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Abstract: We consider the 2d XY Model with topological lattice actions, which are

invariant against small deformations of the field configuration. These actions constrain the

angle between neighbouring spins by an upper bound, or they explicitly suppress vortices

(and anti-vortices). Although topological actions do not have a classical limit, they still lead

to the universal behaviour of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition

— at least up to moderate vortex suppression. In the massive phase, the analytically

known Step Scaling Function (SSF) is reproduced in numerical simulations. However,

deviations from the expected universal behaviour of the lattice artifacts are observed. In

the massless phase, the BKT value of the critical exponent ηc is confirmed. Hence, even

though for some topological actions vortices cost zero energy, they still drive the standard

BKT transition. In addition we identify a vortex-free transition point, which deviates from

the BKT behaviour.

Keywords: Nonperturbative Effects, Lattice Quantum Field Theory, Field Theories in

Lower Dimensions, Sigma Models

ArXiv ePrint: 1212.0579

c© SISSA 2013 doi:10.1007/JHEP03(2013)141

mailto:wolbi@nucleares.unam.mx
mailto:boegli@itp.unibe.ch
mailto:niederma@itp.unibe.ch
mailto:Michele.Pepe@mib.infn.it
mailto:sk8hack@gmail.com
mailto:wiese@itp.unibe.ch
http://arxiv.org/abs/1212.0579
http://dx.doi.org/10.1007/JHEP03(2013)141


J
H
E
P
0
3
(
2
0
1
3
)
1
4
1

Contents

1 Introduction 1

2 Topological lattice actions 3

3 Universal behaviour of angle constraint topological actions 4

3.1 Phase diagram 4

3.2 Continuum limit in the massive phase 5

3.3 Critical behaviour in the massless phase 8

4 Continuum limit of the pure vortex suppression action 11

5 Concluding discussion 14

A Cluster algorithm for the vortex suppression action 16

B On inequalities for ferromagnetic systems 18

1 Introduction

Universality is of central importance in quantum field theory and statistical mechanics,

because it makes the long-distance physics insensitive to the short-distance details at the

cut-off scale. The corresponding universality classes are determined by the space-time

dimension and by the symmetries of the relevant order parameter fields. In lattice field

theory, one often demands, in addition, the lattice action to have the correct classical

continuum limit. Recently, we have introduced the concept of topological lattice actions,

which do not have a classical limit [1]. Topological lattice actions are invariant against

small deformations of the lattice fields. In O(N) Models, the simplest topological action

constrains the relative angle between nearest-neighbour spins to a maximal angle δ. All

allowed configurations (that do not violate this constraint) are then assigned the action

value zero. Since the action does not vary at all, it does not give rise to a meaningful

classical equation of motion. Consequently, it does not have the correct classical continuum

limit, and perturbation theory does not apply either. As we have demonstrated analytically

for the 1d O(2) and O(3) Model, despite this classical deficiency, the topological lattice

action still leads to the correct quantum continuum limit. However, for these 1d topological

actions the lattice artifacts go to zero only as O(a) in the limit of vanishing lattice spacing

a, while they are of O(a2) for the standard lattice action.

The correct quantum continuum limit has also been verified in the 2d O(3) Model [1].

Based on numerical simulations with the Wolff cluster algorithm [2, 3], we have reproduced

the analytic results for the Step Scaling Function (SSF) [4] that was introduced in ref. [5].
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Remarkably, in the well accessible range of correlation lengths, the cut-off effects of the

topological action are smaller than those of the standard action and of the tree-level

improved Symanzik action, which had been investigated previously [6, 7]. By combining

the standard and the topological action, we have constructed a highly optimised constraint

action for the 2d O(3) Model that has only per mille level cut-off effects of the SSF for

ratios a/L ≤ 0.1 [8]. Although the topological susceptibility receives contributions from

zero-action dislocations, it was found to diverge only logarithmically [1], rather than with a

power law, as a semi-classical argument would suggest [9]. While it has been suspected that

θ is an irrelevant parameter which gets renormalised non-perturbatively, we have identified

distinct physical theories for each value 0 ≤ θ ≤ π [10] (see also refs. [11, 12]). At θ = 0 we

also investigated a topological lattice action which explicitly suppresses topological charges.

Although this action does not have the correct classical continuum limit either, it was found

to have the correct quantum continuum limit as well [1].

This paper addresses the 2d XY (or O(2)) Model, which has been applied, for instance,

to describe thin films of superfluid helium [13], fluctuating surfaces and their roughening

transition, as well as Josephson junction arrays [14]. Here we investigate topological lattice

actions for that model. In contrast to the 2d O(3) Model, which is asymptotically free,

the continuum limit of the standard 2d XY lattice model is reached at finite values of the

coupling. It corresponds to the well-known Berezinskii-Kosterlitz-Thouless (BKT) phase

transition, an essential transition of infinite order [15, 16]. The BKT transition separates

a massive phase, in which vortices are condensed, from a massless phase, with bound

vortex–anti-vortex pairs.

Although it is not asymptotically free in the usual sense, the 2d XY Model has a

non-trivial massive continuum limit at the BKT phase transition. There is numerical

evidence that this continuum limit corresponds to the sine-Gordon Model at coupling

β →
√
8π [17], which in turn is equivalent to the SU(2) chiral Gross-Neveu Model. In this

sense, the continuum theory is asymptotically free after all. The SSF [5] has been worked

out analytically, and tested against numerical simulations [18]. Remarkably, in this case

even the cut-off effects, which vanish only logarithmically as one approaches the continuum

limit, are expected to have universal features [19]. This aspect is particularly important

to study since topological actions in the 2d O(3) Model show very different discretization

artifacts w.r.t. the standard action [1].

It is interesting to investigate whether topological lattice actions lead to the usual

quantum continuum limit also in this case. One question is how far universality really

reaches, in view of the critical behaviour, and of the cut-off effects. Moreover, the lack

of a perturbative vacuum for the topological actions allows non-trivial checks of some

predictions of universal features that rely, at some stage, on perturbative arguments. As

a further motivation, we refer to an estimate of the critical temperature for the standard

lattice action, based on the energy cost for isolated vortices (or anti-vortices), which tend

to disorder the system. If this is a relevant argument behind the BKT phase transition,

then the behaviour for topological lattice actions is in fact tricky.

Some time ago, the BKT phase transition has been investigated in the so-called Step

Model [20–23]. The Step Model has a topological action, which vanishes if the angle
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between nearest-neighbour spins is less than π/2; otherwise it is a positive constant S0.
1

While in the Step Model the BKT transition is attained by varying S0, it is attained with

the constraint action by varying δ. As S0 is sent to infinity, the Step Model approaches

the constraint action with δ = π/2. On a square lattice, vortices are completely eliminated

in that case. In agreement with the BKT picture, this point in the phase diagram turns

out to be in the massless phase. For smaller values of S0, vortices have a finite action.

After some controversy, it has been confirmed that the Step Model is indeed in the BKT

universality class [24–28].

Using efficient cluster algorithms, we show in this paper that the constraint angle

action also falls into the BKT universality class. This follows by comparison with analytic

results for the SSF [29–31], and for the critical exponent ηc [32, 33]. On the other hand,

the cut-off effects of this topological action are not consistent with the expected universal

behaviour. It is not clear whether that discrepancy is due to very large corrections to

the universal behaviour, or the cut-off effects are not universal. This result represents an

important, puzzling problem that needs clarification.

We further investigate a topological action that combines the constraint angle δ with

explicit vortex suppression, by assigning an action value λ > 0 to each vortex or anti-

vortex. Also that action turns out to have the universal features of the BKT transition,

at least up to λ ≈ 4. However, we find that lattice artifacts do not show the predicted

universal behaviour. A different behaviour is observed at the endpoint of the transition

line, which seems to be located at δ = π (no angle constraint) and λ = ∞ (no vortices).

In section 2 we describe topological actions with two parameters, for an angle con-

straint and an explicit vortex suppression. Section 3 investigates these actions — with

the angle constraint included — by approaching the phase transition both in the mas-

sive and in the massless phase. In section 4 we address a topological vortex suppression

action without an angle constraint, and the extrapolation λ → +∞. Section 5 contains

our conclusion. Finally the cluster algorithm used to simulate the topological actions is

explained in appendix A, and appendix B discusses surprising aspects of the correlations

in ferromagnetic systems.

2 Topological lattice actions

Let us consider the 2d XY Model on a periodic square lattice. A 2-component unit vector

~ex = (cosϕx, sinϕx) is attached to each lattice site x. The standard lattice action reads

Sstandard[~e ] = β
∑

〈xy〉

[1− ~ex · ~ey] = β
∑

〈xy〉

[

1− cos(ϕx − ϕy)
]

, (2.1)

where 〈xy〉 denotes a pair of nearest-neighbour sites, and the parameter β corresponds to

an inverse coupling. A vortex number v� ∈ {0,±1} is associated with each elementary

plaquette �, with the corners x1, x2, x3, x4 in counter-clockwise order. Introducing the

1Also the version with a finite step at a variable angle has been addressed with analytical approaches [21,

22].
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relative angles

∆ϕ〈xixj〉 =
(

ϕxi
− ϕxj

)

mod 2π ∈ (−π, π] , (2.2)

the vortex number of a plaquette is given by

v� =
1

2π

(

∆ϕ〈x1x2〉 +∆ϕ〈x2x3〉 +∆ϕ〈x3x4〉 +∆ϕ〈x4x1〉

)

∈ {0,±1} . (2.3)

Higher vortex numbers cannot occur. The vortices are known to be the relevant degrees

of freedom that drive the BKT phase transition [16]. According to Stokes’ Theorem, the

sum of all vortex numbers on a periodic lattice always vanishes,
∑

� v� = 0.

Let us now introduce a topological action as a sum over elementary plaquettes,

S[~e ] = λ
∑

�

|v�| . (2.4)

This action counts the number of vortices (with v� = 1) plus anti-vortices (with v� = −1),

and multiplies this sum with the single-vortex action λ. In particular, the limit λ →
∞ removes all vortices. When one continuously varies the spin field, without changing

the (discrete) vortex number |v�|, the action does not change either. Consequently, it is

invariant against small deformations of the lattice field, so it represents a topological action.

Let us mention that the analogous λ-term has also been introduced in the 3d XY

Model [34] and O(3) Model [35]. In both cases it was combined with the standard term

to investigate the phase diagram with the axes β and λ. This also involved studies of the

topological action at β = 0, where phase transitions at finite λc were observed.

We may further modify the pure vortex suppression action by imposing the angle

constraint |∆ϕ〈xy〉| ≤ δ, which restricts the relative angle ∆ϕ〈xy〉 between nearest-neighbour

spins ~ex and ~ey to a maximal value δ ∈ [0, π]. Allowed configurations (which obey this

angle constraint) still have the action value S[~e ] of eq. (2.4), while all other configurations

(which violate the constraint on at least one nearest-neighbour pair of sites) are assigned

an infinite action, so they are eliminated. The actions characterised by the parameter λ

and the angle constraint δ remain invariant under small field deformations, and are thus

still topological.

3 Universal behaviour of angle constraint topological actions

In this section, we investigate the 2d XY Model with topological lattice actions that impose

an angle constraint for nearest-neighbour spins, δ < π. In addition, the actions may or

may not explicitly suppress vortices, λ ≥ 0. The universal behaviour is studied both in the

massive and in the massless phase.

3.1 Phase diagram

To determine the critical angle δc of the constraint topological action, we measure the

correlation length ξ(δ) in the massive phase close to the phase transition that occurs in

the infinite volume limit. This is done by increasing the lattice volume V = L × L until

the correlation length ξ(δ, L) converges to its infinite volume limit. For angles δ > δc, not
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λ δc

0 1.77521(57)

2 1.86648(81)

4 1.9361(83)

Table 1. Critical angles δc for different topological actions, with vortex suppressing parameter

λ = 0, 2 and 4, based on fits to the function (3.1).

 0

π/2

π

 0  2 4 ∞

δ

λ

massive phase

massless phase

Figure 1. A schematic illustration of the phase diagram, as expected based on the results for δc(λ)

in table 1, and anticipating the outcome of section 4.

too close to the phase transition, the convergence is observable on tractable lattice sizes

(up to L = 2000). To determine the critical point δc we fit the correlation length ξ(δ) to a

function, which is characteristic for the BKT transition,

ξ(δ) = A exp

(

B

∣

∣

∣

∣

δc
δ − δc

∣

∣

∣

∣

1/2
)

, (3.1)

where A and B are fitting parameters. This form represents an essential (i.e. infinite order)

phase transition (for conventional lattice actions, the coupling 1/
√
β takes the rôle of δ).

The critical angles δc obtained from these fits (which have a good ratio χ2/d.o.f.) are listed

in table 1 for the topological action without vortex suppression, λ = 0, and with explicit

vortex suppression, λ = 2 and λ = 4.

This suggests a phase diagram as sketched in figure 1. We expect the endpoint of the

transition line to be located at (λ, δ) = (+∞, π), see section 4.

3.2 Continuum limit in the massive phase

In order to investigate the continuum limit in the massive phase, we consider the step-2

SSF [5]

Σ(2, u, a/L) = 4Lm(2L) . (3.2)
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 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

Σ(
2

,u
, 

a/
L

)

1/ξ

continuum limit
standard action

λ=0
λ=2
λ=4

Figure 2. Cut-off effects of the SSF Σ(2, u, a/L) at u = 3.0038 for the standard action (data from

ref. [18]), for the topological action without vortex suppression, λ = 0, and with explicit vortex

suppression, for λ = 2 and λ = 4. All curves are fits to eq. (3.3), where we insert the continuum

limit σ(2, u) = 4.3895.

Here u = 2Lm(L), and m(L) is the size-dependent mass gap. Based on the exact S-matrix

of the sine-Gordon Model, the SSF has been worked out analytically in the continuum

limit σ(2, u) = Σ(2, u, a/L → 0) [29–31]. Using the standard action, this analytic result

has been confirmed in numerical simulations [18]. The cut-off effects of the lattice SSF

were predicted to have the following form

Σ(2, u, a/L) = σ(2, u) +
c

[log(ξ/a) + U ]2
+O

(

1

log4(ξ/a)

)

, (3.3)

where ξ = 1/m(L → ∞) is the correlation length in infinite volume.

Figure 2 illustrates the cut-off effects of the SSF at u = 3.0038 for the standard

action, and for the constraint topological action with the vortex suppression parameter

λ = 0, 2 or 4. The curves are fits to eq. (3.3), where we have inserted the analytically

predicted continuum SSF σ(2, u) of ref. [18]. The continuum limit of the step-2 SSF at

u = 3.0038 amounts to σ(2, u) = 4.3895. In table 2 we list our results, obtained by fitting

the parameters σ(2, u), c and U to the lattice data. The data for the standard action

are taken from ref. [18], where only σ(2, u) and c were fitted, since U = 1.3 is known

from perturbation theory. These results indicate that all different actions converge to this

continuum limit.
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σ(2, u) c U χ2/d.o.f

standard action 4.40(2) 2.4(6) 1.3 0.84

λ = 0 4.421(28) −4.0(3.6) 4.1(2.2) 0.15

λ = 2 4.427(23) −5.26(45) −0.31(8) 2.51

λ = 4 4.71(25) −21(9) −0.87(60) 0.23

Table 2. Fitting results for the cut-off effects of the SSF in eq. (3.3) for various lattice actions.

The data for the standard action are taken from ref. [18]; they were obtained by fitting σ(2, u) and

c, whereas U is known perturbatively. For the topological actions at λ = 0, 2 and 4, we fitted

σ(2, u), c and U .

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

Σ(
2

,u
, 

a/
L

)

(U + log(ξ/a))
-2

continuum limit
standard action

λ=0
λ=2
λ=4

Figure 3. Cut-off effects of the step-2 SSF Σ(2, u, a/L) at u = 3.0038 for the standard action

(data from ref. [18]), as well as for the topological action without vortex suppression, λ = 0, and

with explicit vortex suppression, for λ = 2 and λ = 4. The curves are fits to eq. (3.3), where we

have inserted the continuum limit σ(2, u) = 4.3895. The values on the horizontal axis depend on

the fitting parameter U , which is different for each action. Note that the plots in figures 2 and 3

contain (mostly invisible) error bars in both directions.

Following ref. [18], in figure 3 we plot the same data as a function of (U + log(ξ/a))−2,

where ξ is still the infinite volume correlation length, and U is a fitting parameter that

differs for each action. In this plot we have again constrained the continuum limit of the

SSF σ(2, u) to its analytic prediction.

The parameter c is supposed to be universal [19] and to have value c = 2.618 at
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u = 3.0038. The numerical data for the topological actions are not consistent with that

expectation; the fits even yield large, negative and λ-dependent values for c. However,

this behaviour is similar to the one observed for topological actions in the 2d O(3) Model:

the standard action approaches the continuum limit from above whereas the topological

actions approach it from below. This puzzling result opens an important issue that calls

for an explanation. It could be that, although the lattice artifacts are well described by the

function of eq. (3.3), the parameter c is not universal since it depends on the specific lattice

action. Using the standard action, a small discrepancy from the expected value for c has

also been observed [18] but it has been attributed to sub-leading cut-off effects. A more

conservative approach would suggest that the numerical results obtained using the topolog-

ical actions are affected by very large sub-leading lattice artifacts and the expected value

of the parameter c can be carefully measured only when the correlation length is astronom-

ically large. The reason for this very different and unusual behaviour is not clear: it could

be due to the fact that the topological actions lack a perturbative vacuum. This puzzling

result represents an open problem that needs an accurate investigation to be clarified.

3.3 Critical behaviour in the massless phase

In contrast to second order phase transitions, only two critical exponents — commonly

denoted as η and δ — are defined in the conventional way also for the essential phase

transition, which occurs in this model, cf. eq. (3.1). Based on Renormalisation Group

techniques, their values have been predicted to coincide with the corresponding exponents

in the 2d Ising Model [32]. Here we focus on the exponent η, and its property to characterise

the divergence of the magnetic susceptibility χ.

The corresponding relation and the predicted critical value of η are

χ =
1

V

〈

(

∑

x

~ex

)2

〉

∝
{

ξ2−η massive phase

L2−η massless phase
, ηc = 1/4 , (3.4)

in a square volume V = L2. We now focus on the massless phase and insert the measured

values of χ into the formula

η = 2− ln(χ/C)

lnL
, (3.5)

where C is the proportionality constant of eq. (3.4). At least within the massless phase,

i.e. for δ < δc, it should be possible to find a constant C, which makes the results for η in

different volumes coincide to a good approximation [36].

Figure 4 shows our results for λ = 0, 2, 4, and L = 128, . . . , 1024, with the optimal

choice for the constant C at each λ. We see that the qualitative prediction of a coincidence

of the η values in different volumes, up to some limiting angle δlimit, is well confirmed. One

is now tempted to interpret δlimit as an estimate for δc [36]. Table 3 shows that these values

match the expected magnitude, but they are significantly higher than the precise results

for δc, given in table 1. Hence the coincidence of η persists even in some (narrow) region

of the massive phase (although eq. (3.5) does not apply anymore).
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λ 0 2 4

δlimit 1.825(5) 1.93(1) 2.17(5)

η(δc) based on eq. (3.5) 0.255(2) 0.278(2) 0.301(1)

Table 3. Results for the limiting angle δlimit for the coincidence of the η values in different

volumes, and for the critical exponent ηc obtained from relation (3.5).

If we näıvely extract the η-values at δc, we obtain results for ηc, which are again in

the predicted magnitude, but without a satisfactory precision, see table 3. The ηc values

determined by this simple method tend to be too large, in particular for sizable λ values.

Similar problems are notorious in numerical studies of the standard action, the Villain

action, the Step Model etc.2 The situation improves as one includes a logarithmic correction

to the finite size behaviour of χ, which has also been elaborated analytically in ref. [32],3

χ ∝ L2−η(lnL)−2r , rc = −1/16 . (3.6)

Much of the literature that dealt with conventional lattice actions focused on attempts to

evaluate the critical exponent rc [24–26, 37–43]. Its numerical measurement is extremely

difficult, as expected for a small exponent of a logarithmic term. An overview of the results

on this long-standing issue is given in ref. [44]. Only in 2005 Hasenbusch reported a value

which seems to confirm the prediction decently, rc = −0.056(7) [45]. However, in his study

of the standard action on lattices up to size L = 2048, Hasenbusch had to fix ηc = 1/4 as

an input, and to introduce yet another free parameter by extending the logarithmic factor

to (const.+ lnL)−2r.

We first try to estimate the exponents ηc and rc by fitting our data on lattice sizes

L = 128, . . . , 1024 measured at δ angles slightly above and below δc. The fits have a good

quality, and the results are given in table 4. The theoretical value ηc = 1/4 is reproduced

well at λ = 0 and approximately at λ = 2. However, at λ = 4 we obtain an ηc value

which is clearly too large. Nevertheless this is compatible with the scenario that the

topological actions considered here are in the BKT universality class, and that the finite

size effects are amplified for increasing λ — in qualitative agreement with the observations

of subsection 3.2. Since a sizable λ value suppresses the vortex density, it takes a very

large volume to provide a sufficient number of vortices to drive an (approximate) BKT

transition — in line with the picture of ref. [16].

Regarding the logarithmic term in eq. (3.6), we do obtain small exponents of |rc| =
O(0.1) or below, but within this magnitude we cannot reproduce the exact prediction.

Motivated by the strong finite size effects in this model, refs. [24–26, 39] worked out

even a sub-leading logarithmic correction, which extends ansatz (3.6) to

χ = L2−η(lnL)−2r
(

a1 + a2
ln(lnL)

lnL

)

, (3.7)

2A direct consideration of the correlation function 〈~ex ·~ex+r〉 ∝ r
−η is plagued with even worse practical

problems.
3On the other hand, this logarithmic correction term hardly affects the plots in figure 4.
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Figure 4. The dependence of the exponent η, according to eq. (3.5), on the constraint angle δ at

λ = 0, 2 and 4.

where a1 and a2 are constants. We add fitting results to this extended formula, based on

our data measured at δc with fixed exponents ηc = 1/4, rc = −1/16, such that only a1, a2
are free parameters. In figure 5 we show the result of the fits and in table 5 we report
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λ δ η r χ2/d.o.f

0
1.76 0.2563(66) −0.016(19) 0.022

1.78 0.2446(68) −0.034(19) 0.05

2
1.86 0.255(26) 0.060(74) 0.47

1.87 0.2558(15) 0.070(14) 0.11

4
1.92 0.366(11) −0.194(32) 0.087

1.94 0.317(25) −0.0470(66) 0.012

Table 4. Results for the determination of the exponents η and r in eq. (3.6), by fitting our data

at L = 128, 256, 512 and 1024, in the vicinity of the critical points.

the estimated values for the parameters a1 and a2. The ratio a2/a1 is a universal quantity

and it has been recently computed to be 1/16 [46]. Unfortunately, the accuracy of the

numerical data does not allow us to check that prediction and we also expect the higher

order corrections to the ansatz (3.7) to be important. In fact, the measurements show that

the ratio a2/a1 increases rapidly with λ and the supposedly sub-leading term in eq. (3.7)

dominates more and more, which is consistent with the previous observation that finite size

effects are very strong at λ = 4. Nevertheless, the numerical results provide satisfactory

evidence that the critical behaviour is compatible with the BKT characteristics so that

the topological actions do belong to the standard universality class, in agreement with

subsection 3.2. A check of the features of the BKT universality class at next-to-leading

order would require a dedicated investigation that is beyond the scope of the present study.

Finally, we assume the BKT behaviour to persist for all points on the transition line with

0 ≤ λ<∼ 4. The limit λ → +∞ will be addressed in the next section.

4 Continuum limit of the pure vortex suppression action

We now investigate the vortex suppression action without an angle constraint (which cor-

responds to δ = π). Thus we consider the upper axis in the phase diagram of figure 1.

We have determined the infinite volume correlation length ξ as a function of the vortex

suppression parameter λ on lattice sizes up to V = 2000× 2000. The results can be fitted

well to the function

ξ(λ) = a exp (bλ) , (4.1)

where a and b are fitting parameters, see figure 6. This suggests that the critical value is at

λ = +∞, as we anticipated in figure 1. This limit can be viewed as a plaquette constraint

action.

Studying the transition by measuring the step-2 SSF

σ(2, u) = lim
a→0

Σ(2, u, a/L) (4.2)

(cf. subsection 3.2) confronts us with an additional limitation. The numerical results show

that for this action the finite size effects constrain the finite volume correlation length to

ξ(L) . 0.4L. This restricts the range of the variable u = 2m(L)L = 2L/ξ(L) to a regime

u & 5.0.
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Lmin a1 a2 χ2/d.o.f.

λ = 0, δ = 1.77521

32 0.393(11) 1.056(33) 9.422

64 0.4175(45) 0.981(13) 0.801

128 0.4338(28) 0.9301(89) 0.084

256 0.4465(45) 0.888(15) 0.028

512 0.4753(69) 0.789(24) 0.004

λ = 2, δ = 1.86648

32 0.117(14) 1.621(41) 13.83

64 0.1550(83) 1.503(25) 2.02

128 0.1829(16) 1.416(5) 0.022

256 0.1766(26) 1.437(8) 0.009

512 0.1618(46) 1.488(16) 0.002

λ = 4, δ = 1.9361

32 −0.073(18) 1.999(52) 25.45

64 −0.0232(68) 1.847(20) 1.548

128 −0.0005(36) 1.774(12) 0.131

256 0.0128(53) 1.730(18) 0.050

512 0.0406(98) 1.634(33) 0.014

Table 5. Fitting results for the data at the critical angle δc, in the range Lmin to Lmax = 4096.

We fit the magnetic susceptibility χ to eq. (3.7), with the predicted critical exponents ηc = 1/4,

rc = −1/16. For Lmin ≥ 128 the fits work very well, which confirms the compatibility of our data

with the critical behaviour of the BKT universality class of the 2d XY Model.

A restriction of this kind is natural in models with discrete energy eigenvalues ∝ 1/L

in a UV conformal limit [47].4 Also for the standard action in the 2d XY Model there is

an upper bound
ξ(L)

L
≤ 4

π
+O

(

1

logL

)

(4.3)

in the massive phase, see e.g. ref. [45] and references therein. Qualitatively, such an upper

bound can be understood using inequalities for ferromagnetic systems. This is briefly

discussed in appendix B.

We can still measure the step-2 SSF for u sufficiently large, for instance u = 2m(L)L =

6, and try to fit the cut-off behaviour with the function from eq. (3.3), which describes the

continuum limit at a BKT point. This fit, shown in figure 7, works quite well. However,

its continuum extrapolation σ(2, u)fit = 9.474(12), given in table 6, is rather far from the

analytic BKT value of σ(2, u) = 11.5314 [47] (which is close to 2u = 12). This suggests that

the endpoint of the transition line does not represent a BKT phase transition. Indeed, this

point is specific in the sense that one cannot cross it (on the axis δ = π). Moreover, this

observation is fully consistent with the established pictures of vortices driving the BKT

transition [16], so it cannot occur in the absence of vortices.

In the 3d XY Model, the analogous point (λ = +∞, with no other restriction) has

been studied in ref. [48]. Also in that case the observation of the transverse susceptibility

∝ L0.8 did not clarify the properties of this vortex-free case.

4This is the ordinary case; asymptotically free theories (in the usual sense) are the exception, where any

u ∈ R+ is possible.

– 12 –



J
H
E
P
0
3
(
2
0
1
3
)
1
4
1

 1000

 10000

 100000

 1e+06

 100  1000

χ

L

λ = 0

 1000

 10000

 100000

 1e+06

 100  1000

χ

L

λ = 2

 1000

 10000

 100000

 1e+06

 100  1000

χ

L

λ = 4

Figure 5. Numerical results for the susceptibility χ, measured at the critical points for λ = 0, 2

and 4, on lattices of size L = 128, . . . , 4096. The fits refer to eq. (3.7) with fixed exponents ηc = 1/4,

rc = −1/16, and a1, a2 as free parameters. Here and in table 5 we see that these fits are accurate

in all three cases, confirming the compatibility of our data with a BKT phase transition.
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Figure 6. Correlation length ξ on large lattices as a function of the vortex suppression parameter

λ. The fit to the exponential function (4.1) (with a = 0.492, b = 0.729, χ2/d.o.f. = 0.290) indicates

an essential phase transition at λ = +∞.

χ2/d.o.f. c U σ(2, u)fit σ(2, u)

0.72 −0.11(10) 0.44(68) 9.474(12) 11.5314

Table 6. Fitting result for the cut-off effects of the SSF Σ(2, u, a/L) at u = 6, according to

eq. (3.3), for the pure vortex suppression action. The fitted continuum extrapolation σ(2, u)fit does

not agree with the BKT value σ(2, u).

5 Concluding discussion

In this paper, we have investigated topological lattice actions for the 2d XY Model. At the

classical level, these actions do not define a proper field theory, and perturbation theory is

not applicable.

In order to efficiently simulate topological actions, we have employed variants of the

Wolff cluster algorithm. Its application to the constraint action is straightforward, and for

the vortex suppression action a generalisation to 4-spin interactions has been developed

and applied successfully, see appendix A.

Despite its classical deficiencies, just as in the 2d O(3) Model, we found that — up to

moderate vortex suppression — topological actions yield the correct quantum continuum

limit, which is here associated with the BKT phase transition. This includes in particular

topological actions where vortices do not cost any energy. This observation is remarkable in

light of attempts to derive the critical line from the energy requirement for isolated vortices.
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Figure 7. Numerical data for the step-2 SSF Σ(2, u, a/L) at u = 6, for the pure vortex suppression

action, fitted to eq. (3.3). The parameters are given in table 6. The continuum extrapolation

σ(2, u)fit does not agree with the BKT value.

Specifically, in the massive phase, just as for the standard lattice action, the continuum

limit is related to the sine-Gordon Model. In the massless phase we have verified the

usual BKT behaviour of the critical exponent ηc with the topological actions. An open

problem concerns the cut-off effects of the SSF measured using topological lattice actions.

The lattice artifacts are supposed to have some universal features, but the Monte Carlo

simulations and the fits of the numerical data show a large discrepancy from the expected

behaviour. The reason for this disagreement is not clear. The cut-off effects that are

thought to be universal could be not so or the observed discrepancy could be due to larger

higher order corrections to the leading behaviour.

A different behaviour is shown by the endpoint of this critical line, which seems to

be located at (λ, δ) = (+∞, π). The extrapolation to this point — which represents a

plaquette constraint action — does not coincide with the BKT behaviour. This agrees

with the established picture that vortices (which are completely eliminated at this point)

are required to arrange for a BKT transition [16].

For comparison, we mention the case of the so-called Extended XY Model, with the

lattice action [49]

S[ϕ] = β
∑

〈xy〉

[

1− cos2q((ϕx − ϕy)/2)
]

, (5.1)

in the notation of eq. (2.1), and with q > 0. For q = 1 it is equivalent to the standard

– 15 –



J
H
E
P
0
3
(
2
0
1
3
)
1
4
1

action, but increasing q leads to a more and more narrow potential well for ϕx − ϕy, with

width ≈ π/
√
q. The motivation was also an explicit vortex suppression; in the quadratic

approximation to the potential they cost energy ≈ βq/2.

Due to the gradual suppression of the vortices for increasing exponents (even without

fully excluding them), ref. [49] predicted the phase transition to turn into first order above

some value of q, so it would match the behaviour which is observed experimentally for

melting films of noble gases adsorbed on graphite.

This Extended XY Model has been investigated in numerous papers. The essential

BKT phase transition is observed at low values of q, and for some time the conjectured first

order transition at large q was controversial. However, it is now well confirmed numerically

at q >∼ 8 [50, 51]. Moreover, an analytical proof for this conjecture was given in ref. [52].

Ref. [53] added a vortex eliminating term with λ → +∞ also in this case. No phase

transition was observed at finite β, hence the authors concluded that not only the BKT

transition, but also the first order transition at large q is driven by vortices.

In contrast, for the Step Model no non-BKT phase transition has ever been found,

and for the topological lattice actions we do not observe any finite order transition in the

δ-λ phase diagram either. However, a change to first order along the transition line —

at some large value of λ — is conceivable in our case as well (that would not contradict

universality). If this occurs as in the Extended XY Model, then it should change again at

the endpoint, according to ref. [53].

In any case, the characteristics of the transition at the vortex-free endpoint is an open

question, to be explored in the future.
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A Cluster algorithm for the vortex suppression action

The algorithm for the vortex suppression angle constraint action is based on the Wolff

cluster algorithm [2, 3]. In the single cluster variant, each cluster update begins with the

selection of an initial spin as a seed for cluster growth, and with the choice of a reflection

line (a reflection hyper-plane in general O(N) Models), which is perpendicular to the

randomly selected unit vector ~r. Starting with this seed, some spins ~ex are combined to a

cluster, which are then collectively reflected — or flipped — to the new spin orientations

~ex
′ = ~ex − 2(~r · ~ex)~r. Spins may be put in the same cluster due to the nearest-neighbour

angle constraint, or due to the vortex suppression plaquette interaction. Two nearest-
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neighbour spins ~ex and ~ey are always put in the same cluster if the flip of ~ex to ~ex
′ (without

flipping ~ey) would lead to a relative angle between ~ex
′ and ~ey beyond the constraint angle δ.

The cluster rules implied by the vortex suppression four-spin plaquette action are

more complicated. Let us consider the spins ~exi
at the four corners x1, x2, x3 and x4

of a plaquette �, as well as their reflection partners ~exi

′. Depending on whether a spin

is flipped or not, there are 16 possible spin configurations on the given plaquette. Each

one has a Boltzmann weight exp(−λ|v�|), depending on the vortex number |v�| of the

corresponding spin configuration. Since the reflection of all four spins on a plaquette �

just changes the sign of the vortex charge v�, each of the 16 spin configurations has a total

reflection partner with the same Boltzmann weight. We can thus limit the discussion to 8

pairs of configurations. We distinguish two qualitatively different cases:

1. In this simple case the vortex number is always zero, irrespective of whether any spin

is flipped or not. Hence all 16 spin configurations have the same Boltzmann weight

1. Based on the vortex suppression action, there is no need to put any of these four

spins in a common cluster.

2. The second case can be characterised as follows: when all spins are flipped to the

same side of the reflection line, the vortex number is necessarily zero. We denote

this spin configuration as the “reference configuration”. When each of the spins is

individually flipped (without flipping any other spins), there are two spins whose flip

generates a vortex (or an anti-vortex). We denote these two as the “active spins”.

It turns out that the simultaneous flip of two spins (starting out of the reference

configuration) generates a vortex only if exactly one of the two spins is active. If

both or none of the two flipped spins are active, no vortex is generated. If three or

four spins are flipped simultaneously, one just generates the total reflection partners

of the previously discussed cases.

This gives rise to the following cluster formation rule. If the two active spins are on

the same side of the reflection line, they are put into the same cluster with prob-

ability 1 − exp(−λ), otherwise they remain independent. The other spins are not

affected by the vortex suppression action on this plaquette and remain independent.

Still, preliminarily independent spins may finally become members of the cluster due

to the angle constraint, or due to the vortex suppression action on a neighbouring

plaquette.5 For the efficiency of the algorithm it is essential that spins are put in the

same cluster only if they are on the same side of the reflection line. This prevents

the clusters from becoming unphysically large (their linear size should be of O(ξ)).

This algorithm obeys detailed balance. In particular, when a plaquette carries a

vortex (and thus has the Boltzmann weight exp(−λ|v�|) = exp(−λ)), the two active

spins are not put in the same cluster (with probability w = 1), because they are then

5It should be noted that two active spins that are tied together in the same cluster may actually end

up not to belong to the single cluster that is currently being built. In any case, one must keep track of the

plaquettes on which a decision based on |v�| has already been taken, and one must stick to that decision

when this plaquette is visited again, in the process of identifying the cluster members.
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necessarily on two different sides of the reflection line. On the other hand, if the two

active spins are on the same side of the reflection line, v′� = 0 and the Boltzmann

weight is exp(−λ|v′�|) = 1. In that case, the two active spins are put in the same

cluster with probability 1 − w′ = 1 − exp(−λ), while they remain independent with

probability w′ = exp(−λ). Only in the latter case, the two active spins may not

belong to the same cluster, and are thus flipped independently, which again results

in the creation of a vortex. Hence the detailed balance relation connecting the two

configurations reads

exp(−λ|v�|)w = exp(−λ) = exp(−λ|v′�|)w′ . (A.1)

As we have explicitly verified in an extensive computer search, other cases do not exist.

Once spins have been put together in the same cluster (due to the nearest-neighbour angle

constraint action, and/or due to the vortex suppression plaquette interaction), all spins

~ex in the cluster are simultaneously flipped to ~ex
′. Then a new random site is selected

as a seed for cluster growth, along with a new unit vector ~r, and the entire procedure is

repeated.

As an alternative to this single-cluster algorithm, we also employed a multi-cluster

algorithm, which constructs all clusters in a spin configuration and flips each of them with

a probability of 1/2. Then the subtleties explained in footnote 5 do not occur.

An additional virtue of cluster algorithms is the applicability of improved estimators.

For the variant that updates the vortex suppression angle constraint action, the improved

estimators — for example for the correlation function and the susceptibility — work exactly

as in the original Wolff algorithm [2, 3].

B On inequalities for ferromagnetic systems

Consider the standard action (2.1) on a long strip with N = L/a sites on a time-slice.

(We take below a = 1 for simplicity.) Making the ferromagnetic coupling anisotropic,

β → (βx, βt), we increase βx → ∞ while keeping βt = β constant. This way the 2d system

turns into a 1d chain with β′ = Nβ. By increasing a β-parameter in a ferromagnetic system

one might expect that the correlation length could only grow. This implies a lower bound

for the correlation length in the original model (with isotropic coupling)

ξ(β;N) ≤ ξ1(Nβ) = 2βN +O(1) , (B.1)

where ξ1(β
′) is the correlation length for the 1d chain.

According to Ginibre’s Theorem [54] this intuitive argument indeed holds for the stan-

dard action, and for a large class of further actions specified in ref. [54].

Surprisingly, for slightly more complicated actions this inequality does not hold. Con-

sider the nearest neighbour action with the action density

s(~e,~e ′) = β(1− ~e · ~e ′) + γ(1− ~e · ~e ′)2 + sconstr(~e · ~e ′ − cos δ) , (B.2)
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βx βt γx γt ξ

0.0 0.0 1.0 1.0 8.8316

0.0 0.0 1.1 1.0 8.7980

1.0 1.0 1.0 1.0 13.9148

1.0 1.0 1.1 1.0 13.9008

1.1 1.0 1.0 1.0 13.8877

1.0 1.0 0.0 0.0 6.4263

1.1 1.0 0.0 0.0 6.4553

Table 7. The change of the correlation length by increasing the spatial parameters βx or γx on a

strip with N = 2 sites. The last pair of data refers to the standard action where Ginibre’s Theorem

applies, so that the intuitive expectation holds.

where the last term describes the constraint ~e ·~e ′ > cos δ. One can make the system “more

ferromagnetic” by increasing βx or γx, or by decreasing δx. Taking again the 1d limit (say,

by βx → ∞) one would näıvely expect

ξ(β, γ, δ;N) ≤ ξ1(Nβ,Nγ, δ) . (B.3)

This, however, cannot be true, since one has ξ1(0, Nγ, π) ∝ √
Nγ for Nγ → ∞ and

ξ1(0, 0, δ) ∝ 1/δ2 for δ → 0, while the left-hand-side increases ∝ N in the massless phase.

(Of course, the action (B.2) does not satisfy the conditions of Ginibre’s Theorem.)

In table 7 we illustrate this behaviour for the mixed action (without the constraint,

δ = π), where the inequality is violated, and for the standard action (γ = 0, δ = π) where

it holds.
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