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Abstract

Background: fMRI Resting State Networks (RSNs) have gained importance in the present fMRI literature. Although their
functional role is unquestioned and their physiological origin is nowadays widely accepted, little is known about their
relationship to neuronal activity. The combined recording of EEG and fMRI allows the temporal correlation between
fluctuations of the RSNs and the dynamics of EEG spectral amplitudes. So far, only relationships between several EEG
frequency bands and some RSNs could be demonstrated, but no study accounted for the spatial distribution of frequency
domain EEG.

Methodology/Principal Findings: In the present study we report on the topographic association of EEG spectral
fluctuations and RSN dynamics using EEG covariance mapping. All RSNs displayed significant covariance maps across a
broad EEG frequency range. Cluster analysis of the found covariance maps revealed the common standard EEG frequency
bands. We found significant differences between covariance maps of the different RSNs and these differences depended on
the frequency band.

Conclusions/Significance: Our data supports the physiological and neuronal origin of the RSNs and substantiates the
assumption that the standard EEG frequency bands and their topographies can be seen as electrophysiological signatures
of underlying distributed neuronal networks.

Citation: Jann K, Kottlow M, Dierks T, Boesch C, Koenig T (2010) Topographic Electrophysiological Signatures of fMRI Resting State Networks. PLoS ONE 5(9):
e12945. doi:10.1371/journal.pone.0012945

Editor: Björn Brembs, Freie Universitaet Berlin, Germany

Received March 26, 2010; Accepted August 23, 2010; Published September 22, 2010

Copyright: � 2010 Jann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was financed by the Swiss National Science Foundation grant 320000-108321/1 (http://www.snf.ch). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jann@puk.unibe.ch

Introduction

Most brain activity is covert and does not lead to any directly

observable behavior. There is however abundant evidence

showing that mental activity under no-task conditions is well

structured and has defined population norms that vary systemat-

ically with development [1,2]. Deviations from those norms are

observed in many clinically relevant conditions including neuro-

logical and psychiatric disorders [3], varying states of conscious-

ness [4], sleep [5] or under neurotropic medication [6]. Paralleling

the EEG literature, in fMRI and PET so called resting state

networks (RSNs) have been established recently [7,8,9]. These

RSNs are defined by synchronized spontaneous low-frequency

oscillations between the areas composing the specific RSN.

Consistent RSNs have been described for visual, motor, auditory

and attention networks [10,11]. These RSNs are sensitive to task

execution [12] and different neuropsychiatric diseases [13].

EEG and fMRI have a common origin [14], and both show a

spontaneous structuring, but represent very different aspects of brain

activity. Their relationship can thus yield insights not available from

one modality alone. Interestingly, when investigating BOLD

correlates of EEG rhythms [15,16] these correlates resembled the

RSNs, suggesting that the different RSNs assemble through

synchronization of electric activity as measured by EEG

[17,18,19]. Namely, BOLD correlates of electrical activity in the

alpha (8–12Hz) and beta (17–23Hz) frequency band displayed

striking similarity with two RSNs described in other publications

[9,20], suggesting that the RSNs may be organized by neuronal

activity at specific frequencies. This hypothesis was recently extended

[19] by directly correlating the temporal dynamics of EEG spectral

fluctuations across all frequency bands with the temporal dynamics

of different RSNs. Several RSNs had specific and unique correlation

patterns across frequency bands, indicating a complex relationship

between RSNs and EEG rhythms. In a recent study we could

demonstrate that a further subdivision of the standard EEG alpha

frequency band into a lower (8.5–10.5Hz) and an upper (10.5–

12.5Hz) alpha band showed correlations in different RSNs [17].

However, still little is known about the scalp distribution of the

EEG spectral correlates of fMRI RSNs. This is surprising, since

the spatial configuration of scalp fields and spectral power is an

important and sensitive marker for changes of brain functional

state, on a local and global level. Deviations from the resting state

during task execution or alterations caused by disease are often

local, i.e at delimited scalp locations. Furthermore, within one

EEG frequency band, several functionally different EEG rhythms

may coexist that can be distinguished by their topography, and

changes of the distribution of EEG rhythms are well-established

markers for changes of brain state.
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Therefore, the primary purpose of the current study was to

explore the topographic distribution of the EEG spectral power

fluctuations in association to different RSNs. Introducing the

spatial dimension of EEG spectral fluctuations with regard to RSN

dynamics might provide an important link between fMRI RSN

literature and EEG literature, namely because for many of the

cognitive domains that are associated with specific RSNs (e.g.

attention, vision, motor system) it has also been shown that

changes of activation induce consistent, and localized changes in

EEG spectra. Furthermore, we expected that information about

the topographic relation of EEG spectral fluctuations might help

to partly resolve the issue of inconsistent and even contradicting

results in the existing EEG-fMRI RSN literature (for an overview

see [21]). While in previous studies the BOLD signal fluctuations

in each voxel or of a whole RSN were explained by a single EEG

feature (e.g. arbitrary single or few channels [15,16,22] or global

features such as global field power [19] or global field

synchronization [17]), we provide the relation of the variance of

EEG spectral power at each electrode to the dynamics of different

RSN using Covariance Mapping [23]. This yields the topographic

distribution of the RSN-EEG frequency relationship. It is

important to note here that despite the well-known difficulties of

the EEG inverse problem that limits the 3D resolution of the data,

EEG scalp distributions are very sensitive for even small changes

in the arrangement of the generators and may therefore be more

suitable to analyze RSNs than global or single electrode measures

of EEG spectral fluctuations. In order to avoid possible problems

with multiple testing when analyzing high-density EEG data, we

consistently relied on global randomization statistics that do not

inflate the alpha-error.

Results

ICA and group statistics of RSNs
From the thirty independent components (ICs) computed in

each subject we selected those ten ICs whose maps were most

similar to previously described RSNs [10,11,24] and were not

related to motion artifacts or blood cycling [25]. However, we

were not able to identify ICs for all targeted RSNs in all subjects,

but a targeted RSN had a matching individual IC in 18.461.6

subjects in the average. Thus, in the computation of the group

components (GCs) only individuals with an assigned IC for a given

RSN were taken into account (Table 1 last column). The similarity

means laid above 0.30, matching the values typically reported for

the clustering of ICs [26]. The ten GC representing the RSNs are

displayed in Figure 1 (left row).

Definition of Frequency Bands
To assemble frequencies with similar topographies we performed

a K-means clustering of the t-maps. Most interestingly, the K-means

clustering sorted the topographies approximately into the well

known standard EEG frequency bands: 1.0Hz,delta#3.5Hz/

3.5Hz,theta1#6.25Hz/6.25Hz,theta2#8.2Hz/8.2Hz,alpha1#

10.5Hz/10.5Hz,alpha2#14.0Hz/14.0Hz,beta1#18.75Hz/18.75Hz

,beta2#21.88Hz/21.88Hz,beta3#30.0Hz.

Covariance Mapping
The Covariance Mapping for the ten selected RSNs revealed

specific significant spatial distributions of the spectral scalp field

across frequencies (Figure 1).

The randomization test for consistency of the covariance maps

across subjects was significant (p,0.05) in 78 out of the total of 80

maps, the two non-significant covariance maps where for theta2 in

RSN 5, and for beta3 in RSN 4.

The overall RSN x frequency band TANOVA yielded a

significant interaction (p,0.001), indicating that there were

significant differences between covariance maps, and that these

differences depended on the frequency band. The TANOVAs

computed separately for each frequency band were also all

significant (p,0.001), indicating that there were consistent

differences among the covariance maps of the different RSNs in

each frequency band.

T-mapping of the covariance maps indicated that the strongest

effects were in the alpha and beta band. Since we normalized the

spectral data, covariance maps represent relative spectral power

increases or decreases depending on the RSN activity. Positive

values indicate a power increase that went along with increased

RSN activity, negative values represent a power decrease when the

network became active.

N RSN 1: Default Mode Network (DMN). DMN activity

was found to be associated with increased alpha and beta1

band activity. The covariance and t-maps displayed very

similar topographies: Alpha1 increased over central areas with

a weak extension to frontal electrodes. Alpha2 showed an

increase at posterior occipital electrodes. Beta1 increase was

found to be most significant over parietal electrodes. Delta and

theta in contrast showed a decrease at fronto-central and

parieto-occipital electrodes respectively.

N RSN 2: Frontoparietal control network (FPCN). The

covariance maps exhibited a strong increase over occipital

electrodes bilaterally throughout alpha1, alpha2, beta1 and

beta2 while the frontal electrodes especially in alpha2 showed a

decrease. Theta on the other hand decreased at central

occipital electrodes.

N RSN 3: Frontal Attention Network (FAN). The maps

found for the FAN were very similar to the maps of the FPCN.

Again, the frequencies from alpha1 to beta2 exhibited a

topographic distribution indicating anterior-decreases and

posterior-increases.

N RSN 4/5: left and right Working Memory Network (l-
WMN/r-WMN). In left and right WMN - the only two

lateralized RSNs - a lateralization could also be observed in the

topographies. For the l-WMN the left fronto-temporal

electrodes showed decreased alpha and beta1 power while

the contralateral occipital and parietal electrodes showed

increased power in these frequency bands. For the r-WMN it

was vice versa although less pronounced.

N RSN 6: Somato-Motor Network (SMN). For this network

the covariance and t-maps had topographies with the strongest

increases at central electrodes in the delta band whilst the

strongest decreases could be observed at centro-parietal

electrodes in alpha1 and alpha2. Beta1 and beta2 also showed

decreases over centro-parietal areas but was more extended

into frontal areas. Beta3 displayed a decrease at central

electrodes. For alpha and beta the central decreases went along

with surrounding increases.

N RSN 7: Auditory Cortex Network (ACN). Similar as for

RSN 6 (SMN), the ACN was associated with decreases in

alpha1, alpha2, beta1, beta2 and beta3. These spectral power

decreases were again most pronounced over central and

parietal regions but as compared to the SMN slightly more

anterior. The topographies for delta and theta were almost

identical to the ones found for SMN.

N RSN 8/9/10: Occipital Visual Network (OVN) &
Ventral Visual Network (VVN) & Dorsal Visual
Network (DVN). The maps for the OVN and the VVN

Mapping fMRI-RSNs with QEEG
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Table 1. The ten target RSNs, their name1 and the involved brain areas (Center of Gravity/Anatomical and Brodmann area (BA)).

RSN Name 1) x y z Hemisphere Anatomical Area BA mSS
Assigned
ICs

1 Default mode
network (DMN)

19 220 210 Right Parahippocampal Gyrus 35 Hippocampal region 0.56 20/20

222 223 214 Left Parahippocampal Gyrus 35 Hippocampal region

47 261 16 Right Intraparietal sulcus 19 junction of parietal temporal
and occipital lobe

0 252 15 Left Posterior Cingulate 23 Ventral PCC

22 43 11 Left Anterior Cingulate 32 Dorsal ACC

241 269 22 Left Intraparietal sulcus 39 junction of parietal temporal
and occipital lobe

2 Frontoparietal
control network
(FPCN)

43 257 34 Right Angular Gyrus 39 part of the temporo-parieto-
occipital area

0.40 19/20

243 258 38 Left Angular Gyrus 39 part of the temporo-parieto-
occipital area

2 234 28 Right Cingulate Gyrus 23 ventral posterior cingulate

37 29 33 Right Middle Frontal Gyrus 9 DLPFC

57 241 212 Right Middle Temporal Gyrus 20 higher levels of the ventral
stream of visual processing

3 20 50 Right Superior Frontal Gyrus 8 includes FEF

240 35 30 Left Superior Frontal Gyrus 9 close to FEF

3 Frontal attention
network (FAN)

0 20 35 Left Cingulate Gyrus 32 Dorsal ACC 0.30 19/20

42 16 6 Right Insula 13

238 11 7 Left Insula 13

31 37 37 Right Middle Frontal Gyrus 9 DLPFC

230 37 34 Left Middle Frontal Gyrus 9 DLPFC

4 Left working
memory or
language network
(l-WMN)

244 263 25 Left Angular Gyrus 39 Part of Wernicke’s area 0.39 19/20

210 57 6 Left Medial Frontal Gyrus 10 Anterior prefrontal cortex

246 20 20 Left Middle Frontal Gyrus 46 DLPFC

259 230 28 Left Middle Temporal Gyrus 21 Auditory processing and
language

255 1 212 Left Middle Temporal Gyrus 21 Auditory processing and
language

211 41 46 Left Superior Frontal Gyrus 8 Includes FEF

5 Right working
memory or
language
network (r-WMN)

45 33 19 Right Middle Frontal Gyrus 46 DLPFC 0.39 19/20

41 22 49 Right Middle Frontal Gyrus 6

59 240 25 Right Middle Temporal Gyrus 21 Auditory processing and
language

24 50 39 Right Superior Frontal Gyrus 8 includes FEF

55 247 28 Right Supramarginal Gyrus 40 Part of Wernicke’s area

6 Somato-motor
cortex network
(SMN)

36 228 51 Right Postcentral Gyrus 3 Primary somatosensory
cortex

0.43 15/20

249 212 42 Left Precentral Gyrus 4 Primary motor cortex

212 228 52 Left Medial Frontal Gyrus 6 Premotor cortex

7 Auditory cortex
network (ACN)

0, 214, 45, Left Paracentral Lobule 31 Dorsal PCC 0.45 20/20

245, 218, 9, Left Superior Temporal Gyrus 41 Primary auditory cortex

50, 217, 10, Right Transverse Temporal Gyrus 41 Primary auditory cortex

Mapping fMRI-RSNs with QEEG
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had strong spectral power increases in delta and theta band in

the occipital areas while for the DVN the theta increase had its

maximum at central electrodes. More interesting were the

areas that presented a relative power decrease in alpha and

beta bands. For all three visual networks the strongest

decreases could be observed at occipital and parietal

electrodes. More specifically, the OVN presented with strong

negative covariance values with minima at lateral occipital and

parietal electrodes. The minima related to the VVN were at

similar electrode positions although less pronounced and

slightly more lateral. Finally, the VVN displayed a more

anteriorized decrease in the alpha as well as the beta bands.

In summary, the first five RSNs associated with higher cognitive

functions such as self reflection, attention or working memory and

language all displayed a positive association with higher EEG

frequency bands while negatively related to delta and theta. In

contrast, the last five RSNs that delineate the sensory cortices, i.e.

somatomotor, auditory and visual cortices showed positive

associations with the lower EEG frequencies but negative

association with the higher frequencies. Hence, there seems to

be dissociation between sensory networks and networks for higher

cognitive functions.

Discussion

In the present study we investigated the topographic distribution

of EEG spectral power in relation to ten fMRI Resting State

Networks (RSNs). Fife of our ten RSNs have previously been

described in the study of Mantini et al. [19]. DMN, FPCN, OVN,

SMC and ACN. The other five networks (FAN, LWMN, RWMN,

DVN and VVN) were investigated for the first time with combined

EEG-fMRI but are well established in fMRI [10,11,20,27].

However, none of these networks has been investigated

regarding their relation to the spatial distribution of the EEG

spectral fluctuations. Compared to previous studies that investi-

gated absolute power fluctuations at preselected electrodes or their

global field power, there are two important major differences in

our work: first, we focussed on the topographic distributions of the

spectral power fluctuations and second, we investigated relative

fluctuations of spectral power and RSN dynamics. Consequen-

tially, the covariance maps express the relationship between the

relative deviations from the mean activities in either modality with

detailed spatial information. Information about the spatial relation

of EEG spectral fluctuations and RSN dynamics might provide a

missing link between the known functional domains of specific

RSNs (e.g. attention, vision, motor system) and the existing

functional interpretations of localized or global changes in EEG

spectra. Moreover, as evident from our results the EEG-RSN

covariances showed very different and even opposite behavior

depending on electrode location, which might partly explain why

there were divergent results in some of the of former studies.

General observations
The three main findings were (i) that each of the ten investigated

RSNs showed a specific, frequency dependent distribution of EEG

spectral power changes, (ii) that networks for higher cognitive

functions showed an inverted relationship compared to primary

sensory networks and (iii) that the topographic maps across all

RSNs and all frequencies clustered into the standard EEG

frequency bands.

There was a statistically significant consistency of the effects for

almost all RSNs and frequency bands. Hence, although the resting

state is apparently only vaguely defined, it has common norms

across healthy subjects. Indeed, a disruption of these common

processes has been observed in different mental diseases ([13]

fMRI; [3] EEG).

The spatial patterns of the covariance maps in the different

frequency bands and for the different RSNs are in good

accordance with EEG topographies reported in the literature

[28,29]). While the delta and theta band bare their strongest effects

in frontocentral areas, alpha1 had its main effects distributed in

centro-posterior regions and alpha2 predominately in occipital

areas. Finally, beta showed the most significant covariances

anterior to alpha but posterior to delta and theta.

Besides the accordance of the topographies with the known

EEG norms, there is further consistency of our findings with EEG-

fMRI literature. The negative association of the alpha band with

visual areas (OVN, VVN & DVN) was first reported by Goldman

RSN Name 1) x y z Hemisphere Anatomical Area BA mSS
Assigned
ICs

8 Occipital visual
network (OVN)

1 272 23 Right Lingual Gyrus 18 Striate and extrastriate
visual cortex (Primary and
secondary visual cortex)

0.51 19/20

9 Ventral visual
network (VVN)

34 267 210 Right Fusiform Gyrus 19 Associative visual cortex
(visual ‘‘what’’ pathway)

0.38 16/20

236 267 212 Left Fusiform Gyrus 19 Associative visual cortex
(visual ‘‘what’’ pathway)

31 253 39 Right Superior Parietal Lobe 7

10 Dorsal visual
network (DVN)

29 260 41 Right Superior Parietal Lobule 7 Somatosensory association
cortex (ventral visual or
‘‘where’’ pathway)

0.32 18/20

230 258 40 Left Superior Parietal Lobule 7 Somatosensory association
cortex (dorsal visual or
‘‘where’’ pathway)

For each RSN the mean spatial similarity (mSS) of the subjects’ ICs and the Group Component (GC) are reported. The last column indicates the number of subjects that
exhibited the respective RSN in an IC and thus contributed to the GC.
Footnote 1) with respect to the nomenclature of RSNs there exist different conventions. Some authors name the RSNs based on the comprised brain areas/lobes
(e.g. fronto-parietal-temporal network for RSNs 4&5) others refer to the assumed cognitive functions (e.g. working memory or language network for RSNs 4&5).
doi:10.1371/journal.pone.0012945.t001

Table 1. Cont.
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[15] and repeatedly replicated [16,19]. Additionally, alpha (and

beta) was inversely related to the SMN and the ACN [19,30]. A

positive relationship of alpha and beta power fluctuations was

reported for the DMN [17,19] whereas frontal theta correlated

negatively with the DMN [22].

A third consistency was that the t-maps clustered into the

standard EEG frequency bands. Notably, these maps held no

information about the frequency bin from which they were

calculated. This finding suggests that the EEG frequency bands

indeed can be seen as electrophysiological signatures of functional

networks as often argued in the EEG research.

From these findings we can derive several hypotheses: For a

given RSN, the different frequency bands had different covariance

maps implying that the different bands serve separate subfunctions

of the same network. Other combined EEG-fMRI studies support

this hypothesis demonstrating that one RSN associates with several

frequencies [19] and that only specific subregions of a RSN

correlate with spectral fluctuations of one frequency band [17].

Furthermore, within one frequency band, the covariance maps

differed for the different RSNs. This observation implies that

distinct cognitive functions are most likely reflected by EEG

activity that may occur at the same frequency but have different

spatial distributions [31]. This is conceivable under the consider-

ation that neurons respectively neuronal assemblies have a limited

range of oscillatory properties. Hence, the coordination of distinct

cognitive processes is achieved by synchronizing the activity of

distributed brain areas within and across frequencies reflected in

the EEG as spatially distinct rhythms associated to different RSNs.

In sum, our data suggests that EEG frequency bands reflect

topographically organized rhythms related to subfunctions of

known neurocognitive networks. And we provide novel and

detailed spatial knowledge about the relationship between EEG

spectral data and RSN dynamics.

Specific observations
Besides these general observations our analyses also yielded

some specific results. The covariance maps (Figure 1 right) suggest

an inverse relation between slow (delta, theta) and fast (alpha, beta)

EEG rhythms [28,32]. While this anticorrelation of slow and fast

rhythms was present across all RSNs, the polarity of the maps was

inverted between the first five RSNs and the last fives.

Interestingly, the first five RSN (DMN, FPCN, FAN & left and

right WMN) are involved in higher cognitive processes such as self-

referential, attentional or memory processes while the other five

RSNs all represent primary or secondary sensory networks (SMN,

ACN, OVN, VVN & DVN) suggesting that brain resources are

dynamically reallocated between attentional or self-referential

networks and to the sensory processing units [33]. In addition, this

competition for resources seems to be related to slow and fast EEG

rhythms. In the following section we will briefly discuss the

cognitive processes that are associated with the frequency bands

and the respective RSNs.

Higher cognitive networks. In the networks thought to be

involved in attentional, self-referential and memory processes,

alpha and beta power increased with increasing activity. This is in

line with current views that alpha plays a role in attentional and

working memory processes (for a review see [34,35]). While the

lower alpha band was proposed to be involved in attention, the

upper alpha band mainly was associated with working memory.

Furthermore, it was repeatedly demonstrated that increased

activity of the DMN is positively correlated to alpha power

[17,18,19] and that DMN activity is associated to lapses in

attention [36]. In addition, it has been argued that cross-frequency

synchronization between alpha and beta might be important for

the coordination of attention [37,38]. This cross-synchronization

might be a base for the topographic similarities between alpha and

beta covariance maps in the present study.

While the DMN, the FPCN and the FAN displayed

symmetrical covariance maps, the two WMNs presented a

lateralized alpha decrease at anterior-temporal areas over the

networks’ hemispheres, while on the contralateral side an alpha

and a weak theta increase could be observed. This may indicate

the often observed alpha suppression/surround synchronization in

experimental settings with working memory involvement [34,39].

Besides alpha and beta, another commonly described EEG

rhythm, the frontal midline theta, has been observed during

various cognitive tasks that require attention or memory [40], and

it was found to correlate negatively with areas comprised by the

DMN and the WMNs [22,41]. This negative correlation of medial

frontal electrodes in the theta frequency was also evident in the

present study.

Considering these facts our findings are in accordance with the

present theory of EEG spectral correlates of attentional and

memory processes. Our results further support the hypothesis that

alpha and beta activity modulates and focuses attention and

mediates working memory functions. Moreover, the distinct

networks involved in those processes might be coordinated by

regional fluctuations across frequency bands ranging from theta,

through alpha to beta.

Sensory networks. In contrast to the higher cognitive

networks, the sensory networks showed a suppression of alpha

and beta power during increased network activity. This is

concordant with previous publications showing an inverse

relationship between alpha respectively beta power with BOLD

signal fluctuations in sensory networks [15,16,19,30]. But in

addition to those previous studies we provide the topographic

patterns of the spectral power fluctuations and demonstrate a

selective suppression of alpha and beta power over the respective

sensory cortices constituting the distinct sensory RSNs.

Thus, the SMN is expectedly associated with the so called EEG

rolandic alpha [42,43] and beta [44] rhythms, located at central/

parietal electrodes whereas for the visual networks an association

to the posterior/occipital alpha rhythm is presumed. This is clearly

supported by the topography of the alpha-band covariance maps

of the SMN [30] and of the three visual networks (OVN, VVN &

DVN). While the covariance maps of the SMN matched the

distribution of the rolandic alpha (and beta), the three visual

networks had negative covariance values predominately at

occipital and posterior electrodes. The OVN showed a typical

occipital alpha rhythm distribution throughout alpha and beta.

Furthermore, the negative relationship between alpha and OVN

was consistent with the works of Goldman [15], Laufs [16] and

Mantini [19]. The maps found for the VVN were very similar but

slightly more lateral, matching the VVN’s more lateral localiza-

Figure 1. RSNs and their topographic EEG signatures. The left row shows sagittal, coronal and horizontal slices of the ten RSNs (p,0.005;
corrected at a,0.05 / x, y & z coordinates are provided at the left bottom corner of each RSN). On the right side the covariance and t-maps for the 8
frequency bands are displayed. A positive covariance value (red) indicates that with increasing RSN activity there is a relative increase in spectral
power at a given electrode in a given frequency band, while a negative value (blue) indicates a decrease in power when the RSN activity increases,
and vice versa. [Note: MR images are in neuroradiological convention (left is right), EEG maps are not (left is left).]
doi:10.1371/journal.pone.0012945.g001

Mapping fMRI-RSNs with QEEG
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tion. In contrast, the DVN was associated with covariance maps

extending into more anterior electrodes. Hence, although the

topographies across these three RSNs show similarities, there were

also divergences that most likely depict the spatial differences of

the underlying RSNs.

Further support for the view that slight differences in the

covariance maps reflect the distinct spatial organizations of the

RSNs is given by the comparison of the SMN and the ACN. Both

RSNs have a similar spatial distribution of their nodes including a

medial area and two lateral regions. While in the SMN the lateral

regions cover the somatomotor cortices, in the ACN the two

superior temporal gyri are involved. Functionally, these regions

serve completely different purposes but in terms of EEG they

might generate similar electrical fields as evident in the covariance

maps.

Outlook
The methodology presented in our study systematically linked

EEG variations to the dynamics of RSNs. Both in EEG and fMRI,

it was repeatedly demonstrated that deviations from the resting

state configuration either represent on- or offset of cognitive

processes, or indicate pathopysiological alterations of the normal

baseline state. As an example, schizophrenic patients on the one

side present with altered behavioral performance during different

cognitive tasks, especially during working memory tasks. On the

other side, it is well established that schizophrenic patients show

deviant EEG topographies during a task condition but also during

rest [45]. More recently, altered RSNs have been reported for

schizophrenia patients as compared to matched healthy controls

(DMN, LWMN [46]) suggesting that their behavioral deficits are

related to an aberrant baseline state.

Furthermore, a recent paper has demonstrated correspondences

of RSNs with transient sub-second states of synchronized EEG

brain states (microstates, [31]) and we have previously shown

fMRI correlates of EEG synchronization in the frequency domain

[17]. It will thus be interesting to explore the relationship of

network formation on different time-scales as seen by fMRI, and

frequency and time domain EEG. This might further help to

understand the complex relation between functional networks

assessed by fMRI and the functional states identified in EEG.

Limitations
Although we demonstrated a significant spatial relationship

between RSNs and EEG frequency fluctuations the presented

covariance maps do not provide direct information about the

intracerebral location of the involved EEG sources, and does not

allow assigning a specific EEG rhythm to subcomponents of a

RSN. This assignment could eventually be achieved by estimating

EEG inverse solutions. However, EEG inverse solutions are

heavily model-dependent, which may again introduce uncertain-

ties in the results that we wanted to avoid given the already

considerable complexity of our results and the controversy in the

current literature. Moreover, the resolution of EEG inverse

solutions decays with depth [47], such that the proper estimation

of activity in key regions like deep midline regions of the DMN

introduced even more uncertainties.

Furthermore, the resting state is defined as a state of relaxed

wakefulness when subjects have their eyes closed and are

instructed to refrain from any structured thoughts. These

instructions are vague and the resting state remains a rather

uncontrollable and unconstrained condition with high variability

between subjects. Nevertheless, as argued above, there must be

some common processes besides all the likely differences between

individuals.

Methods

Ethics Statement
The study has been approved by the local ethics committee

(‘‘Kantonale Ethikkimmission Bern’’). Subjects were recruited

among university students and gave their written informed

consent.

Subjects
We measured 20 healthy young subjects (10 female; mean age

6 SD: 2663 years). All subjects were measured in the morning

between 8 am and 11 am. They refrained from caffeine, nicotine

and alcohol at least 10 hours prior to the experiment. Any

contraindications against MRI, use of psychoactive medication or

illegal drugs as well as neurologic or psychiatric history were

exclusion criteria.

MRI data acquisition
We used a 3T Siemens Magnetom Trio MR Scanner (Siemens,

Erlangen, Germany). The functional T2* weighted MR images

were acquired with an echo planar imaging (EPI) sequence. The

characteristics of this sequence were: 252 volumes, 32 slices,

36363 mm3, gap thickness 0.75 mm, matrix size 64664, FOV

1926192 mm2, TR/TE 1980ms/30ms.

A structural T1 weighted sequence was recorded after the

simultaneous EEG-fMRI and removal of the EEG cap. The

parameters of this fast low angle shot (FLASH) sequence were: 176

sagittal slices, slice thickness 1.0 mm, FOV 2566256 mm2, TR/

TE 2300ms/3.93ms.

EEG data acquisition
The EEG was acquired with a 96 channel MR compatible

system from Brain Products (Gilching, Germany/input range:

16.3mV, resolution: 0.25mV). Four channels were used to record

the electrocardiogram (ECG; 2 electrodes below the clavicles) and

the electrooculogram (EOG; 2 electrodes below the eyes). The

clock of the recording computer was synchronized to the clock of

the MR system (10 kHz refresh rate). Each MR scan volume was

automatically marked in the EEG data. The EEG was bandpass

filtered between 0.1 Hz and 250 Hz and sampled with 5 kHz.

Impedances between the electrodes and the subject’s scalp were

kept below 50 kV.
Combined recording. An app. 9 min simultaneous EEG-

fMRI recording was performed while the subjects were in a state

of relaxed wakefulness referred to as the resting state. Subjects lay

with their eyes closed inside the scanner and were instructed not to

think anything in particular and especially to try to relax while not

falling asleep.

fMRI Data preprocessing and data extraction
The MR datasets were processed in BrainVoyagerQX (Version

1.10.2, Brain Innovation, Maastricht, The Netherlands). Prepro-

cessing of the functional images included slice scan time

correction, linear trend removal, 3D motion detection and

correction and spatial smoothing with a Gaussian Kernel (FWHM

8mm). The functional images were co-registered to the anatomical

images, rotated into the anterior-posterior commissural plane and

normalized into standard Talairach space [48]. The fMRI

timecourses were z-transformed (mean = 0, SD = 1) voxelwise.

Resting State Networks (RSNs) were identified using an

Independent Component Analysis (ICA) that decomposed the

individual’s fMRI into 30 statistically independent components

(ICs), each delineating groups of voxels that exhibited synchronous

temporal fluctuations. Each IC consisted of a spatial map and its
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mean network dynamics [49,50]. For each subject, the resulting

ICs were visually inspected and assigned to ten previously

described RSNs (Table 1) [10,11,24]. The assignment of an IC

to a RSN was based on its spatial similarity and IC characteristics

[25]. To check for the consistency of the assignment across

subjects, we calculated a group component (GC) using a t-test

across the individuals’ spatial ICs for each RSN. Each GC

consisted of a 3D matrix (x y z coordinates) of t-scores (consistency

of each voxel in the GC across the 20 subjects). For display the

threshold was set at p,0.005 corrected for false positives with a

spatial extend threshold at alpha 0.05. Additionally, we computed

the spatial similarity of each subject’s IC to their specific GC and

tabulated the mean similarities (according to [26]).

Using Matlab routines, we back-projected the individual z-

transformed fMRI BOLD data onto the obtained group

components, yielding a timecourse of relative activity for each

RSN and subject based on common spatial templates. Back-

projection denotes using the GC map as a weighting matrix for the

individual voxel timecourses (i.e. computing the dot-product of the

GC map with all momentary BOLD images). By deriving the RSN

dynamics of the individual BOLD signals from a common average

RSN spatial template, we prevented that individual differences in

the spatial distribution of the identified RSN would confound the

further analysis (ICA decomposition is based on a random starting

matrix that yields slight run-by-run differences, furthermore the a

priori selected order of the ICA might lead to fragmented or

insufficiently decomposed networks in different subjects

[24,51,52]). The resulting RSN timecourses were normalized for

unit variance across RSNs for each volume.

EEG preprocessing and data extraction
All EEG preprocessing was performed in Vision Analyzer

(Version 1.05.0005; Brain Products, Gilching, Germany). First, the

EEG was corrected for artifacts. This included scan-pulse artifact

correction by average artifact subtraction (AAS) [53] and cardio-

ballistic actifact (CBA) correction using Independent Component

Analysis (ICA) [17,54]. For a detailed description of the ICA based

CBA correction see Jann et al. [17]. Thereafter, the EEG was

visually inspected and marked for additional artifacts (i.e. residual

scanner artifacts and motion artifacts). Electrode channels

exhibiting excessive artifacts were interpolated using a spherical

spline interpolation. Finally, the data was bandpass filtered (1–

30Hz), downsampled to 100Hz and recomputed to average

reference.

The EEG was segmented into epochs of 256 datapoints in

timewindows 6560ms – 4010ms before each MR scan onset,

excluding epochs containing artifacts. This timewindow accounts

for the typical delay of the hemodynamic response (HR) related to

neuronal activity. Each epoch was FFT transformed (resolution

0.39 Hz, Hanning window 10%), yielding (in the 1–30Hz band)

75 frequency bins. Paralleling the analysis of the fMRI RSN data,

the mean spectral amplitude across epochs was removed in each

channel and frequency, and the data was normalized in each

epoch and frequency bin to have unit variance across channels.

Combination: Covariance Mapping of the fMRI GCs
(RSNs) and the EEG

The covariance between the normalized individual datasets

extracted from the EEG respectively fMRI were calculated similar

to the approach presented in Koenig et al. [23]. For each subject,

the dynamics of the normalized EEG spectral amplitude at each

electrode and frequency bin were dot-multiplied with the

dynamics of each RSN, resulting in a data matrix of 20

(subjects)610 (RSNs)675 (frequency steps)692 (electrodes) covari-

ance values.

Statistics
The following statistical analysis was designed to reduce the size

of the result space by averaging the covariance values across

frequency, to apply tests for the consistency of the result across

subjects and to test for systematic effects of frequency band and

RSN while protecting the final results against false positives due to

multiple testing. The analyses are briefly outlined below, followed

by a more detailed description of the separate steps and tests.

Since all preprocessed data had been centered to have zero-

mean across epochs, we chose to use independent one-sample t-

test values (against zero) across subjects, so-called t-maps, to

visualize the consistency across subjects. These t-maps were not

used to infer the probability of null-hypotheses, but merely as

standardized indices of signal-to-noise ratios across subjects. Based

on these t-maps, we reduced the redundancy of the data in

frequency by a cluster analysis that collapsed the data into a few

frequency bands. The across-subject consistency of the covariance

maps of each RSN in each band was then assessed.

Furthermore, it was assessed whether there were significant

differences of the encountered covariance maps as function of

RSN and frequency. This was tested with a two-factorial

topographic analysis of variance (TANOVA;[55,56]) with the

factors RSN and frequency band as repeated measures. This

overall TANOVA was followed by post-hoc TANOVAs testing for

differences of covariance maps among RSNs separately for each

frequency band.

K-Means clustering to identify boarders of frequency
bands

Firstly, we attempted to identify the borders of the frequency

bands employing a k-means clustering algorithm. As data vectors,

the clustering algorithm used the t-maps of all 10 RSNs (920

values), distances between data vectors were measured using the

Euclidian distance. Since the primary aim of the cluster analysis

was to establish the exact borders of frequency bands in our data

based on the t-maps, we attempted to obtain a similar amount of

clusters as previously used frequency bands by increasing the

cluster number until an apparently optimal match was found.

Topographic consistency testing to test the significance
of the topographies

Next, mean covariance maps within the identified frequency

bands were computed for each subject, and mean and t-maps

across subjects were computed again. Since these t-maps were

exploratory in nature, we applied global randomization tests (the

topographic consistency test [55,57]) for the consistency of the

covariance maps across subjects as function of frequency band and

RSN. The rationale of this test is the following: Under the null

hypothesis, the individual covariance values at a given electrode

are expected to have a distribution with zero mean. Means across

subjects differing from zero therefore indicate some deviation from

the null-hypothesis. To have an overall index of deviations from

zero across all channels, the root-mean-square (RMS) across

channels of the average covariance was computed. In a next step,

this RMS value had to be tested for its probability of having been

obtained while the null-hypothesis was true. This probability was

estimated using randomization techniques: In each subject, the

covariance values were randomly shuffled among electrodes,

producing datasets with the same overall variance as the original

data, but with a possible common spatial structure across subjects
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destroyed. 5000 such datasets were produced, and in each of these

datasets, the RMS was computed as outlined above. The

probability that a covariance map has been obtained by change

(significance) is then defined as the percentage of the 5000

randomly obtained RMS values cases that were larger than the

RMS value obtained in the un-shuffled data. This randomization

test was applied to the covariance maps obtained in each

frequency-band and with each RSN.

TANOVAs: significant effects of the results between
frequency bands and RSNs

The next analysis tested whether there were consistent

differences between the covariance maps of the different RSNs.

For this purpose we submitted the individual covariance maps of

all RSN to a topographic analysis of variance (TANOVA,

[55,56]). TANOVAs assess differences between maps using a

global, across all electrodes difference measure and test for the

significance of the observed differences using randomization

techniques. Contrary to other methods, a pre-selection of

electrodes and/or correcting for multiple testing across electrodes

is thus not necessary. We computed an overall, two-factorial

TANOVA with the covariance maps of all RSNs and all frequency

bands, treating frequency and RSN as repeated measures, and we

computed TANOVAs separately for each frequency band, with

RSNs as repeated measures. All TANOVAs were based on 5000

randomization runs.
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