mH is now explicit. Compared with [7],

we have extracted a factor ehA(pvetoT ,µ) from each collinear function, which is chosen such

that the remaining function B̄g(ξ, p
veto
T ) is renormalization-group (RG) invariant. We have

also absorbed the square root of the soft function into the collinear matrix elements. (In

the regularization scheme adopted here, S(pvetoT , µ) = 1 to all orders in perturbation theory,

so this last step is trivial.) The exponents Fgg and hA obey the RG equations [12, 29]

d

d lnµ
Fgg(p

veto
T , µ) = 2ΓA

cusp(µ) ,

d

d lnµ
hA(p

veto
T , µ) = 2ΓA

cusp(µ) ln
µ

pvetoT

− 2γg(µ) ,
(2.9)

where without loss of generality we can impose the normalization condition hA(p
veto
T , pvetoT ) =

0. In (2.9), ΓA
cusp is the cusp anomalous dimension in the adjoint representation, and γg

denotes the anomalous dimension of the collinear gluon field as defined in [30]. For our

analysis we require the three-loop expression for the anomaly exponent Fgg and the two-

loop result for hA. Solving the evolution equations (2.9), we obtain

Fgg(p
veto
T , µ) = as

[
ΓA
0 L⊥ + dveto1 (R)

]
+ a2s

[

ΓA
0 β0

L2
⊥

2
+ ΓA

1 L⊥ + dveto2 (R)

]

+ a3s

[

ΓA
0 β

2
0

L3
⊥

3
+
(
ΓA
0 β1+2ΓA

1 β0
)L2
⊥

2
+L⊥

(
ΓA
2 +2β0 d

veto
2 (R)

)
+dveto3 (R)

]

,

hA(p
veto
T , µ) = as

[

ΓA
0

L2
⊥

4
− γg0 L⊥

]

+ a2s

[

ΓA
0 β0

L3
⊥

12
+
(
ΓA
1 − 2γg0β0

) L2
⊥

4
− γg1 L⊥

]

, (2.10)

where we have defined the abbreviations as = αs(µ)/(4π) and L⊥ = 2 ln(µ/pvetoT ). The coef-

ficients ΓA
n , γ

g
n, and βn appear in the perturbative expansions of the anomalous dimensions

and β-function, defined as

ΓA
cusp(µ) =

∞∑

n=0

ΓA
n a

n+1
s , γg(µ) =

∞∑

n=0

γgn a
n+1
s , β(µ) = −2αs(µ)

∞∑

n=0

βn a
n+1
s .

(2.11)

As long as the veto scale pvetoT is in the perturbative domain, one can match the beam

function B̄g appearing in (2.8) onto standard PDFs,

B̄g(ξ, p
veto
T ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
Īg←i(z, p

veto
T , µ)φi/P (ξ/z, µ) , (2.12)

which is accurate up to hadronic corrections suppressed by powers of ΛQCD/p
veto
T . The

matching coefficients are connected by the simple rescaling relation

Īg←i(z, p
veto
T , µ) = e−hA(pvetoT ,µ) Ig←i(z, p

veto
T , µ) (2.13)

to the functions Ig←i(z, p
veto
T , µ) computed at one-loop order in [7]. We find

Īg←i(z, p
veto
T , µ) = δ(1− z) δgi + as

[

−P(1)
g←i(z)

L⊥
2

+Rg←i(z)

]

+O(a2s), (2.14)

where P(1)
g←i(z) are the one-loop DGLAP splitting functions.
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The explicit one-loop calculations of Fgg and Ig←i performed in [7] show that (in the

MS scheme)

dveto1 (R) = 0 , Rg←g(z) = −CA
π2

6
δ(1− z) , Rg←q(z) = 2CF z . (2.15)

At two-loop order, the anomaly coefficient dveto2 (R) can be extracted from results presented

in [13]. One finds that

dveto2 (R) =

(
808

27
− 28ζ3

)

C2
A − 224

27
CATFnf − 32CA f(R) , (2.16)

where the expansion of f(R) for small R reads, in numerical form,1

f(R) = − (1.0963CA + 0.1768TFnf ) lnR+ (0.6106CA − 0.0310TFnf )

− (0.5585CA − 0.0221TFnf )R
2 + (0.0399CA − 0.0004TFnf )R

4 + . . . .
(2.17)

In the following section we will reproduce this expression based on a two-loop calculation

in SCET, which relies on the structure of the factorization formula (2.3). The fact that we

will reproduce the above expression exactly provides a non-trivial test of our factorization

theorem at two-loop order. The three-loop coefficient dveto3 (R) in (2.10) is presently still

unknown and will be estimated in section 4 below, where we will also extract the two-loop

corrections to the beam functions B̄g(ξ1, p
veto
T ) in (2.12) in numerical form.

We can now rewrite the jet-veto cross section from (2.3) in the final, factorized form

dσ(pvetoT )

dy
= σ0(p

veto
T ) H̄(mt,mH , p

veto
T ) B̄g(ξ1, p

veto
T ) B̄g(ξ2, p

veto
T ) , (2.18)

where we have introduced the RG-invariant hard function

H̄(mt,mH , p
veto
T )=

(
αs(µ)

αs(pvetoT )

)2

C2
t (m

2
t , µ)

∣
∣CS(−m2

H , µ)
∣
∣
2
(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

e2hA(pvetoT ,µ) ,

(2.19)

which contains all dependence on the short-distance scales mt and mH . The dependence

on rapidity is carried only by the beam functions B̄g(ξ1,2, p
veto
T ). Note that, due to the

collinear anomaly, it is not possible to factorize the dependence on the jet-veto scale pvetoT

in the hard function H̄. However, it is possible to resum all large logarithms in the ratio

mH/p
veto
T consistently, to all orders in perturbation theory. To this end, one chooses a

low factorization scale µ ∼ pvetoT in the factorization formula (2.18). Then the kernel

functions Īg←i required to compute the beam function B̄g can be calculated in fixed-order

perturbation theory. Likewise, the fixed-order expressions for Fgg and hA in (2.10) are

sufficient. On the other hand, the matching coefficients Ct and CS need to be computed

in RG-improved perturbation theory. They can be evolved from the high matching scales

µ ∼ mt and µ2 ∼ −m2
H , where the matching calculations are performed, down to lower

scales µ ∼ pvetoT using RG equations. We will require the resulting expressions at next-to-

next-to-leading order (NNLO) in RG-improved perturbation theory, which is equivalent to

1Except for the constant term, analytic expressions for the coefficients up to O(R6) can be found in [6].
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N3LL accuracy. The corresponding expressions can be found in eqs. (20) and (22) of [24],

with further details given in the appendix of [31].

All objects in the factorization formula (2.18) are defined in a RG-invariant way, i.e.

they are formally independent of the factorization scale µ. As is common practice, we can

use the residual µ dependence arising when the expressions (2.12) and (2.19) are evaluated

at some fixed order in perturbation theory as an indicator of the remaining perturbative un-

certainties. This can be done for each of these objects separately, not just for the total cross

section. We also note that the expression for the hard function becomes particularly simple

if one adopts the default scale choice µ = pvetoT on the right-hand side of (2.19). In this case

H̄(mt,mH , p
veto
T ) = C2

t (m
2
t , p

veto
T )

∣
∣CS(−m2

H , p
veto
T )

∣
∣
2
(
mH

pvetoT

)−2Fgg(pvetoT ,pvetoT )

,

Fgg(p
veto
T , pvetoT ) =

∞∑

n=2

dveton (R)

(
αs(p

veto
T )

4π

)n

.

(2.20)

3 Jet clustering, multipole expansion, and zero bins

We now analyze the factorization properties of the jet-veto cross section using the formalism

of SCET, in which highly energetic particles aligned with the colliding protons are described

in terms of collinear and anti-collinear quark and gluon fields, and soft particles emitted

from the beam jets are described in terms of soft fields. The effective theory implements

an expansion of scattering amplitudes in powers of the small parameter λ ∼ pvetoT /mH ,

where the jet veto sets the characteristic size of all transverse momenta in the process. We

introduce two light-like reference vectors nµ and n̄µ (satisfying n · n̄ = 2) parallel to the

beam axis and decompose all 4-vectors in the light-cone basis spanned by these vectors,

pµ = n · p n̄
µ

2
+ n̄ · p n

µ

2
+ pµ⊥ ≡ p+

n̄µ

2
+ p−

nµ

2
+ pµ⊥ . (3.1)

The different types of modes relevant to our discussion are characterized by the scalings

of their momenta (p+, p−, p⊥) with powers of λ, namely pµc ∼ mH(λ2, 1, λ) for collinear

particles, pµc̄ ∼ mH(1, λ2, λ) for anti-collinear particles, and pµs ∼ mH(λ, λ, λ) for soft parti-

cles. Hence, the particles in these three categories have transverse momenta of order the jet

veto, but very different rapidities. The scaling of these modes is displayed graphically in fig-

ure 1. In addition, the cross section receives contributions from the hard momentum region

pµh ∼ mH(1, 1, 1), where we do not distinguish between mH and mt. These corrections are

purely virtual and are integrated out in the construction of the effective theory. One may

also worry about the contributions from modes with smaller virtualities, p2 ≪ (pvetoT )2. For

example, an on-shell soft mode, which accidentally is closely aligned with the beam axis,

would have momentum scaling ∼ mH(λ2, λ, λ3/2). This mode has a rapidity lying in be-

tween that of collinear and soft modes. Indeed, it may also be regarded as a collinear mode

whose minus component is accidentally small. The important point is that, because of their

small transverse momenta, such modes play no role for the total transverse momentum of a

jet. Therefore, an arbitrary number of them can be emitted, and their effect cancels out in
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s c

c̄ h

p+

p−

mH

λmH

λ2mH

mHλ2mH λmH

Figure 1. Momentum regions relevant for the jet-veto cross section. The figure indicates the

scaling of the p+ and p− components of soft (s), collinear (c), anti-collinear (c̄), and hard (h)

contributions. The hyperbola corresponds to p+p− = (pvetoT )2 = λ2m2
H . The red hatching shows

the soft-collinear overlap regions.

the factorization theorem. This is in analogy with the cancellation of ultrasoft modes in the

factorization theorem for the Drell-Yan cross section at small transverse momentum [12].

As explained in [7], the jet clustering algorithm does not group particles with dif-

ferent momentum scalings (collinear, anti-collinear, or soft) into the same jet. The rea-

son is that, generically, the rapidity difference between two such particles are such that

∆yij ∼ ln(mH/p
veto
T ), which by assumption is much larger than R, see (2.2). As a conse-

quence, in the jet algorithm (2.1) the distance measure dij for two such particles is always

larger than the minimum of diB and djB. Since the soft and (anti-)collinear modes have the

same virtuality, they live along the hyperbola in the (p+, p−) plane shown in figure 1, and

their precise separation along this hyperbola is to some extent arbitrary. The fact that these

modes differ by large rapidities gives rise to large logarithms, which are accounted for by

the collinear anomaly. In complete analogy with the construction of the SCET Lagrangian,

where based on the generic scalings of the fields one does not include soft-collinear inter-

action terms, it is unnecessary to consider the degenerate case where a collinear and a soft

mode near the boundary are clustered into a single jet. Since there are no enhancements

of the cross section in these power-suppressed phase-space regions, boundary effects do not

contribute at leading power. Only in corners of the phase space, e.g. when a soft emis-

sion becomes collinear to the beam, soft and collinear radiation can be clustered into the

same jet. However, since the cross section does not exhibit additional singularities in the

corresponding limit, such configurations only give rise to power-suppressed contributions.

The argument just presented has been challenged in [14], where it was argued that

the clustering of soft and collinear modes near the boundary of phase space that separates

them in rapidity does give rise to leading-order contributions to the cross section start-

ing at NNLL order, unless the jet-radius parameter R is taken to be parametrically much
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smaller than 1. If this was true, then there would be no region in parameter space where

our factorization theorem (2.18) would be useful, since for parametrically small values of

R it does not accomplish the resummation of lnnR terms. The argument presented in [14]

was backed up by a calculation of a particular soft-collinear clustering contribution, which

was found to be non-zero and provided a leading-power contribution to the cross section

proportional to R2 and R4, hence the claim that these contributions are suppressed only

for parametrically small R. We will now demonstrate in detail that these findings are not

in conflict with our factorization formula.

SCET is based on the method of regions. Loop and phase-space integrations are split

into different momentum regions in a systematic manner dictated by the structure of the

effective Lagrangian. One could separate the different regions using cutoffs, as indicated

graphically in figure 1, but this is impractical because it would spoil gauge invariance in

the individual sectors of the effective theory. Instead, one uses dimensional regularization

to handle the appearing singularities. It is then crucially important to perform the calcu-

lation of SCET diagrams using a multipole expansion, which expands out components of

particle momenta (or position vectors) that are parametrically suppressed with respect to

the leading ones in a given interaction or propagator [11]. Only if this is done consistently,

there is no double counting of momentum configurations. The reason is that, once we con-

sider the contribution from a certain momentum region to an integral, any expansion of the

integrand around another limit will leave us with a scaleless integral, which is zero in dimen-

sional (or, more generally, analytic) regularization. In the present case, it is important that

one performs the multipole expansion not only for the integrands of loop or phase-space

integrals, but also for the measurement functions Mveto in the definitions (2.5) and (2.6).

If one does not perform the multipole expansion consistently, then there arise con-

tributions from the double counting of overlapping momentum regions, which must be

subtracted by hand in order to obtain the correct result. In the SCET community these

subtraction terms are referred to as “zero-bin subtractions” [32]. The problem with the

argument presented in [14] is that the soft-collinear clustering contribution was calculated

without performing the multipole expansion, but the relevant zero-bin subtractions were not

evaluated. We will argue that these zero-bin subtractions exactly cancel the soft-collinear

clustering term, so that one recovers the same result as before. When the multipole ex-

pansion is performed consistently, the contributions in which different modes are clustered

by the jet algorithm are simply zero.

We will now illustrate these statements with the help of a simple example, which

demonstrates our point without involving the technical complexities of the real calculation.

In section 4, we will perform the calculation of the two-loop anomaly coefficient dveto2 (R) in

the context of SCET, considering only the contributions of two collinear or two soft emis-

sions, in accordance with our factorization formula (2.3), according to which the jet veto

must be applied separately in each sector of SCET. The fact that in this way we reproduce

the result extracted from [13] proves that there are no missing contributions at this order.

We thus do not confirm the statement made in [14] that soft-collinear mixing terms con-

tribute to the cross section at O(α2
s). Moreover, since our arguments are completely general

and not tied to a particular order in the perturbative expansion, they support our claim that

the factorization formula (2.18) remains valid also in higher orders in perturbation theory.
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Consider the following simple rapidity integral with integrand 1 and the constraint

that two particles with rapidities yc and y are clustered into one jet:

I =

∫ ∞

−∞
dy θ

(
R2 − (y − yc)

2
)
= 2R . (3.2)

Here yc ≫ 1 is the fixed rapidity of a collinear particle, and we assume that R = O(1).

The θ-function plays the role of the measurement function Mveto in the definitions (2.5)

and (2.6). Even though this integral is extremely simple, it captures the main features

of the integrals we will encounter in the computation of the C2
F term in section 4.2, since

the relevant part of the amplitude for this color structure only depends on the transverse

momentum. The only difference to the trivial example integral (3.2) is that one also

integrates over the rapidity of the second emission and the azimuthal angles, which then also

enter the θ-function constraint. In the context of SCET we should evaluate the integral as a

sum over contributions from different momentum regions. In each region we must multipole

expand the argument of the θ-function according to the rules of the effective theory. For

the purposes of our discussion we will consider for the moment only the contributions from

collinear and soft partons; as we discuss below, adding the anti-collinear region would not

change the argument. A collinear particle has momentum scaling (λ2, 1, λ). In the collinear

region both rapidities scale the same, y ∼ yc ∼ ln(1/λ) ≫ 1, but their difference is O(1).

There is thus nothing to expand in the argument of the θ-function, and we get Ic = I for

the collinear-collinear clustering term. A soft particle has momentum scaling (λ, λ, λ) and

hence y = O(1). It follows that in the argument of the θ-function (y−yc)2 = O(ln(1/λ)) is

parametrically larger than R2 = O(1). We must therefore perform the multipole expansion

θ
(
R2 − (y − yc)

2
)
= θ

(
− (y − yc)

2
)
+R2 δ

(
(y − yc)

2
)
+ . . . . (3.3)

The higher-order terms in the expansion will contain derivatives of δ-functions, but be-

cause the arguments are always non-zero the entire expression on the right-hand side just

vanishes.

At this point one may worry about double counting, since in the collinear-collinear

contribution we have also integrated over the region where the collinear particle becomes

soft. One should therefore subtract the contribution from the soft-collinear overlap region

(the “zero bin”), which otherwise would be counted twice. However, after the multipole

expansion this overlap contribution vanishes, I(cs) = 0, for the same reason that the soft-

collinear contribution vanishes. Alternatively, one could evaluate the contributions from

the two regions without performing the multipole expansion. Then obviously both regions

yield the same contribution, Ic = Is = I. But now the double-counted soft-collinear overlap

contribution is also non-zero, and indeed I(cs) = I is equal to the soft-collinear contribution.

The final result is Ic + Is − I(cs) = I, as it should be. In analogy with the findings of [14]

the soft-collinear clustering term is non-zero in this case, but its contribution is precisely

cancelled by the zero-bin subtraction.

When also the anti-collinear region is included, we still only need to compute the

contribution Ic if the multipole expansion is performed consistently, but when working
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with subtractions the procedure gets more complicated. The general expression for three

momentum regions reads

I = Ic + Is + Ic̄ − I(cs) − I(c̄s) − I(c̄c) + I(c̄cs) . (3.4)

The last term Ic̄cs describes the double overlap region, where the momentum can simultane-

ously be part of any region. It is obtained by expanding the integrand in the limit where the

momentum scales as (λ2, λ2, λ). It has to be added back, since the other three subtractions

would remove this region from the integral. The general systematics of subtractions was

studied in detail in [33], as a step towards a proof of the method of regions. In our simple ex-

ample, all of the above contributions are equal to the original integral I. Since the momenta

in the double overlap region and in the (c̄c) contribution scale in the same way, the last two

terms in (3.4) are identical for any given integral, and the general expression simplifies to

I = Ic + Is + Ic̄ − I(cs) − I(c̄s) . (3.5)

While useful to map the integrals in dimensional regularization onto standard integrals,

the subtraction procedure is extremely cumbersome in practice. For the two-emission case,

for example, one would start off with 25 momentum configurations, since each of the two

momenta can be in any of the regions or overlap regions in (3.5). In addition to the pro-

liferation of regions, another drawback of the subtraction method is fact that the integrals

are no longer homogenous in the expansion parameter λ, so that in general one will need

to reexpand the final result in λ after integrating.

It may appear strange at first sight that we had to expand the argument of the θ-

function in (3.2) in powers of ln(1/λ), not in powers of λ. This distinction is however

meaningless. Instead of (3.3) we may equally well write θ(e−|y−yc|−e−R) = θ(−e−R)+O(λ),

where e−|y−yc| = O(λ) for a soft particle. The multipole expansion is now an expansion

in powers of λ. Indeed, one can always rewrite the rapidity integrals in terms of integrals

over components of light-cone momenta. For example, denoting the collinear reference

momentum by k and the soft momentum by p, we have yc = ln(k+/kT ) and y = ln(p+/pT ),

and hence the phase-space constraint can be rewritten in the form

θ
(
R2 − (y − yc)

2
)
= θ

(
R− (y − yc)

)
θ(y − yc) + θ

(
R− (yc − y)

)
θ(yc − y)

= θ(eRpTk+
︸ ︷︷ ︸

λ3

− p+kT
︸ ︷︷ ︸

λ2

) θ(p+kT
︸ ︷︷ ︸

λ2

− pTk+
︸ ︷︷ ︸

λ3

) + θ(p+kT
︸ ︷︷ ︸

λ2

− e−RpTk+
︸ ︷︷ ︸

λ3

) θ(pTk+
︸ ︷︷ ︸

λ3

− p+kT
︸ ︷︷ ︸

λ2

) . (3.6)

In the last step we have indicated the scalings of the various soft and collinear momentum

components. Neglecting higher-order terms in λ, we obtain

θ
(
R2 − (y − yc)

2
)
= θ(−p+kT ) θ(p+kT ) + θ(p+kT ) θ(−p+kT ) + . . . , (3.7)

which vanishes, since each light-cone component of an on-shell momentum is positive. We

can further think of the θ-functions of momentum components as the discontinuities of

some propagators. This clearly shows that the multipole expansion in (3.3) is not different

from multipole expansions of propagators in ordinary SCET loop or phase-space integrals,
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and it makes it clear that power-suppressed terms, which are expanded out, are governed

by powers of λ, not powers of 1/ ln(1/λ).

We finish this section with an important remark. The structure of the first θ-function

in (3.6) suggests that some of the power-suppressed terms may be accompanied by a factor

eR. Because we treat R as anO(1) parameter, also eR is not a parametrically large quantity,

so even if such terms exist, their presence would not upset the structure of the factorization

formula (2.18). The question of the numerical size of power-suppressed corrections must

be separated from the issue of parametrically enhanced corrections. The outcome of our

discussion is that, for R = O(1), there are no contributions to the cross section arising

from soft-collinear clustering terms, which would upset the factorization formula. In our

framework all soft contributions are purely scaleless. In physical terms, this means that the

soft contributions can effectively be absorbed into the (anti-)collinear fields. The structure

of relation (2.8) implies that this is indeed possible. The same happens for the transverse-

momentum spectrum of electroweak bosons [7, 12], and also in all SCETI applications where

a separate mode with (λ, λ, λ) scaling is not needed to describe the physics. Nevertheless,

there are power-corrections to our factorization formula from subleading terms in the effec-

tive Lagrangian and subleading SCET operators. In section 6 we will study their numerical

impact by matching our results to the cross section computed in fixed-order perturbation

theory. We will find that even for R = 1 the power corrections remain small; indeed, we

will not find any numerical evidence for the existence of eR-enhanced power corrections.

4 Two-loop computation of the anomaly exponent

We now turn to the computation of the two-loop anomaly exponent dveto2 (R) in (2.10).

According to the factorization formula (2.18), this quantity can be obtained from a per-

turbative computation of the collinear and soft matrix elements defined in (2.5) and (2.6).

Instead of the beam function Bc,g for a gluon, we will in the following consider the analogous

function for a collinear quark, defined as

Bc,q(z, p
veto
T , µ)=

∫
dt

(2π)
e−iztn̄·p

∑
∫

Xc, reg.

Mveto(p
veto
T , R, {pc}) 〈P (p)| χ̄c(tn̄) |Xc〉 〈Xc|χc(0) |P (p)〉 .

(4.1)

This function would appear in the calculation of the jet-veto cross section for a quark-

initiated process such as Z-boson production at the LHC. As we will explain below, the

result for dveto2 (R) relevant for Higgs production can be obtained from the corresponding

coefficient for Z production by replacing CF → CA, but distinguishing the two color factors

will make it easier to organize the calculation. The gauge-invariant gluon and quark fields

in the matrix elements in (2.5) and (4.1) are related to the usual QCD fields by [9, 10, 34]

gsAµ
c⊥(x) =W †(x) [iDµ

⊥W (x)] , χc(x) =
n/n̄/

4
W †(x)ψ(x) , (4.2)

where W (x) is a straight Wilson line along the n̄ direction from −∞ to x. We use the

standard QCD Lagrangian to evaluate the collinear matrix element in (4.1), since the
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Figure 2. Examples of two-loop diagrams contributing to the collinear function Bc,q(z, p
veto
T , µ).

The collinear Wilson lines are denoted by the gray blobs.

collinear SCET Lagrangian is equivalent to it (see e.g. [11, 35]). Some representative

examples of two-loop diagrams contributing to this matrix element are shown in figure 2.

In order to extract the anomaly coefficient dveto2 (R), we can evaluate the collinear ma-

trix elements (2.5) and (4.1) with partonic instead of hadronic external states. In addition,

we also need to calculate the soft function defined in (2.6), which involves products of soft

Wilson lines along the two beam directions. For the Higgs case, these are Wilson lines in the

adjoint representation, while the fundamental representation is relevant for the case of Z-

boson production. The normalization factor becomes dR = Nc in the latter case, such that

S(pvetoT , µ) = 1 at lowest order in perturbation theory. In the analytic regularization scheme

based on the prescription (2.7), the soft function is given by scaleless integrals of the type

∫ ∞

−∞
dyt e

−αyt ≡ 0 , (4.3)

which vanish by definition. The reason is that the integral over the total rapidity yt of the

emitted soft gluons is not constrained by the jet veto. It follows that S(pvetoT , µ) = 1 to

all orders in this regularization scheme. In principle, it is thus sufficient to evaluate the

collinear functions Bc,q and Bc,q̄, and since the divergences in the analytic regulator must

cancel in the product of these functions, calculating the left- or right-collinear function

would be sufficient in practice.

In our calculation we will, however, adopt a different strategy. It has been shown in [7]

that one obtains a non-zero soft function if one imposes different jet vetoes for the left-

and right-moving particles. The anomalous large logarithms in the soft function are then

tied, via the anomaly equations, to those in the collinear beam functions. Extracting the

coefficient dveto2 (R) from the soft function offers the advantage that the relevant Wilson-

line diagrams are simpler to compute than the loop diagrams for the collinear functions.

Instead of imposing different jet vetoes for left- and right-moving particles, we can generate

a non-trivial soft function by using different analytic regulators for them. To this end, we

generalize the regularization prescription in (2.7) by replacing

(
ν

k+

)α

→
(
ν

k+

)α

θ(k+ − k−) +

(
ν

k+

)β

θ(k− − k+) . (4.4)

After the multipole expansion, the collinear function only involves the regulator β, while

the anti-collinear function is regularized by α. The cancellation of divergences between

the soft and (anti-)collinear functions then proceeds in the way shown schematically in

table 1. Because of the structure of the cancellations, the computation of the divergence of
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cc ss c̄c̄

1
β

(
ν mH

(pveto
T

)2

)2β
− 1

β

(
ν

pveto
T

)2β
+ 1

α

(
ν

pveto
T

)2α
− 1

α

(
ν

mH

)2α

Table 1. Structure of the divergences of two-emission diagrams arising when one uses the regula-

tor (4.4), which distinguishes left- and right-moving particles. We denote collinear particles by c,

anti-collinear ones by c̄, and soft ones by s.

a single function is again sufficient, and with the regulator (4.4) we can work with the soft

instead of the (anti-)collinear functions. For convenience, we will perform the extraction

of the color structures CFCA and CFTFnf of the anomaly coefficient dveto2 (R) from the

computation of the soft function using the split regulator (4.4), while we will extract the

C2
F part from the collinear functions with the original form (2.7) of the regulator.

A second simplification of the computation is achieved by using the fact that the two-

loop anomaly coefficient for the transverse-momentum spectrum of an electroweak boson

B (with B = H,Z, γ∗,W±) is known [12]. Since the jet algorithm only has an effect for

two and more emissions, the difference

∆σ̂(pvetoT ) =
1

σ0

[
σveto(p

veto
T )− σB(p

veto
T )

]
(4.5)

between the jet-veto cross section σveto(p
veto
T ) and σB(p

veto
T ), the boson qT spectrum in-

tegrated up to a momentum scale pvetoT , starts at O(α2
s) and involves only contributions

from two real-emission diagrams at this order. This observation was used in [6] to extract

the R-dependent part of the NNLL order corrections, and the logarithmically-enhanced

terms in the above difference were given explicitly in [13]. On the partonic level, the

logarithmically-enhanced two-loop terms have the form

∆σ̂(pT ) = −2δ(ŝ−m2
H)

(αs

4π

)2
∆dveto2 (R) ln

mH

pvetoT

+ . . . , (4.6)

where ŝ is the partonic center-of-mass energy squared. In order to obtain the full two-loop

anomaly coefficient, we then use the relation [7]

dveto2 (R) = dB2 + 32ζ3C
2
B +∆dveto2 (R) , (4.7)

where CB = CA for Higgs production and CB = CF for Z-boson production. The ζ3
term arises from the Fourier integral present in the factorization formula for the boson qT
spectrum. The anomaly coefficient relevant for the transverse-momentum spectrum,

dB2 = CB

[(
808

27
− 28ζ3

)

CA − 224

27
TFnf

]

, (4.8)

was extracted in [12]. We will find that the quantity ∆dveto2 (R) defined in (4.6) can be

further decomposed as

∆dveto2 (R) = −32ζ3C
2
B − 32CB f(R) , (4.9)
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where f(R) vanishes for R → ∞, and for R < π it can be approximated by the numerical

expression given in (2.17). In this way, we recover the result (2.16) once we set CB = CA

for the Higgs-boson case.

The real-emission QCD diagrams contributing to ∆σ̂(pvetoT ) are free of infrared singu-

larities and can be evaluated in d = 4 space-time dimensions. However, the effective-theory

diagrams will continue to suffer from light-cone divergences, and thus the analytic regular-

ization has to be kept. The two-emission measurement function relevant for the difference

∆σ̂(pvetoT ) reads

M∆(p
veto
T ) = Mveto(p

veto
T )−MB(p

veto
T )

= θ(R−∆R) θ(pvetoT −pT )+θ(∆R−R) θ(pvetoT −kT ) θ(pvetoT −qT )−θ(pvetoT −pT )
= θ(∆R−R)

[

θ(pvetoT − kT ) θ(p
veto
T − qT )− θ(pvetoT − pT )

]

, (4.10)

where p = k + q is the total momentum of the two emissions with momenta k and q, and

∆R =
√

∆y2 +∆φ2 is their angular separation.

There is a price one has to pay when working with the difference ∆σ̂(pvetoT ) instead of

the jet-veto cross section itself. With the measurement function M∆(p
veto
T ), contributions

arise from clustered particles that have large angular separations ∆R > R. In contrast to

the jet-veto cross section, ∆σ̂(pvetoT ) does get contributions from particles from the different

sectors and we will therefore need to evaluate those contributions. The physics reason is

that collinear and soft particles both contribute equally to the qT spectrum of the elec-

troweak boson. The mixing contributions are R independent and only arise for the C2
F color

structure. Their presence is the reason why we evaluate this part with the the standard

form (2.7) of the analytic regulator, for which the soft region is absent. We then only need

to compute the mixing contribution involving one collinear and one anti-collinear particle.

4.1 Evaluation of the CFCA and CFTFnf terms

To extract the contribution of these two color structures to dveto2 (R), we compute the two-

loop soft function with the split analytic regulator (4.4). Up to the choice of the regulator,

the corresponding computation is identical to what was done in [14], with one important

difference: this paper claimed that the factorization of the cross section would only hold for

R → 0 and the computation was only performed in this limit. As we have demonstrated

in section 3, the factorization formula (2.18) also holds at finite R = O(1), and we must

therefore recover the full QCD result of [6] from our computation of the soft function.

In order to perform the calculation, one needs the two-emission soft amplitude squared,

As(k, l) =
∑

pol.

|M2g(k, l)|2 , (4.11)

which is given in compact form in appendix C of [36] and can also be found in [14]. One

then parameterizes the integration over the two-particle phase space in terms of angles,

rapidities, and transverse momenta, introducing the variables

∆y = yk − yl , ∆φ = φk − φl , pT = kT + lT , z =
kT
pT

. (4.12)
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The integration over the total rapidity yt then gives rise to a divergence of the form

− 1

β

(
ν

pvetoT

)2β

+
1

α

(
ν

pvetoT

)2α

, (4.13)

whose coefficient is the collinear anomaly. The divergence only arises if both emissions are

either to the left or two the right, and the two terms would cancel if we were to set α = β.

The integration over pT can be performed analytically, which leads to the result

∆σ̂(pvetoT ) = δ(ŝ−m2
H)

[

2

α

(
ν

pvetoT

)2α

− 2

β

(
ν

pvetoT

)2β
]

×
∫ 1

0
dz

∫ ∞

−∞
d∆y

∫ π

0

d∆φ

π

1

(4π)4
θ
(√

∆y2 +∆φ2 −R
)

×
[
(pvetoT )4 z(1− z)As(k, l)

]
ln

√

z2 + (1− z)2 + 2z(1− z) cos∆φ

max(z, 1− z)
.

(4.14)

For a given value of R, the remaining integrations can be performed numerically. To obtain

an analytic form of the result, we have expanded the integrand in powers of R, as was done

in [6]. Details of the calculation can be found in appendix A. Translating the divergence

in the analytic regulator into the anomalous logarithm according to the structures shown

in table 1, and using relation (4.6), we obtain

∆dveto2 (R)
∣
∣
CFCA, CFTFnf

= −32CFCA

(

cAL lnR+ cA0 + cA2 R
2 + cA4 R

4 + . . .
)

− 32CFTFnf

(

cfL lnR+ cf0 + cf2R
2 + cf4R

4 + . . .
)

,
(4.15)

where the first few expansion coefficients are given by

cAL =
131

72
− π2

6
− 11

6
ln 2 , cfL = −23

36
+

2

3
ln 2 ,

cA0 = −805

216
+

11π2

72
+

35

18
ln 2 +

11

6
ln2 2 +

ζ3
2
, cf0 =

157

108
− π2

18
− 8

9
ln 2− 2

3
ln2 2 ,

cA2 =
1429

172800
+
π2

48
+

13

180
ln 2 , cf2 =

3071

86400
− 7

360
ln 2 .

(4.16)

In appendix A, we present analytic expressions for the expansion coefficients up to O(R10).

Our results for the coefficients ciL and cin with n = 2, 4, 6 agree with the findings of [6].

Our analytic expressions for the coefficients ci0 are new, and they are in agreement with

the numerical values reported in [6].2

4.2 Evaluation of the C2

F term

The computation of the C2
F part is complicated by the fact that quadratic divergences in

the analytic regulator as well as mixing terms between the different sectors arise. Rewriting

θ(∆R − R) = 1 − θ(R −∆R), we note that both problems do not affect the second term

2There is a slight deviation for the CA part of the constant term, where we have −cA0 /c
A
L = ln(1.7455),

while [6] quotes ln(1.74).
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on the right, which can thus be treated exactly in the same way as the CFCA and CFTFnf
contributions studied in the previous section. This second term, which contains all R

dependence, corresponds to the independent-emission piece computed in [6]. Proceeding

in the same way as above, we confirm their result

∆dveto2 (R)
∣
∣R−dep.

C2

F

= C2
F

(
8π2R2

3
− 2R4

)

. (4.17)

This leaves the R-independent piece arising from the rewriting of the θ-function. As

discussed earlier, this part involves the mixing between the different sectors of the effective

theory, but only because we consider the cross-section difference in (4.5) instead of the jet-

veto cross section itself. We will compute it using the standard form (2.7) of the analytic

regulator, for which the soft contributions are absent. The general form of this contribution

in terms of rapidity, azimuthal angle, and transverse momentum is

∆σ̂ij(p
veto
T )

∣
∣
R−indep.

=
1

(16π2)2

∫ ∞

0
dk+

∫ ∞

0
dk−

∫

d2k⊥ δ(k
2)

∫ ∞

0
dl+

∫ ∞

0
dl−

∫

d2l⊥ δ(l
2) (4.18)

×
(
ν2

k+l+

)α

Aij(k, l)∆ij(k, l)MR−indep.(k, l, p
veto
T ) , with i, j = c, c̄.

Here Aij(k, l) is the squared amplitude for two emissions in the appropriate momentum

regions. The measurement function

MR−indep.(k, l, p
veto
T ) = θ(pvetoT − kT ) θ(p

veto
T − lT )− θ(pvetoT − pT ) (4.19)

only involves transverse momenta and is thus the same in all regions. The function ∆ij(k, l)

gives the multipole expansion of the Higgs-boson on-shell constraint (p1+p2−k−l)2 = m2
H

in the relevant momentum region. For example, one has

∆cc(k, l) = δ
(
ŝ−m2

H −
√
ŝ (k− + l−)

)
(4.20)

in the partonic center-of-mass system. We now consider each contribution in turn.

We begin with the Acc contribution. The diagrams relevant for the C2
F color structure

are shown in figure 3. We are only interested in the light-cone singularities of these dia-

grams, which result in divergences in the analytic regulator α. Therefore only diagrams

with at least one Wilson-line emission can contribute. The light-cone singularities arise

from the region of the integrand in which the large minus-components of the collinear mo-

menta tend to zero, i.e. when these particles become soft. In the limit where the momentum

k becomes soft, the C2
F part of the squared collinear amplitude takes the form

Acc(k, l) →
1

2
As(k)Ac(l) , (4.21)

where the one-emission soft and collinear amplitudes squared are

As(k) =
16πCFαs

k+k−
, Ac(l) = 8πCFαs

2ŝ− 2l−
√
ŝ+ l2−

l−l+ŝ
. (4.22)
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Figure 3. Diagrams with color factor C2
F contributing to the squared amplitude for the independent

emission of two collinear gluons. The collinear Wilson lines are represented by the gray blobs

attached to the quark lines.

As we will see, only the region where both emissions become soft gives rise to a 1/α

divergence in (4.18). In the double soft limit, the squared amplitude reduces to

Acc(k, l) →
1

2
As(k)As(l) . (4.23)

With this simple form, the integration over the light-cone components becomes trivial. It

has the form

∫ Λ

0
dk−

∫ ∞

0
dk+ δ(k

2)
1

k+k−

(
ν

k+

)α

=
1

k2T

∫ Λ

0

dk−
k−

(
νk−
k2T

)α

=
1

α

(
νΛ

k2T

)α 1

k2T
. (4.24)

We have inserted an upper cutoff Λ ∼ mH in the k− integral, since we are only interested

in the divergences arising at small k−. Changing variables to pT = kT + lT and ξ = kT /lT ,

and integrating over the total transverse momentum pT , the integral in (4.18) becomes

∆σ̂cc(pT )
∣
∣
R−indep.

=
1

2

(
2αsCF

π

)2 1

α2
δ(ŝ−m2

H)

(
Λ2ν2

(pvetoT )4

)α

× 1

2α

∫ 1

0

dξ

ξ1+2α

∫ π

0

d∆φ

π

[
(1 + ξ2 + 2ξ cos∆φ)2α − 1

]

= δ(ŝ−m2
H)

(
2αsCF

π

)2( m2
Hν

2

(pvetoT )4

)α
ζ3
2

1

α
+O(α0) ,

(4.25)

where in the last step we have replaced the cutoff scale Λ by the Higgs mass, since we know

from power counting that the full integral scales in this way. Note that, upon performing

the double integral, one finds that the expression in the second line is of order O(α),

so that the final result has only a single pole in α even though the light-cone integrations

have produced a double pole. This O(α) suppression is also the reason why only the double

soft limit is divergent. After subtracting the double-soft part from the total contribution

∆σ̂cc(pT )|R−indep., the light-cone integrations for the single-soft contribution (4.21) give

only rise to a single pole, and since Ac(q) has the same transverse-momentum dependence
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as As(q), the O(α) suppression of the transverse-momentum integration then renders the

integral finite. We conclude that only the double soft region gives rise to a divergence, so

that (4.25) is indeed the full result.

Next, we consider the contribution ∆σ̂c̄c̄(p
veto
T ). Its structure is basically the same as

above, except that the analytic regulator is now attached to the large momentum compo-

nent, so that the light-cone integrations give

∫ Λ

0
dk+

∫ ∞

0
dk− δ(k

2)
1

k+k−

(
ν

k+

)α

=
1

k2T

∫ Λ

0

dk−
k−

(
νk−
k2T

)α

=
1

α

(
ν2

Λ2

)α
1

k2T
. (4.26)

In contrast to (4.24), the integral over transverse momentum is not affected by the regulator

α. The transverse-momentum integration associated with this term can thus be obtained

by taking the α → 0 limit in the second line of (4.25). But we have seen above that this

integral is of O(α), and hence it follows that

∆σ̂c̄c̄(p
veto
T )

∣
∣
R−indep.

= 0 . (4.27)

This leaves us with the mixed contribution ∆σ̂c̄c(p
veto
T ). Since the SCET Lagrangian

does not contain any interactions coupling collinear and anti-collinear particles, the squared

amplitude is a product

Ac̄c(k, l) = Ac̄(k)Ac(l) , (4.28)

where the first-order collinear amplitude squared was given in (4.22) above, and the anti-

collinear amplitude squared Ac̄(k) is obtained from Ac(k) by interchanging k+ and k−.

Expanding the result in the soft limit, performing the integrations over the light-cone

momentum components using (4.24) and (4.26) in the two sectors, and evaluating the

integrals over transverse momenta as in (4.25), we get

∆σ̂c̄c(p
veto
T )

∣
∣
R−indep.

= −
(
2αsCA

π

)2

δ(ŝ−m2
H)

(
ν

pvetoT

)2α ζ3
2

1

α
+O(α0) . (4.29)

Summing the different contributions, we finally obtain

∆σ̂(pvetoT )
∣
∣
R−indep.

=

(
2αsCA

π

)2

δ(ŝ−m2
H)

ζ3
2

1

α

[(
νmH

(pvetoT )2

)2α

−
(

ν

pvetoT

)2α
]

. (4.30)

The cancellation of the divergence provides a check on our computation. The resulting

contribution to the anomaly coefficient derived from (4.6) is

∆dveto2 (R)
∣
∣R−indep.

C2

F

= −32ζ3C
2
F . (4.31)

Interestingly, this term exactly cancels the ζ3 term which arose in (4.7) from the Fourier

integral in the expansion of the boson qT spectrum.

In the discussion above, we have exploited the fact that the light-cone singularities

arise when the collinear particles become soft, and that the soft parts of the amplitudes

can be factorized off. The structure of this factorization can be understood by splitting the

collinear gluon field Ac into a collinear and an ultrasoft gluon field, Ac → Ac + Aus. This
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ultrasoft field describes collinear particles in the limit where their large light-cone momen-

tum components become small, k− ∼ εmH ≪ mH . Its other light-cone component scales

as k+ ∼ λ2, and is therefore softer than the soft mode in the factorization formula (2.3).

For ε ∼ λ2, this mode would be the standard ultrasoft gluon, but the relative scaling of

ε and λ is not important in the following. Decoupling the ultrasoft gluon, the collinear

quark field matches onto

W †(x)ψ(x) →W †(x)Y †n̄ (x)Yn(x)ψ(x) . (4.32)

The ultrasoft Wilson line Y †n̄ (x) arises from the substitution Ac → Ac+Aus in the collinear

Wilson line W †(x), while the second ultrasoft Wilson line arises after decoupling the ultra-

soft gluons from the collinear quark field ψ. These ultrasoft contributions are scaleless in our

regularization scheme, so we did not need to include them explicitly. But as we have shown

above, we can use their structure to extract the divergences in the analytic regulator. Rela-

tion (4.32) is also the underlying reason why the cancellation of the divergences between the

different sectors works: they all reduce to (ultra)soft Wilson lines in the singular limit. Since

the Wilson lines arising for quarks and gluons only differ in their color representation, we

can obtain the gluon result from the quark result computed above by replacing CF → CA.

We now have computed all the ingredients required to present the complete result for

the two-loop anomaly coefficient dveto2 (R). Combining (4.7) and (4.9), we obtain

dveto2 (R) = dB2 − 32CB fB(R) , (4.33)

with

fB(R) = CA

(

cAL lnR+ cA0 + cA2 R
2 + cA4 R

4 + . . .
)

+ CB

(

−π
2R2

12
+
R4

16

)

+ TFnf

(

cfL lnR+ cf0 + cf2R
2 + cf4R

4 + . . .
)

.

(4.34)

For the Higgs case, with CB = CA, this reproduces the numerical result given in (2.17).

5 Two-loop beam functions and fixed-order matching

The one remaining unknown two-loop ingredient to the factorization theorem (2.18) is

the two-loop beam function B̄g(ξ, p
veto
T ) defined in (2.8). In (2.12) we have matched this

function onto standard PDFs, and we have then presented the one-loop expressions for the

kernel functions Īg←i. For our analysis we will extract the two-loop contributions to B̄g nu-

merically. At the same time, we will match our resummed expression for the jet-veto cross

section with the corresponding fixed-order expression at O(α2
s). In this way, we extract

terms that are power-suppressed in the small ratio pvetoT /mH . Once this is done, our result

not only resums the large logarithms of mH/p
veto
T at N3LLp order, but it also accounts for

all two-loop corrections.

At fixed order in perturbation theory, the two-loop result for the Higgs cross section

with a jet veto can be obtained by running the codes FeHiP [37] or HNNLO [38, 39].
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These Monte-Carlo programs compute the production cross section at O(α2
s), with arbi-

trary cuts on the final state. In the following, we use HNNLO with MSTW2008NNLO

PDFs [40] and αs(mZ) = 0.1171. In order to extract the product of the two beam functions

with two-loop precision, we compute the cross section integrated over rapidity and divide

it by the perturbative expansion for the hard function H̄ defined in (2.19). This yields the

reduced cross section

σ̄(pvetoT ) =
σ(pvetoT )

H̄(mt,mH , pvetoT )
≡ σ̄∞(pvetoT ) + ∆σ̄(pvetoT ) , (5.1)

with

σ̄∞(pvetoT ) = σ0(p
veto
T )

∫ ymax

−ymax

dy B̄g(τe
y, pvetoT ) B̄g(τe

−y, pvetoT ) , (5.2)

where τ = mH/
√
s and ymax = ln(1/τ). The quantity σ̄∞ contains the leading-power

contribution and is proportional to the convolution of the two beam functions. The re-

mainder ∆σ̄ = O(pvetoT /mH) in (5.1) contains the power corrections to the reduced cross

section. The rationale for considering the reduced cross section is that, in the factorization

formula (2.18), all large logarithms are resummed in the RG-invariant hard function H̄

(provided we choose µ ∼ pvetoT ). The reduced cross section obtained when H̄ is factored out

has a well-behaved perturbative expansion, and it can thus be extracted from numerical

fixed-order codes.

We now exploit the fact that the leading-power reduced cross section σ̄∞ depends on

mH only through the ratio mH/
√
s, which enters in the arguments of the beam functions

and in σ0(p
veto
T ). If we compute the reduced cross section for a very large value of mH ,

keeping the ratio mH/
√
s fixed at its physical value, the power corrections will become

negligibly small and we directly obtain the quantity σ̄∞, and from it the two-loop beam

functions. Repeating the analysis with the physical value mH = 125GeV, we are then

able to extract the power-suppressed contribution ∆σ̄. In practice, we run the program

HNNLO at a fixed value of µ = µf = µr, once with the physical values mH = 125GeV

and
√
s = 8TeV, and a second time with the larger values mH = 500GeV and

√
s =

32TeV. The latter value for the Higgs mass is sufficiently large to ensure that power-

suppressed terms are very small in the range of pvetoT values we are considering. To very

good approximation, the power corrections can then be obtained from the difference

∆σ̄(pvetoT ) ≃ σ̄(pvetoT )
∣
∣
mH=125GeV

− σ̄(pvetoT )
∣
∣
mH=500GeV

. (5.3)

As a validation, we have performed the numerical extraction of the beam functions

and power corrections also at NLO, where the expression for B̄g(ξ, p
veto
T ) is known analyt-

ically, see (2.12). The two upper bands in figure 4 show the leading-power reduced cross

section σ̄∞, while the two lower bands show the power-suppressed contribution ∆σ̄. In

all cases we show NLO bands obtained by varying the factorization scale in the region

pvetoT /2 < µ < 2pvetoT . The blue bands show the numerical result extracted from the pro-

cedure just described, while the red bands give the exact result, obtained by using the

analytic expressions (2.14) for the calculation of the beam functions. We observe that

the numerical method reproduces the analytical results with good accuracy. The small
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Figure 4. Comparison of the exact NLO results for the reduced cross section σ̄∞ (upper red band)

and its power corrections ∆σ̄ (lower red band) with the corresponding numerical results extracted

using the procedure outlined in the text (upper and lower blue bands). The orange band shows the

difference between the exact and numerical results.

difference is shown by the very narrow orange band in the figure. This band is equal to

the power corrections at mH = 500GeV, which are very small but non-zero. In our final

matched results, we add back the power-suppressed terms to σ̄(pvetoT ), so that the small

residual power corrections remaining at mH = 500GeV do not change our predictions for

the cross section. We separate out the power corrections in order to assess their relative

size and to be able to vary the scale µ independently for σ̄∞ and ∆σ̄. The small scale

uncertainty of the fixed-order cross section is known to be due to a cancellation of different

types of large corrections. In order to avoid such accidental cancellations, we separate the

different parts of the calculation and vary their scales independently.

At NNLO the numerics become more challenging, in particular at the high valuemH =

500GeV. In the left two plots in figure 5, we show our numerical results for the leading-

power cross section σ̄∞(pvetoT ) (left) as well as for the power corrections ∆σ̄(pvetoT ) (center)

for pvetoT = 20GeV and R = 0.4, as a function of the factorization scale µ. We generate a

grid of 24 different µ values and 5 different choices of the jet radius R. For each parameter

pair, we perform 20 independent runs of the HNNLO program, each producing 3 · 108
events. Every run generates a histogram for σ̄(pvetoT ) with the selected parameter values

and takes approximately 10 hours to complete, so that the total computing time would

amount to 2000 days on a single processor core. Despite the large number of events, the

statistical uncertainties on the extracted values in figure 5 are not completely negligible. To

determine the default value and the scale variation at a given value of pvetoT , we fit a third-

order polynomial in lnµ to the numerical data. The resulting fit functions, together with

their uncertainties, are shown in the left two panels of figure 5. In both cases, the quality

of the fit is excellent (χ2/dof ≈ 0.8). From the fit in µ, we extract the default value for
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Figure 5. Numerical results for the reduced cross section σ̄∞ and its power corrections ∆σ̄ at

NNLO. The first two plots show the results of a fit to the µ dependence of these quantities at fixed

pvetoT = 20GeV and R = 0.4. The right plot shows our fit to the pvetoT dependence of the cross section

σ∞ = H̄σ̄∞ and its power corrections ∆σ = H̄∆σ̄ (obtained using the function H̄ evaluated at its

default scale µ = pvetoT ), indicating their default values (red lines) and scale variation (blue lines).

the cross section and the upper and lower edges of the scale-variation band, for each value

of pvetoT . In a last step, we first multiply by the prefactor H̄ evaluated at its default scale

µ = pvetoT and then fit a third-order polynomial in ln pvetoT to the leading-power cross-section

results, and a fourth-order polynomial in pvetoT to the power corrections. We do not include

a constant term in the fit to ∆σ̄, since the power corrections must vanish for pvetoT → 0. The

fitted curves are shown in the third plot in figure 5. Once again, the upper curves show the

leading-power cross section σ̄∞(pvetoT ) together with its scale-uncertainty band, while the

lower ones show the corresponding results for the power corrections ∆σ̄(pvetoT ). The fact

that the scale variation at NNLO turns out to be larger than at NLO can be traced back

to the presence of rather large, R-dependent two-loop corrections in the beam functions.

This will be discussed in more detail in section 6. We have also used other forms of fit

functions and find compatible results. However, employing too many fit parameters would

cause the fit to follow the statistical fluctuations of the numerical results. As a further cross

check, we have also computed the pvetoT dependence using the MCFM code [41] instead of

HNNLO, finding results consistent with the ones presented here.

It is interesting to look at the dependence of the power corrections on the jet-radius

parameter R. From (3.6), one would naively expect that the power corrections can be

enhanced by factors of eR, as mentioned near the end of section 3. However, numerically

we see no evidence for such an effect. Indeed, as can be seen from figure 6, we find a

very moderate dependence on the jet radius. The relative size of the power corrections,

∆σ(pvetoT )/σ(pvetoT ) = ∆σ̄(pvetoT )/σ̄(pvetoT ), turns out to be almost independent of R in the

range 0.2 < R < 1.
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Figure 6. Jet-radius dependence of the relative size of the power corrections, ∆σ/σ, for different

values of the veto scale pvetoT .

6 Numerical predictions for the LHC

We are now in a position to present our final results for the jet-veto cross section and the

veto efficiency for Higgs-boson production in gluon fusion at the LHC. In order to obtain

the highest possible accuracy at present, we combine resummed results at N3LLp order

with fixed-order results at NNLO in perturbation theory. The only missing ingredients for

a complete resummation with N3LL accuracy are the four-loop coefficient ΓA
3 of the cusp

anomalous dimension and the three-loop coefficient dveto3 (R) in the anomaly exponent Fgg

in (2.10). Both quantities enter via the RG-invariant hard function defined in (2.19). For

the four-loop cusp anomalous dimension, we use the Padé approximation

ΓA
3

∣
∣
Padé

=
(ΓA

2 )
2

ΓA
1

= 3494.4 , (6.1)

valid for nf = 5. A corresponding estimate works very well one order lower, where one has

ΓA
2 = 538.2 and (ΓA

1 )
2/ΓA

0 = 572.7. The largest effect of ΓA
3 occurs at low pvetoT values. How-

ever, even at the very low value pvetoT = 10GeV, switching off the four-loop cusp anomalous

dimension would increase the cross section by only 0.1%, so that the uncertainty associ-

ated with ΓA
3 is negligibly small. The contribution of the unknown three-loop anomaly

coefficient dveto3 (R) to the cross section is of the form (αs/π)
3 ln(pvetoT /mH). Generically, we

would expect this type of contribution to be small in the range of pvetoT values we consider,

since the logarithm ln(pvetoT /mH) is not large enough to fully compensate the suppression

by a factor of αs/π. However, we have seen in section 4 that the anomaly coefficient is en-

hanced at small R by factors of lnR. The leading-color part of the two-loop coefficient can

be well approximated as dveto2 (R) ≈ 2 (4CA)
2 ln(2/R). Motivated by this, we will estimate

the quantity dveto3 (R) as

dveto3 (R) = κ (4CA)
3 ln2

2

R
, (6.2)

and vary the overall prefactor in the range −4 < κ < 4. The result of this variation on the

cross section is shown in figure 7. The above ansatz encodes the correct logarithmic scaling
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Figure 7. Uncertainty in the jet-veto cross section due the variation of the three-loop anomaly

coefficient dveto3 (R) for three different values of the jet radius.

at small R, and we believe it provides a generous estimate for all R values considered in our

work. Even at R = 1 our estimate for dveto3 (R) is still more than six times larger than the

three-loop cusp anomalous dimension ΓA
2 . Nevertheless, the resulting effect is seen to be

very small for larger values of R. Also for smaller values, such as R = 0.4, the associated

uncertainty is lower than the scale uncertainty. While a full computation of dveto3 (R) looks

difficult, we believe that a determination of the coefficient of the leading logarithm should

be feasible. The double logarithm arises from diagrams with three collinear emissions,

which involve two propagators that are nearly on-shell.

6.1 Scale uncertainties

We now proceed to explore the perturbative uncertainties in the resummed predictions

for the jet-veto cross section, as estimated by scale variations. We obtain predictions for

the cross section integrated over rapidity by using the RG-improved result for the hard

function H̄ in (2.19) and multiplying it with the reduced cross section in (5.1), which we

have extracted with two-loop accuracy and including power corrections. Since the Sudakov

logarithms exponentiate, it is natural to perform the perturbative expansion of the hard

function in the exponent, i.e. to expand ln H̄ instead of H̄ itself. For this reason, we do

not perform an additional expansion after multiplying the reduced cross section by H̄. To

estimate the residual scale uncertainties of our predictions, we independently vary the hard

matching scales µt and µh, at which the Wilson coefficients Ct and CS in (2.3) are calculated

(for details see [24]), as well as the factorization scale µ, by factors of 2 about their default

values µt = mt, µ
2
h = −m2

H , and µ = pvetoT . We then obtain individual error estimates for

the hard function H̄ and for the reduced cross section σ̄∞ and its power corrections ∆σ̄.

The error associated with the hard function also includes the uncertainty arising due to the
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unknown value of dveto3 (R), which we estimate by scanning κ over the interval between −4

and 4. Beyond NLL order, the sensitivity to variations of the hard scales µt and µh is so

small that one can safely neglect it compared to the effect of the µ variation. For instance,

at pvetoT = 20GeV the µh variation is ±0.3% and the µt variation
+0.1
−0.2% at N3LL level (±1%

in both cases at NNLL order). Since the quantities H̄ and σ̄ are RG invariant, it seems

reasonable to assume that their residual scale uncertainties are uncorrelated. We therefore

combine the errors in H̄, σ̄∞, and ∆σ̄ in quadrature to obtain our final error estimates.

In addition to the matching and factorization scales, one can also consider a variation

of the logarithms associated with the collinear anomaly. This can be done by rewriting the

anomaly factor in (2.19) in the form

(
mH

pvetoT

)−2Fgg(pvetoT ,µ)

=

(
mH

ν

)−2Fgg(pvetoT ,µ)( ν

pvetoT

)−2Fgg(pvetoT ,µ)

. (6.3)

For ν ∼ pvetoT , the second factor on the right-hand can be expanded in fixed-order perturba-

tion theory, after which some higher-order ν dependence is left over. For example, at NNLL

order the one-loop expression for Fgg in (2.10) is sufficient for the second factor, while the

two-loop expression is needed for the first one beause of the large logarithm. The variation

from changing ν by a factor of 2 about the default value ν = pvetoT is ±10% at NNLL

order, while it vanishes by definition at N3LL order if dveto3 (R) = 0 and µ = pvetoT , assuming

the expansion is performed for the logarithm of H̄(mt,mH , p
veto
T ), as we do. If instead

H̄(mt,mH , p
veto
T ) itself is expanded, then the variation is ±3%. The type of scale variation

considered here can be formalized in an RG framework [42, 43], in which the change in ν

reshuffles contributions between the soft and collinear functions. However, in contrast to

the standard RG, there is no physical coupling constant involved in the running, since the

different contributions live at the same virtuality. Furthermore, the individual contribu-

tions are strongly scheme dependent. With our regulator, all perturbative corrections to the

soft function vanish, while the regulator put forward in [43] leads to a non-zero soft func-

tion. For these reasons, we do not believe that the ν variation provides much insight into

the size of higher-order corrections, and we therefore do not include it in our error budget.

Figure 8 shows our predictions for the leading-power cross section for three different

values of the jet-radius parameter R. The colored bands refer to the predictions obtained

at NLL, NNLL, and N3LLp order. Consider first the right-most panel, which corresponds

to the relatively large value R = 0.8. In this case we observe a reduction of the scale

uncertainties as we increase the accuracy of the resummation. While the NLL and NNLL

bands do not quite overlap, they are at least near each other. The N3LLp band overlaps

with the NNLL band and counteracts to some extent the large enhancement seen at NNLL

order. All in all, it appears that the impact of higher-order effects is roughly in accordance

with the error estimates from lower-order results, suggesting that the perturbative series is

reasonably well behaved. Unfortunately, the quality of the expansion deteriorates as one

lowers the jet radius R. The size of the corrections and the uncertainties obtained at NNLL

and N3LLp order both increase with decreasing R. For R = 0.2, the NNLL band is as broad

as (or even broader than) the NLL band, and there is a rather substantial gap between

them. The origin of the large scale dependence of the NNLL order bands at small R can
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Figure 8. Resummed predictions for the leading-power jet-veto cross section at NLL (orange),

NNLL (red), and N3LLp order (green).

be traced back to the behavior of the two-loop anomaly coefficient dveto2 (R) given in (2.16),

which is plotted in figure 9 in units of the coefficient dA2 appearing in the resummation

formula for the transverse-momentum distribution of Higgs bosons at low qT ≪ mH [44].

Whereas dveto2 (R)/dA2 is of modest size for R & 0.8, this ratio quickly increases as R de-

creases, and it reaches a very large value dveto2 (R)/dA2 ≈ 8.7 for R = 0.2. The origin of

this effect can be understood from the presence of the lnR term in the expression for the

function f(R) in (2.17), which becomes large for such small values of the jet radius. Note

that the dveto2 (R) term first appears at NNLL order, and that the µ dependence of the

running coupling in the anomaly term

exp

[

−d
veto
2 (R)

8

(
αs(µ)

π

)2

ln
mH

pvetoT

]

≈ exp

[

1.21
dveto2 (R)

dA2
α2
s(µ) ln

mH

pvetoT

]

(6.4)

contained in the hard function H̄ in (2.19) only gets compensated at N3LL order. For pvetoT =

25GeV andR = 0.2, the exponent approximately equals 17α2
s(µ). Since the NLL band com-

pletely misses this genuine source of large scale dependence, it underestimates the pertur-

bative uncertainties for small R. To reduce the scale variations of the NNLL band, it is nec-

essary to perform the resummation at N3LLp order, as we do in the present work. The fact

that the green bands in figure 8 are narrower than at NNLL order and fall between the NLL

and NNLL bands gives us confidence that at N3LLp order, and for R ≥ 0.4 not too small,

one captures the main corrections and obtains reliable predictions and error estimates.

In order to substantiate this claim, we study the scale variations of the different in-

gredients in the factorization formula (2.18) separately. The top panels in figure 10 show

the residual scale dependence of the RG-invariant hard function H̄ at different orders in

perturbation theory. We observe a very large correction when going from NLL to NNLL
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Figure 9. Dependence of the two-loop anomaly coefficient dveto2 (R) (in units of the coefficient dA2 )

on the jet radius.

order, whereas the impact of yet higher-order corrections is seen to be small. Indeed,

comparing with figure 8, we see that this dependence of the hard function explains the

scale variations of the cross section shown in figure 8 at NLL and NNLL order. At N3LLp

order, the large scale uncertainty related to the dveto2 (R) term in (6.4) gets compensated

by including the three-loop terms in the anomaly exponent. From that point on, the re-

maining scale variation of the hard function is very small, even if we simultaneously vary

the coefficient dveto3 (R) according to our estimate (6.2). This latter effect is illustrated by

the difference between the green and blue bands in the plots. The bottom panels in fig-

ure 10 show the scale variation of the leading-power reduced cross section σ̄∞(pvetoT ) in (5.1).

Once again large R-dependent two-loop corrections arise, which increase with decreasing

R. However, in the present case these corrections are contained in the beam functions

and count as N3LL order effects, because the reduced cross section does not contain large

logarithms of pvetoT /mH . As a result, while the one-loop corrections are seen to be small, at

two-loop order the reduced cross section receives large negative corrections, whose size is

not anticipated by the small scale dependence of the one-loop result. In addition, also the

scale uncertainties increase when these corrections are included, especially at low R values.

Indeed, it is the residual scale dependence of the beam functions at two-loop order which

dominates the scale uncertainty in our final result for the cross section (cf. figure 8). The

figures show that, once again, these large two-loop effects strongly increase with decreasing

R. For the anomaly coefficient, we had found that the remaining higher-order corrections

are moderate once the leading lnR-enhanced terms are in place, and we believe that the

same is true for the beam functions. In order to check that this is indeed the case, it would

be necessary to compute the leading three-loop corrections to the beam functions in the

limit of very small R — a task that is well beyond the scope of the present work.

6.2 Predictions for the jet-veto cross section

In the last step, we now add the power-suppressed corrections to our resummed pre-

dictions for the jet-veto cross section, thereby extending the accuracy of our results to

N3LLp+NNLO. Our final predictions for the cross section are depicted in figure 11. The

– 29 –






























	1
	Introduction
	Factorization theorem for the jet-veto cross section
	Jet clustering, multipole expansion, and zero bins
	Two-loop computation of the anomaly exponent
	Evaluation of the C(F) C(A) and C(F) T(F) n(f) terms
	Evaluation of the C(F)**2 term

	Two-loop beam functions and fixed-order matching
	Numerical predictions for the LHC
	Scale uncertainties
	Predictions for the jet-veto cross section

	Conclusion
	Series expansion of f(B)(R) for R < pi
	Asymptotic behavior for R -> 0
	Series expansion in powers of R**2


