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Abstract: We present the first-order corrected dynamics of fluid branes carrying higher-

form charge by obtaining the general form of their equations of motion to pole-dipole order

in the absence of external forces. Assuming linear response theory, we characterize the

corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms

of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We

subsequently find large classes of examples in gravity of this effective theory, by constructing

stationary strained charged black brane solutions to first order in a derivative expansion.

Using solution generating techniques and bent neutral black branes as a seed solution,

we obtain a class of charged black brane geometries carrying smeared Maxwell charge

in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we

furthermore use T-duality to generate bent black branes with higher-form charge, including

smeared D-branes of type II string theory. By subsequently measuring the bending moment

and the electric dipole moment which these geometries acquire due to the strain, we uncover

that their form is captured by classical electroelasticity theory. In particular, we find

that the Young modulus and the piezoelectric moduli of our strained charged black brane

solutions are parameterized by a total of 4 response coefficients, both for the isotropic as

well as anisotropic cases.
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1 Introduction

Long-wavelength perturbations of black branes have been useful for the construction of

new black hole solutions in higher dimensions, as well as for understanding finite tem-

perature properties of strongly coupled quantum field theories by means of holographic

dualities. In this long-wavelength regime, black branes behave much like any other type of

continuous media whose dynamics is governed by specific effective theories. Two types of

deformations to black branes have been considered in the literature: time-(in)dependent

fluctuations along the boundary/worldvolume directions [1–7] and stationary perturbations

along directions transverse to the worldvolume [8–13]. The former are characterized by an

effective theory of viscous fluid flows [1] while the latter are characterized by an effective

theory of thin elastic branes [14–17]. Both of these descriptions are unified in a general

framework of fluids living on dynamical surfaces (fluid branes), which, when applied to

black branes, is known collectively as the blackfold approach [14, 15]. In this framework,

ref. [17] recently provided, in the probe brane approximation, the leading order corrections

to the effective action for stationary neutral fluid branes.

This paper is concerned with stationary elastic perturbations along transverse direc-

tions to the worldvolume of charged black branes. This type of deformation is achieved

by breaking the symmetries of the transverse space to the brane worldvolume directions

in the same way that the circular cross-section of a rod is deformed when it is bent. Such

perturbations have been studied in [8–12] for neutral black branes and in [13] for charged

asymptotically flat dilatonic black strings bent into a circular shape. In these cases, to

first order in the derivative expansion, the metric acquires a bending moment while, in the

case of charged branes, the gauge field acquires an electric dipole moment which encode

the brane response to applied strains. The reader should be reminded of a consequence

of placing a fluid on a dynamical surface (submanifold) embedded in a background space-

time: if the surface is deformed along transverse directions, the induced metric changes

and that change is the measure of the strain [11, 16].

According to the classical theory of elasticity, the bending moment encodes the re-

sponse coefficients of the material to applied strains [18]. For a generic material these

coefficients are a set of elastic moduli that are described by a tensor structure with the

name of Young modulus. For the case of neutral black branes these have been measured

in [11, 12] and have been recently classified using the general framework of [17]. If the ma-

terial is electrically charged, according to the theory of electroelasticity, the gauge field will

develop an electric dipole moment whose strength is proportional to a set of piezoelectric

moduli [19]. This effect was first measured in [13] for asymptotically flat charged dilatonic

black strings in Einstein-Maxwell-dilaton (EMD) gravity.1

In this paper we will be interested in response coefficients of black branes with higher-

form charges. Moreover, to put our results in a broader perspective we first derive, inde-

pendent of the linear response theory, the first-order corrected dynamics of charged fluid

branes by obtaining the general form of their equations of motion in the absence of external

forces. This generalizes the analysis done in [11] for neutral branes and in [13] for branes

1For another occurrence of the piezoelectric effect in the context of superfluids see [20].
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with Maxwell charge. In particular, our analysis will include p-branes carrying q-brane

charge where p > q and q 6= 0, which are characterized by a stress-energy tensor of an

anisotropic fluid [21–23]. Therefore, the subsequent measurement of response coefficients

in the corresponding bent charged black brane geometries involves measuring for the first

time the Young modulus and piezoelectric moduli of anisotropic fluid branes. We emphasize

that the resulting bending moment and electric dipole moment that we obtain are thus spe-

cific cases of dipole contributions that fit within the general framework of dipole-corrected

equations of motion derived in the first part of the paper. Explicitly verifying that these

first-order corrected equations of motion are satisfied for the cases we have considered is

beyond the scope of the present paper.2

The usefulness of bending charged branes can be understood if one remembers the

origin of the blackfold approach, namely, the construction of new black hole solutions by

wrapping black branes along a submanifold with the desired topology [10, 14, 15]. To better

understand this imagine playing the following game where one has to construct a circular

geometry out of twenty pieces of straw. To leading order in this construction one places

each of the twenty straws tangent to a circular line. To first order, one should slightly

bend each of the individual straws into a circular shape with the same radius of curvature

as the radius of the circle along which the straws are placed and so on to higher orders.

Increasing the number of straws from twenty to infinity so that the geometry becomes

continuous and replacing each individual straw by a black brane allows one to construct

many new black hole solutions in a perturbative manner [8–10, 14, 22–24] and requires

solving the blackfold equations [11, 12, 15, 17]. To leading order, information about the

response coefficients due to bending is not required but to higher orders they constitute the

necessary data that serve as input into the effective theory [17]. Another valuable outcome

of the blackfold approach is the connection between its effective theory and that of systems

studied in theoretical biology [17] as well as improved effective actions for QCD [25, 26].

Therefore, uncovering the structure of the response coefficients for blackfold geometries

provides novel insights into the general structure of the effective theory for these systems.

We find in this work large classes of examples in gravity of the electroelastic phenomena

suggested by applying linear response theory to the dipole contributions we encounter

in our general analysis of the equations of motion at pole-dipole order of charged fluid

branes. In particular, we use standard solution generating techniques and the bent neutral

black branes of [8, 12] as seed solutions, to construct stationary strained charged black

brane geometries to first order in a derivative expansion. In this way we first obtain a

general class of bent charged black brane geometries carrying smeared Maxwell (0-brane)

charge in Einstein-Maxwell-dilaton gravity with Kaluza-Klein coupling constant, which

were first considered in [13]. The corresponding effective theory describing the perturbed

solution is that of an isotropic fluid brane which has been subject to pure bending. In the

specific case of ten-dimensional space-time we furthermore use T-duality to generate bent

black branes charged under higher-form fields. This includes type II Dq-branes smeared in

(p− q)-directions, which are thus described by the theory of anisotropic p-branes carrying

2See [11, 17] for work in this direction for the case of bent neutral black strings.
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q-brane charge. By subsequently measuring the bending moment and the electric dipole

moment which these geometries acquire due to the strain, we uncover that their form is

captured by classical electroelasticity theory and we can determine their Young modulus

and piezoelectric moduli. For the class of bent charged black brane solutions obtained

in this paper, these are parameterized by a total of 4 response coefficients, both for the

isotropic as well as anisotropic cases. These measurements constitute the first step in

obtaining higher order corrections to the charged stationary black holes found in [22, 23].

The outline of this paper is as follows. In section 2 we derive the equations of motion

for p-branes carrying q-brane charge along their worldvolume using the methods of [11,

27]. We first present the case q = 0, and subsequently treat the simplest anistropic case

q = 1 in detail, while presenting the main results for the case q > 1. Section 3 gives a

physical interpretation for the different structures appearing in the multipole expansion

of the electric current, and at the same time reviews the corresponding results relevant

to the stress-energy tensor. For the purpose of this paper, the most important quantity

in the expansion of the electric current is the electric dipole moment, but we also briefly

comment on the magnetic dipole moment, which enters the description when considering

spinning branes. We also define and classify the response coefficients encoding the response

of charged fluid branes due to electroelastic deformations according to the expectation from

classical electro-elastodynamics. In section 4 we outline the measurement procedure for

these response coefficients for charged black branes in gravity. In particular, we provide

explicit expressions for these coefficients for branes carrying 0-brane charge in EMD gravity

and for branes carrying q-brane charge in ten-dimensional type II string theory generalizing

the analysis of [13]. In section 5 we comment on open issues and future work. We also

provide three appendices. In appendix A we present details on the equations of motion

for the case of branes carrying string charge. In appendix B we review the case of elastic

perturbations of neutral black branes [8, 12] and provide the map between the conventions

used here and others used previously in the literature. Finally, in appendix C we give an

outline of the solution generating techniques as well as the explicit form of the geometries

constructed in this paper.

2 Dynamics of charged pole-dipole branes

In this section we obtain the equations of motion for pole-dipole branes carrying Maxwell

charge (q = 0) by solving conservation equations for the effective stress-energy tensor and

effective current that characterize the branes. We subsequently provide the equations of

motion for branes carrying string charge (q = 1) as well as for branes charged under higher-

form fields. Further details of the derivation of these equations are given in appendix A.

2.1 Effective stress-energy tensor and effective current

Finite thickness effects of an object can be probed by bending it. Physically, this is because

bending induces a varying concentration of matter along transverse directions to the brane

worldvolume resulting in a non-trivial bending moment [11]. If the brane was infinitely

thin this effect would not be present. In order to include finite thickness effects in the brane

– 4 –
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dynamics one performs a multipole expansion of the stress-energy tensor in the manner [27]

Tµν(xα) =
∫

Wp+1

dp+1σ
√−γ

[

Tµν
(0)(σ

a)
δD(xα −Xα(σa))√−g

−∇ρ

(

Tµνρ
(1) (σa)

δD(xα −Xα(σa))√−g

)

+ . . .

]

.

(2.1)

A few remarks about our conventions are now in place. We consider a (p+1)-dimensional

worldvolume embedded in a D = n + p + 3 space-time with coordinates xα and metric

gµν , where the greek indices µν, . . . label space-time directions. The worldvolume Wp+1 is

parameterized by a set of coordinates σa and inherits an induced metric γab = gµνu
µ
auνb

with uµa ≡ ∂aX
µ. The location of Wp+1 in space-time is given by the set of mapping

functions Xµ(σa).

The stress-energy tensor (2.1) is characterized by two structures: Tµν
(0) is a monopole

source of stress-energy while Tµνρ
(1) encodes the dipole (finite thickness) effects. To each of

these structures one associates an order parameter ε̃ such that Tµν
(0) = O(1) and Tµνρ

(1) =

O(ε̃). Typically, for branes of thickness r0 bent over a submanifold of characteristic curva-

ture radius R, the parameter ε̃ has the form ε̃ = r0/R. If the expansion (2.1) is truncated

to O(ε̃) , the stress-energy tensor is said to be expanded to pole-dipole order. When only

hydrodynamic corrections are considered, the stress-energy tensor is localized on the sur-

face described by Xµ(σa) due to the delta-function in (2.1), since in this case Tµνρ
(1) = 0

while Tµν
(0) receives viscous corrections order-by-order in a derivative expansion. However,

when elastic perturbations are considered the brane acquires a bending moment which is

encoded in Tµνρ
(1) . In this case, there exists an ambiguity in the position of the worldvolume

surface within a finite region of thickness r0, which is parametrized by the ‘extra sym-

metry 2’ acting on Tµν
(0) and Tµνρ

(1) under a O(ε̃) displacement of the worldvolume location

Xα(σa) → Xα(σa) + ε̃α(σa) [27].

The equations of motion for an object with a stress-energy tensor of the type (2.1),

assuming the absence of external forces and ignoring backreaction, follow from the conser-

vation equation

∇νT
νµ = 0 . (2.2)

In order to write the equations of motion in a way adapted to the cases considered in

this paper, we decompose Tµνρ
(1) into tangential and orthogonal parts with the help of the

orthogonal projector ⊥µ
ν = δµν − uµauaν such that

Tµνρ
(1) = ub

(µj|b|ν)ρ + uµau
ν
bd

abρ + uρaT
µνa
(1) . (2.3)

Here the vertical bars around the index b appearing in the first structure in (2.3) indicate

that this index is insensitive to the symmetrization which is done only over the space-time

indices µ, ν. Moreover, jbνρ are the components responsible for giving transverse motion

(spin) to the brane and have been considered by Papapetrou when deriving the equations

of motion for spinning point particles [28]. These have the properties jbνρ = jb[νρ] and

uaνj
bνρ = 0. The components dabρ have the properties dabρ = d(ab)ρ and ucρd

abρ = 0 and

encode the bending moment of the brane. In the point particle case these components

– 5 –
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can be gauged away using the ‘extra symmetry 2’ [11] but not for the cases p > 0. The

components Tµνa
(1) can be gauged away everywhere on the worldvolume using the ‘extra

symmetry 1’ and can be set to zero at the boundary in the absence of additional boundary

sources [27]. As we are only interested in bending corrections, i.e. jbνρ = 0, we can write

the equations of motion as [11, 17]

∇aT̂
ab + ubµ∇a∇cd

acµ = dacµRb
acµ , (2.4)

T̂ abKab
ρ +⊥ρ

µ∇a∇bd
abµ = dabµRρ

abµ . (2.5)

Here, Rρ
νλµ is the Riemann curvature tensor of the background space-time, Kab

ρ ≡ ∇au
ρ
b

is the extrinsic curvature tensor of Wp+1
3 and T̂ ab = T ab

(0) + 2d(acµKb)
cµ. If finite thickness

effects are absent, dabµ = 0, one recovers the equations of motion derived by Carter [29] and

if one further takes T ab
(0) to be of the perfect fluid form with energy density and pressure of a

black brane, these equations are the leading order blackfold equations [14, 15]. Eqs. (2.4)–

(2.5) are relativistic generalizations of the equations of motion of thin elastic branes [17]

and must be supplemented with the integrability condition dab[µKab
ρ] = 0 and boundary

conditions

dabρηaηb|Wp+1 = 0 ,
(

T̂ abuµb − dacρKb
cρub

µ +⊥µ
ρ∇bd

abρ
)

ηa|Wp+1 = 0 , (2.6)

where ηa is a unit normal vector to the brane boundary.

Eqs. (2.4)–(2.6) are also valid for charged (dilatonic) branes as long as couplings to

external background fields are absent [21–23]. However, if the brane is charged under a

(q+1) gauge field, it is also characterized by a total anti-symmetric current tensor Jµ1...µq+1

which can also be expanded in a Dirac-delta series as [13]

Jµ1...µq+1(xα) =
∫

Wp+1

dp+1σ
√−γ

[

J
µ1...µq+1

(0)

δD(xα −Xα)√−g
−∇ρ

(

J
µ1...µq+1ρ

(1)

δD(xα −Xα)√−g

)

+ . . .

]

,
(2.7)

where we have omitted the explicit dependence of J
µ1...µq+1

(0) , J
µ1...µq+1ρ

(1) and Xα on the

worldvolume coordinates σa. As in the case of the stress-energy tensor (2.1) the structure

J
µ1...µq+1

(0) is a monopole source of a charged q-brane current while the structure J
µ1...µq+1ρ

(1)

encodes the finite thickness effects, including the electric dipole moment of the brane.

Moreover, the structures involved in (2.7) follow the same hierarchy as in the case of

the (2.1), i.e., J
µ1...µq+1

(0) = O(1) and J
µ1...µq+1ρ

(1) = O(ε̃). The equations of motion for the

current (2.7) follow from the conservation equation

∇µ1J
µ1...µq+1 = 0 . (2.8)

The equations of motion that follow from here have been previous derived by Dixon and

Souriou in [30, 31] for charged point particles (q = 0)4 in a different way than the one

3Here we have introduced the worldvolume covariant derivative ∇a ≡ uρ
a∇ρ which acts on a generic

space-time tensor V cµ as ∇aV
cµ = ∂aV

cµ + γab
cV bµ + Γµ

λρu
λ
aV

cρ, where γab
c are the Christoffel symbols

associated with γab and Γµ
λρ are the Christoffel symbols associated with gµν .

4See ref. [32] for a recent review, including a treatment of the case when external forces are present.
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presented in [13]. In the next few sections we will derive these equations in detail for p-

branes carrying 0-brane charge and then present the results for generic p-branes carrying

q-brane charge. Further details about their derivation are given in appendix A.

2.2 Equations of motion for branes carrying Maxwell charge

Pole-dipole p-branes carrying Maxwell charge (q = 0) are characterized by a current Jµ of

the form (2.7). In order to solve eq. (2.8) we introduce an arbitrary scalar function f(xα)

of compact support and integrate (2.8) over the entire space-time following the method

outlined in [27] applied to the stress-energy tensor (2.1)

∫

dDx
√−g f(xα)∇µJ

µ = 0 . (2.9)

In order to make further progress one decomposes the derivatives of f(xα) in parallel and

orthogonal components to the worldvolume such that

∇µf = f⊥
µ + uaµ∇af , ∇ν∇µf = f⊥

µν + 2f⊥
(µau

a
ν) + fabu

a
µu

b
ν . (2.10)

Here the label ⊥ on a tensor indicates that all of its space-time indices are transverse, for

example, uµaf⊥
µ = 0. Explicit computation of the functions involved allows one to deduce

f⊥
µa = ⊥λ

µ∇af
⊥
λ +

(

∇au
b
µ

)

∇bf , fab = ∇(a∇b)f − f⊥
µ ∇bu

µ
a . (2.11)

This tells us that the only independent components on the worldvolume surface xα =

Xα(σa) are f⊥
µν , f

⊥
µ and f . Using this and performing a series of partial integrations when

introducing (2.7) into (2.9) leads to an equation with the following structure

∫

Wp+1

√−γ
[

Zµνf⊥
µν + Zµf⊥

µ + Zf +∇a

(

Zµaf⊥
µ + Zab∇bf + Zaf

)]

= 0 . (2.12)

Requiring the above equation to vanish for each of the arbitrary independent components

on the worldvolume f⊥
µν , f

⊥
µ and f results in the equations

⊥λ
µ⊥ρ

νJ
(µν)
(1) = 0 , ⊥λ

µ

[

Jµ
(0) −∇a

(

2⊥µ
νu

a
ρJ

(νρ)
(1) + uaνu

b
ρu

µ
b J

(νρ)
(1)

)]

= 0 , (2.13)

∇a

(

Jµ
(0)u

a
µ + 2J

(µν)
(1) ubν∇bu

a
µ −∇b

(

J
(µν)
(1) uaµu

b
ν

))

= 0 . (2.14)

From eq. (2.12), we are then left with a boundary term that vanishes by itself

∫

∂Wp+1

√
−h ηa

(

Zµaf⊥
µ + Zab∇bf + Zaf

)

= 0 , (2.15)

where h is the determinant of the induced metric on the boundary.

On the brane boundary, however, the components ∇af are not independent so we

decompose them according to

∇af = ηa∇⊥f + vâa∇âf , (2.16)

– 7 –
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where ∇⊥ ≡ ηa∇a, v
â
a are boundary coordinate vectors and ∇â is the boundary covari-

ant derivative with the indices â labeling boundary directions. On the brane boundary

the functions f⊥
µ , ∇⊥f and f are mutually independent. Requiring the terms appearing

in eq. (2.15) proportional to these functions to vanish leads to the following boundary

conditions:

⊥λ
µJ

(µν)
(1) uaνηa|∂Wp+1 = 0 , J

(µν)
(1) uaµu

b
νηaηb|∂Wp+1 = 0 , (2.17)

[

∇â

(

J
(µν)
(1) uaµu

b
νv

â
b ηa

)

−ηb

(

Jµ
(0)u

b
µ+2J

(µν)
(1) uaν∇au

b
µ−∇a

(

J
(µν)
(1) uaµu

b
ν

))]

|∂Wp+1 = 0 . (2.18)

We now wish to solve the equations of motion (2.13)–(2.14). To that end, we make the most

general decomposition of Jµ
(0) and Jµν

(1) in terms of tangential and orthogonal components

such that

Jµ
(0) = Ja

(0)u
µ
a + Jµ

⊥(1) , Jµν
(1) = mµν + uµap

aν + Jµa
(1)u

ν
a , (2.19)

where mµν is transverse in both indices and paρ is transverse in its space-time index. The

structure Jµa
(1) is left neither parallel nor orthogonal to the worldvolume and further satisfies

J
[ab]
(1) = 0. The reason for this will become clear below. We now introduce the decomposition

of Jµν
(1) into the first equation in (2.13) and obtain the constraint mµν = m[µν]. Introducing

both decompositions (2.19) into the second equation in (2.13) leads to the relation

Jµ
⊥(1) = ⊥µ

ν∇a

(

paν + Jνa
(1)

)

. (2.20)

Further, using (2.19) in eq. (2.14) leads to the equation for worldvolume current conserva-

tion

∇a

(

Ĵa + pbµKa
bµ

)

= 0 , (2.21)

where Ĵa = Ja
(0) − uaµ∇bJ

µb
(1). Note that in the case Jµν

(1) = 0 for which the brane is

infinitely thin, the equation of motion (2.21) reduces to that obtained previously in the

literature using the same method [33]. Turning now to the boundary conditions (2.17)–

(2.18) using (2.19) we obtain
(

paµ + Jµa
⊥(1)

)

ηa|∂Wp+1 = 0 , Jab
(1)ηaηb|∂Wp+1 = 0 , (2.22)

[

∇âJ
â
(1) − ηa

(

Ĵa + pbµKa
bµ

)]

|∂Wp+1 = 0 , (2.23)

where we have defined the boundary degrees of freedom J â
(1) = Jab

(1)v
â
b ηa accounting for

possible extra current sources on the brane boundary. Note that the structure mµν entering

in the decomposition of Jµν
(1) does not play a role in the equation of motion (2.21) neither in

the boundary conditions (2.22)–(2.23) though it may be relevant when considering external

couplings to background fields.

Extra symmetries and invariance of the equations of motion. The current ex-

pansion (2.7) enjoys two symmetries as the stress-energy tensor (2.1) coined by the authors

of [27] as ‘extra symmetry 1’ and ‘extra symmetry 2’. Their transformation properties can

be obtained by looking at the invariance of the functional

J [f ] =

∫

dDx
√−g Jµfµ , (2.24)
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for an arbitrary tensor field fµ(x
α) of compact support. The ‘extra symmetry 1’ is an exact

symmetry to all orders in the expansion defined by the transformation

δ1J
µ
(0) = −∇aε̃

µa , δ1J
µν
(1) = −ε̃µauνa , (2.25)

and leaves the functional (2.24) invariant as long as the parameters ε̃µa are required to

obey ε̃µaηa|∂Wp+1 = 0. This means, for example, that it is possible to gauge away one

of the structures in the decomposition (2.19) everywhere except on the boundary since

δ1(J
µν
(1)u

a
ν) = −ε̃µa. This is why we have left the last term in (2.19) neither parallel nor

orthogonal to the worldvolume. Further, invariance of the equation of motion (2.14) un-

der (2.25) requires that Jab
(1) = J

(ab)
(1) .5 Explicit use of (2.25) leads to the variations of the

structures that characterize the charge current

δ1Ĵ
a = 0 , δ1p

aµ = 0 , δ1J
â
(1) = 0 , (2.26)

and hence leave the equations of motion (2.20)–(2.23) invariant.

On the other hand, the ‘extra symmetry 2’ is a perturbative symmetry and defined

as the transformation that leaves (2.24) invariant under the displacement of representative

surface Xα(σa) → Xα(σa) + ε̃α(σa). This leads to the transformation rule

δ2J
µ
(0) = −Jµ

(0)u
a
ρ∇aε̃

ρ − Γµ
λρJ

λ
(0)ε̃

ρ , δ2J
µρ
(1) = −Jµ

(0)ε̃
ρ . (2.27)

Explicit calculation using (2.27) leads to

δ2Ĵ
a = −Ja

(0)u
b
ρ∇bε̃

ρ − uaρJ
b
(0)∇bε̃

ρ +∇b

(

Ja
(0)ε̃

b
)

,

δ2p
aµ = −Ja

(0)ε̃
µ , δ2J

â
(1) = −Jb

(0)v
â
b ε̃

aηa ,
(2.28)

and renders the equations of motion (2.20)–(2.23) invariant. As we will be obtaining

these tensor structures from specific black hole metrics in section 4, the existence of this

symmetry implies the existence of a residual gauge freedom in this measurement procedure

as seen before in the case of the stress-energy tensor [13].

2.3 Equations of motion for branes carrying string charge

In this section we give the equations of motion for branes carrying string charge (q = 1)

while a detailed derivation is given in appendix A. Such branes are characterized by the

structures Jµν
(0) and Jµνρ

(1) . The same procedure as in the previous section allows us to split

Jµνρ
(0) into the components

Jµνρ
(1) = 2u[µa maν]ρ + uµau

ν
bp

abρ + Jµνa
(1) uρa , (2.29)

5In the case q > 0 and also in the case of the stress-energy tensor [27], the equations of motion obtained by

this procedure are invariant under both ‘extra symmetries’ without further requirements on the structures

appearing in analogous decompositions to (2.19). The q = 0 case is a special case as it is characterized by a

current Jµ with only one index. This requires an extra constraint such that Jab
(1) = J

(ab)

(1) for the equations

of motion (2.14) to be invariant under both extra symmetry transformations.
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where maµν and pabρ are orthogonal in its space-time indices while Jµνa
(1) is left neither

parallel nor orthogonal to the worldvolume due to the extra symmetry transformations

that we will describe below. Similarly, for Jµν
(0) we have the decomposition

Jµν
(0) = uµau

ν
bJ

ab
(0) + 2u

[µ
b J

ν]b
⊥(1) + Jµν

⊥(1) , (2.30)

for which the two last components are not independent but instead related to the dipole

contributions in (2.29) via the expressions

Jµb
⊥(1) = ubρ⊥µ

λ∇c(J
ρλc
(1) −mcρλ) , Jµν

⊥(1) = ⊥µ
λ⊥ν

ρ∇c(J
ρλc
(1) −mcρλ) . (2.31)

Using these relations we finally obtain the current conservation equation in the form

∇a

(

Ĵab − 2pc[a|µ|Kcµ
b]
)

= 0 , (2.32)

where the vertical bars around the index µ means that it is insensitive to the anti-

symmetrization taking place only on the worldvolume indices. In eq. (2.32) we have intro-

duced the effective worldvolume current Ĵab = Ĵ [ab] such that

Ĵab = Jab
(0) − uaµu

b
ν∇cJ

µνc
(1) . (2.33)

Note again that, as in the case of branes carrying Maxwell charge, the components maµν en-

tering the decomposition (2.29) do not play a role in the equation for current conservation.

Similarly, for the boundary conditions we obtain
(

pbaµ + 2⊥µ
λJ

λab
(1)

)

ηb|∂Wp+1 = 0 , Jµab
(1) ηaηb|∂Wp+1 = 0 , (2.34)

[

vb
b̂
∇âJ

âb̂
(1) − ηa

(

Ĵab − 2pc[a|µ|Kcµ
b]
)]

|∂Wp+1 = 0 , (2.35)

where we have defined the boundary degrees of freedom J âb̂
(1) = Jµνc

(1) u
ρ
cη(ρv

â
ν)v

b̂
µ , with vâµ =

uaµv
â
a. Again, the components maµν have dropped out of the boundary conditions. We

see that branes carrying string charge are characterized by a worldvolume effective current

Ĵab, an electric dipole moment pabµ and a boundary current J âb̂
(1).

Extra symmetries and invariance of the equations of motion. The extra symme-

tries associated with the current (2.7) for branes carrying string charge are now deduced

by looking at the functional

J [f ] =

∫

dDx
√−g Jµνfµν , (2.36)

for an arbitrary tensor field fµν of compact support. The ‘extra symmetry 1’ acts on the

current (2.7) such that

δ1J
µν
(0) = −∇aε̃

µνa , δ1J
µνρ
(1) = −ε̃µνauρa , (2.37)

where the parameters ε̃µνa satisfy the properties ε̃µνa = ε̃[µν]a and ε̃µνaηa|∂Wp+1 = 0. This

is turn implies that the components Jµνa
(1) entering the decomposition (2.29) are pure gauge

– 10 –



J
H
E
P
1
0
(
2
0
1
3
)
0
3
5

everywhere except on the boundary since δ1(J
µνρ
(1) uaρ) = Jµνa

(1) = −ε̃µνa. Evaluating (2.37)

for the components that describe the charged pole dipole brane leads to the variations

δ1Ĵ
ab
(0) = 0 , δ1p

abρ = 0 , δ1J
âb̂
(1) = 0 , (2.38)

and hence the equations of motion (2.31)–(2.32) together with the boundary condi-

tions (2.34)–(2.35) are invariant under this transformation rule. Turning our attention

to the ‘extra symmetry 2’, invariance of (2.36) requires

δ2J
µν
(0) = −Jµν

(0)u
a
ρ∇aε̃

ρ − 2Γ[µ
ρλJ

ν]λ
(0) ε̃

ρ , δ2J
µνρ
(1) = −Jµν

(0)ε̃
ρ , (2.39)

which upon explicit calculation leads to

δ2Ĵ
ab = −Jab

(0)u
c
ρ∇cε̃

ρ − 2u[aρ J
b]c
(0)∇cε̃

ρ +∇c

(

Jab
(0)ε̃

c
)

,

δ2p
abµ = −Jab

(0)ε̃
µ , δ2J

âb̂
(1) = −Jab

(0)ε̃
cuρcη(ρv

â
ν)u

ν
av

b̂
b ,

(2.40)

and leaves the equations of motion (2.31)–(2.32) and boundary conditions (2.34)–(2.35)

invariant.

2.4 Equations of motion for branes charged under higher-form fields

In this section we conjecture the equations of motion for the cases q > 1 and leave the

proof for later work. In these cases, the electric current of the p-brane are characterized by

two structures J
µ1...µq+1

(0) and J
µ1...µq+1ρ

(1) . It is straight forward to derive a similar constraint

as in eq. (2.13) by solving the conservation equation (2.8). This constraint allows us to

make the general decomposition of J
µ1...µq+1ρ

(1) such that

J
µ1...µq+1ρ

(1) = (q + 1)u[µ1
a1 . . . u

µq
aqm

|a1...aq |µq+1]ρ + uµ1
a1 . . . u

µq+1
aq+1p

a1...aq+1ρ + J
µ1...µq+1a

(1) uρa ,

(2.41)

where the vertical bars around the indices a1 . . . aq indicates that these indices are insensi-

tive to the anti-symmetrization which is done only over the space-time indices µ1 . . . µq+1.

Moreover, ma1...aqµq+1ρ satisfies the properties ma1...aqµq+1ρ = m[a1...aq ]µq+1ρ = ma1...aq [µq+1ρ]

while pa1...aq+1ρ has the property pa1...aq+1ρ = p[a1...aq+1]ρ and also J
µ1...µq+1a

(1) = J
[µ1...µq+1]a

(1) .

A similar decomposition of J
µ1...µq+1

(0) as in (2.30) is assumed and the final form of the

equations of motion is conjectured to be

∇a1

(

Ĵa1...aq+1 + (−1)q(q + 1) pc[a1...aq |µ|Kcµ
aq+1]

)

= 0 , (2.42)

while the boundary conditions have an analogous form to the q = 1 case presented in the

previous section
(

pa1...aq+1µ+(−1)q(q+1)!⊥µ
λJ

λa1...aq+1
(1)

)

ηaq+1 |∂Wp+1 = 0 , J
µ1...µqaq+1b

(1) ηaq+1ηb|∂Wp+1 = 0 ,

(2.43)
[

va2â2 . . . v
aq+1

âq+1
∇â1J

â1...âq+1

(1) − ηa1

(

Ĵa1...aq+1 + (−1)q(q + 1) pc[a1...aq |µ|Kcµ
aq+1]

)]

|∂Wp+1 = 0 .

(2.44)
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Here we have introduced the effective worldvolume current Ĵa1...aq+1 = J
a1...aq+1

(0) −
ua1µ1

. . . u
aq+1
µq+1∇cJ

µ1...µq+1c

(1) , as well as the boundary degrees of freedom J
â1...âq+1

(1) =

J
a1...aq−1µqµq+1c

(1) vâ1a1 . . . v
âq−1
aq−1u

ρ
cη(ρv

âq
µq+1)

v
âq+1
µq . The conjectured form of the equations of mo-

tion (2.42)–(2.44) for any value of q is supported by their invariance under the extra

symmetry transformations which we will now analyze.

The ‘extra symmetry 1’ acting on the generic form of the current (2.7) has the following

transformation rule

δ1J
µ1...µq+1

(0) = −∇aε̃
µ1...µq+1a , δ1J

µ1...µq+1ρ

(1) = −ε̃µ1...µq+1auρa , (2.45)

where ε̃µ1...µq+1a has the property ε̃µ1...µq+1a = ε̃[µ1...µq+1]a and is constrained on the bound-

ary such that ε̃µ1...µq+1aηa|∂Wp+1 = 0. Correspondingly, this implies that the structures

characterizing the charged pole-dipole brane transform as δ1Ĵ
a1...aq+1 = δ1p

a1...aq+1µ =

δ1J
â1...âq+1 = 0, leaving the equations of motion invariant. As in the cases q = 0 and q = 1

analyzed previously, this symmetry implies that the last structure introduced in (2.41) can

be gauged away everywhere on the worldvolume. Furthermore, under the action of the

‘extra symmetry 2’ the structures entering (2.7) transform according to

δ2J
µ1...µq+1

(0) = −J
µ1...µq+1

(0) ucρ∇cε̃
ρ−(q+1)Γ[µ1

ρλJ
µ2...µq+1]λ

(0) ε̃ρ , δ2J
µ1...µq+1ρ

(1) = −J
µ1...µq+1

(0) ε̃ρ ,

(2.46)

which upon explicit calculation lead to the ‘extra symmetry 2’ transformations

δ2Ĵ
a1...aq+1 = −J

a1...aq+1

(0) ucρ∇cε̃
ρ − (q + 1)u[a1ρ J

a2...aq+1]c

(0) ∇cε̃
ρ +∇c

(

J
a1...aq+1

(0) ε̃c
)

,

δ2p
a1...aq+1µ = −J

a1...aq+1

(0) ε̃µ ,

δ2J
â1...âq+1

(1) = −J
a1...aq−1aqaq+1

(0) vâ1a1 . . . v
âq−1
aq−1 ε̃

cuρcη(ρv
âq
ν)u

ν
aq+1

v
âq+1
aq .

(2.47)

The above transformation rules leave the equations of motion (2.42)–(2.44) invariant. In

section 4 we will give examples of these structures measured for bent black branes.

3 Physical interpretation and brane electroelasticity

In this section we discuss the physical interpretation of the structures entering the dipole

contribution of the stress-energy tensor and the electric current. The physical interpretation

of the structures jbµν and dabρ introduced in eq. (2.3) was given already in refs. [11, 17] and

will be reviewed here. Furthermore, the physical interpretation of the different structures

appearing in the decomposition of the electric current (2.19) for the q = 0 case was in

part discussed already in [13], while here we also present the generalization relevant to the

cases (2.29) (q = 1) and (2.41) (q > 1) studied in the previous section. Subsequently, we

discuss the form of these general dipole contributions if we assume that the charged fluid can

be described by a covariantized linear response theory inspired by classical electroelasticity

theory. This will involve the introduction of response coefficients corresponding to the

Young modulus and piezoelectric moduli.
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3.1 Bending moment and Young modulus

As mentioned in the beginning of section 2 the structure dabρ accounts for the bending

moment of the brane [11, 17]. To see this note that we can compute the total bending

moment from the stress-energy tensor (2.1) by

Dabρ =

∫

Σ
dD−1x

√−g Tµνuaµu
b
νx

ρ =

∫

Bp

dpσ
√−γ dabρ , (3.1)

where Σ is a constant timeslice in the bulk space time and we have ignored boundary terms

(which we will continue to do so in the following). Hence we identify dabρ as the bending

moment density on the brane. Note that for the case of a point particle (p = 0), dabρ has

only one non-vanishing component, namely, dττρ where τ is the proper time coordinate of

the worldline. Since the stress-energy tensor (2.1) also enjoys the ‘extra symmetry 2’ acting

as δ2d
abρ = −T ab

(0)ε̃
ρ one can, by an appropriate choice of ε̃ρ, gauge away the component

dττρ [11]. Thus point particles do not carry worldvolume mass dipoles but in the case p > 0

these components cannot, in general, be gauged away.

The bending moment dabρ is a priori unconstrained but assuming that the brane will

behave according to classical (Hookean) elasticity theory we consider it to be of the form

dabρ = Ỹ abcdKcd
ρ , (3.2)

which is the form of the bending moment expected for a thin elastic brane that has been

subject to pure bending. Here, the extrinsic curvature Kcd
ρ has the interpretation of the

Lagrangian strain since it measures the variation of the induced metric on the brane along

transverse directions to the worldvolume while Ỹ abcd is the Young modulus of brane.6

The linear response exhibited in eq.(3.2) will be analyzed in this paper for the case of

bending deformations of fluid branes which are stationary. In these situations the general

structure of Ỹ abcd has been classified for neutral isotropic fluids using an effective action

approach [17]. For the isotropic cases studied here, making a slight generalization to the

case of p-branes with worldvolume 0-brane (Maxwell) charge, it takes the form [17]7

Ỹ abcd = −2
(

λ1(k;T,ΦH)γabγcd + λ2(k;T,ΦH)γa(cγd)b + λ3(k;T,ΦH)k(aγb)(ckd)

+λ4(k;T,ΦH)
1

2
(kakbγcd + γabkckd) + λ5(k;T,ΦH)kakbkckd

)

,
(3.3)

where ka is the Killing vector field along which the fluid is moving with k = | − γabk
akb| 12 .

We have also indicated explicitly the dependence on the global temperature T , and the

generalization compared to the neutral isotropic case of [17] is that there is now in addition

a dependence on the global chemical potential ΦH . The Young modulus Ỹ abcd satisfies the

expected properties of a classical elasticity tensor Ỹ abcd = Ỹ (ab)(cd) = Ỹ cdab. We will find

6We use the convention that Ỹ = Y I (omitting tensor indices) where Y is the conventionally normalized

Young modulus and I the moment inertia of the object with respect to the choice of worldvolume surface.
7Note that the Young modulus Ỹ abcd introduced here is related to the one introduced in [17] via the

relation Ỹ abcd = −Y
abcd.
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explicit realizations of (3.3) in section 4.4 when we consider the bending of black p-branes

with 0-brane charge. For this we note that not all of the five terms in the expression in (3.3)

are independent. In fact, due to the ‘extra symmetry 2’, these include gauge dependent

terms [17] of the form k
(

T ab
(0)γ

cd + T cd
(0)γ

ab
)

, with k being the gauge parameter, so that

in the end only three out of the five λ-coefficients are independent, when using also the

equations of motion.

It is not the purpose of this work to construct the effective action for anisotropic fluid

branes. However, we note that the simplest case of p-branes carrying 1-brane (string) charge

with p > 1, are characterized by a vector va satisfying vaua = 0 and vava = 1, aligned in

the direction of the smeared 1-brane charge along the brane worldvolume. Following the

analysis of [17], there are four further response coefficients that can in principle be added

to the effective action and, in turn, to the Young modulus defined in (3.3), restricting

to terms that contain only even powers of ua and/or va. The expression in (3.3) should

therefore be supplemented with a contribution of the form

Ŷ abcd = −2
(

λ6(k, ζ;T,ΦH)kakbζcζd + λ7(k, ζ;T,ΦH)ζaζbkckd

+λ8(k, ζ;T,ΦH)k(aζb)k(cζd) + λ9(k, ζ;T,ΦH)ζaζbζcζd
)

.
(3.4)

Here we have introduced the non-normalized space-like vector ζa in terms of which va =

ζa/ζ where ζ = |ζaζbγab|1/2. Note that for this case the λ-coefficients introduced in (3.3)

are now also functions of ζ. More generally, for branes with smeared q-brane charge with

q > 0 and p > q one can introduce a set of vectors va(i) , i = 1, . . . , q , such that va(i)v
(j)
a = δji

and furthermore va(i)ua = 0. As a consequence, one can have for every vector va(i), a

contribution of the form (3.4), but clearly more complicated contributions can appear as

well. The analysis of this is beyond the scope of the present paper.

We note that the introduction of the new terms in (3.4) does not a priori guarantee

that the expected classical symmetries Ŷ abcd = Ŷ (ab)(cd) = Ŷ cdab are preserved. However,

one should properly take into account that just as in (3.3), as a consequence of gauge

freedom not all of the terms in (3.4) are independent. In fact, we will see that for the

particular cases of charged black branes with q > 0 considered in this paper, the terms

appearing in (3.4) can be transformed away, so that we will find that in all our cases the

Young modulus is described by the expression (3.3). In section 4, we will give explicit

examples of charged black branes exhibiting these properties. It would be interesting to

examine whether more general bent charged black brane solutions can be constructed that

necessitate the introduction of the terms in (3.4), and, moreover, whether in those cases

there is an anomalous contribution violating the classical symmetries mentioned above.

3.2 Electric dipole moment and piezoelectric moduli

We now proceed to interpret the structures entering in the decomposition of the electric

current for the different cases, focussing first on the quantity paρ relevant to the case q = 0

for which we have the current defined in (2.7). In close parallel to the bending moment

in (3.1), a charged brane can have an electric dipole moment P aρ due to the finite thickness.
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This is obtained by evaluating

P aρ =

∫

Σ
dD−1x

√−g Jµuaµx
ρ =

∫

Bp

dpσ
√−γ paρ , (3.5)

and hence the structure paρ should be interpreted as a density of worldvolume electric

dipole moment. Note that in the case of a point particle the structure paρ appearing in

the decomposition (2.19) can be gauged away due to the ‘extra symmetry 2’ since it only

has one worldvolume index component pτρ where τ is the proper time direction of the

worldline. Since by eq. (2.28) we have that δ2p
τρ = −Jτ

(0)ε̃
ρ , one can always choose ε̃ρ

such that the component pτρ vanishes. However, as discussed below eq. (3.1), the same

symmetry can be used to gauge away the bending moment of a point particle. Since this

uses the same gauge parameter, it is generally not possible to gauge away both the bending

moment and the electric dipole moment at the same time. For extended objects (p ≥ 1)

the electric dipole moment cannot be removed generically.

We now specialize to a class of branes for which the form of paρ is that expected from

classical electroelasticity theory

paρ = κ̃abcKbc
ρ , (3.6)

which is the covariant generalization of the usual relation for the electric dipole moment of

classical piezoelectrics [19]. Here, κ̃abc is a set of piezoelectric moduli encoding the brane

response to bending deformations. The structure of κ̃abc has not been yet classified from

an effective action perspective as was the case for (3.3). However, based on covariance, it

is easy to write down the expected form for the cases we consider such that κ̃abc obeys the

symmetry property κ̃abc = κ̃a(bc) and respects the gauge freedom set by the transformation

rule (2.28). This leads to the form

κ̃abc = −2
(

κ1(k;T,ΦH)γa(bkc) + κ2(k;T,ΦH)kakbkc + κ3(k;T,ΦH)kaγbc
)

. (3.7)

In parallel with (3.3) this contains gauge-dependent terms with respect to the ‘extra sym-

metry 2’, which have the form k Ja
(0)γ

bc, with k the gauge parameter. In all, there is only

one independent κ-parameter when using also the equations of motion.

We now turn our attention to the case of general p-branes carrying smeared q-brane

charge with q > 0. The generalization of (3.5) is the electric dipole moment P a1...aq+1ρ

defined by

P a1...aq+1ρ =

∫

Σ
dD−1x

√−g Jµ1...µq+1ρua1µ1
. . . u

aq+1
µq+1x

ρ =

∫

Bp

dpσ
√−γ pa1...aq+1ρ , (3.8)

and hence pa1...aq+1ρ has the same interpretation as for the q = 0 case. Now according

to the expectation from classical electro-elastodynamics we assume the following form for

pa1...aq+1ρ

pa1...aq+1ρ = κ̃a1...aq+1bcKbc
ρ , (3.9)

where κ̃a1...aq+1bc inherits the symmetries of pa1...aq+1ρ, that is, κ̃a1...aq+1bc = κ̃[a1...aq+1]bc

and also the property κ̃a1...aq+1bc = κ̃a1...aq+1(bc). In particular, for q = 1, one expects a
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structure of the form

κ̃abcd = −2
(

κ1(k, ζ;T,ΦH)ζ[aγb](ckd) + κ2(k, ζ;T,ΦH)ζ[akb]kckd

+κ3(k, ζ;T,ΦH)ζ[akb]ζcζd + κ4(k, ζ;T,ΦH)ζ[akb]γcd
)

.
(3.10)

Again, this includes a gauge-dependent term of the form k Jab
(0)γ

cd. The symmetry property

of the piezoelectric moduli κ̃abcd for q ≥ 1, namely the anti-symmetry in its first q+1 indices

is not something that has a classical analogue and has not been previously considered in

the literature of charged elastic solids. In section 4 we will give examples of κ̃a1...aq+1bc

measured from charged black branes in gravity. In particular, we will find that for all the

cases considered in this paper, there is only one independent contribution.

3.3 Spin current and magnetic dipole moment

As mentioned in the beginning of section 2 the structure jbµν accounts for the spinning

degrees of freedom of the brane [11, 17]. This can be seen by using the stress-energy tensor

in (2.1) and constructing the total angular momentum in a (µ, ν)-plane orthogonal to the

brane as

Jµν
⊥ =

∫

Σ
dD−1x

√−g
(

Tµ0xν − T ν0xµ
)

=

∫

Bp

dpσ
√−γ j0µν . (3.11)

Hence we recognize jbµν as the angular momentum density on the brane. Angular mo-

mentum conservation follows because the brane worldvolume spin current jbµν is con-

served [11, 17]. As we will now see, this quantity is also expected to play a role in relation

to a particular component of the dipole contribution to the electric current for branes with

q-charge.

For this we first turn to the quantity mµν entering the decomposition of the electric

current for q = 0. Here, it is instructive to furthermore start by considering the case of

a point particle (p = 0) with point-like charge. This can have a magnetic dipole moment

Mµν obtained by evaluating

Mµν =

∫

Σ
dD−1x

√−g (Jµxν − Jνxµ) =

∫

Bp

dpσ
√−γ mµν . (3.12)

Therefore, mµν should be seen as a worldvolume density of magnetic dipole moment. Since

a magnetic dipole moment requires a moving charge, the most natural thing is to expect

mµν to be proportional to the spin current jτµν of the particle. This interpretation also

holds for any p-brane with smeared 0-brane charge and generically one should expect

mµν = λ(σb)uaj
aµν , (3.13)

for some worldvolume function λ(σb). Turning to the case of general p-branes carrying a

smeared q-brane charge with q > 0, we can evaluate the magnetic dipole moment

Ma1...aqµν =

∫

Σ
dD−1x

√−g (Jµ1...µqµxν − Jµ1...µqνxµ)ua1µ1
. . . u

aq
µq =

∫

Bp

dpσ
√−γ ma1...aqµν ,

(3.14)
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and hence generically the structure ma1...aqµν should be interpreted as a density of magnetic

dipole moment. Moreover, in analogy with (3.13) we expect this to be related to the spin

current via the generic form

ma1...aqµν = Ξa1...aq
bj

bµν , (3.15)

where Ξa1...aq
b is totally anti-symmetric in its indices a1 . . . aq. We will not find explicit

examples of these responses to the spin in this paper, since the black branes that we consider

in section 4 are non-spinning.

4 Measuring the response coefficients

In this section we construct a class of bent charged black brane geometries and measure

their response coefficients. These provide explicit realizations in (super)gravity theories of

the general results for charged fluid branes presented in sections 2 and 3. We begin by

describing the framework for obtaining the response coefficients characterized in section 3

from the large r-asymptotics of a charged black brane solution. We then describe in

detail the solution generating techniques used in order to obtain large classes of charged

bent metrics. Finally, we provide the thermodynamics, the Young modulus (3.3) and the

piezoelectric moduli (3.7), (3.10) of the solutions constructed using these techniques.8

4.1 Setup and large r-asymptotics

We consider asymptotically flat charged dilatonic black brane solutions of the theory with

action

S =
1

16πG

∫

dDx
√−g

[

R− 1

2
(∇φ)2 − 1

2(q + 2)!
eaφH2

[q+2]

]

, (4.1)

where we note that the field content consists of the metric gµν , the (q + 1)-form gauge

potential A[q+1] with field strength H[q+2] = dA[q+1] and the dilaton φ. The measurement

of the Young modulus and the piezoelectric moduli of bent black branes has been considered

previously in the literature. The Young modulus of neutral black strings was first measured

in [11] and later extended to black p-branes in [12]. In appendix B we review these results

in detail and provide further details on the notation used here. The first example of the

piezoeletric moduli was measured for the charged black string in EMD theory [13] and here

we will extend this analysis to large classes of bent charged p-branes that are solutions of the

action (4.1). In particular, we will consider a subset of solutions of the action (4.1) which

falls into the class of the generalized Gibbons-Maeda black brane family of solutions found

in ref. [22], describing p-branes with smeared q-brane charge with p ≥ q. In section 4.2, we

will provide the details on how the bent versions of these solutions are constructed.

We now outline the method used to measure these response coefficients for generic

black brane solutions in the theory described by (4.1). As mentioned in the beginning of

8We note that for the bent branes obtained in this way, one could in principle derive the dipole-corrected

stress-energy tensor, current and equations of motion by applying the same solution generating transfor-

mations on the corresponding quantities for neutral branes [11, 27]. The resulting system is then a special

case of the more general results obtained in section 2.
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section 2, bent branes acquire a bending moment which in turn implies a dipole correction

Tµνρ
(1) to the stress-energy tensor and if the brane is charged an electric dipole moment

J
µ1...µq+1ρ

(1) is also induced. To measure these from a gravitational solution in a theory with

action (4.1) we look at its large r-asymptotics where the geometry and gauge field, as seen

from a distant observer, can be replaced by effective sources of stress-energy and current.

The task is then to find the effective stress-energy tensor (2.1) and current (2.7) that source

the charged brane solution. To this end, we note that the equations of motion that follow

from the action (4.1) in the presence of sources are given by

Gµν −
1

2
∇µφ∇νφ− 1

2(q + 1)!
eaφ
(

Hµρ1...ρq+1H
ρ1...ρq+1

ν − 1

2(q + 2)
H2gµν

)

= 8πGTµν ,

(4.2)

∇ν

(

eaφHνµ1...µq+1

)

= −16πGJµ1...µq+1 , �φ− a

2(q + 2)!
eaφH2 = 0 , (4.3)

where Tµν and Jµ1...µq+1 are the effective stress-energy tensor and current given in eq. (2.1)

and eq. (2.7) respectively and encode the brane dynamics far from the black brane horizon.

The bending moment (3.2) and the electric dipole moment (3.9) are then related, via

eqs. (4.2)–(4.3), to the dipole corrections occurring in the different fields as one approaches

spatial infinity, which by definition have the fall-off behaviour O
(

r−n−1
)

[11]. In particular,

the bending moment is related to the dipole contributions to the metric gµν far away from

the brane horizon. It is therefore convenient to decompose the metric according to

gµν = ηµν + h(M)
µν + h(D)

µν +O(r−n−2) , (4.4)

where the coefficients h
(M)
µν represent the monopole structure of the metric, generically of

order O (r−n), while the coefficients h
(D)
µν represent the dipole deformation of the metric of

order O
(

r−n−1
)

. Similarly, the electric dipole moment is related to the dipole contributions

to the gauge field Aµ1...µq+1 , also of order O
(

r−n−1
)

. Therefore we decompose the gauge

field such that

Aµ1...µq+1 = A(M)
µ1...µq+1

+A(D)
µ1...µq+1

+O
(

r−n−2
)

, (4.5)

where again the labels (M) and (D) indicate the monopole and dipole contributions re-

spectively to the gauge field Aµ1...µq+1 . We note that in the cases studied here, there are no

response coefficients associated with the dilaton φ, a fact that renders the analysis of the

dilaton equation of motion given in (4.2) unnecessary. In the following, we will review how

the bending and electric dipole moments as well as the corresponding response coefficients

can be extracted from the linearized equations of motion. We should emphasize that the

procedure that will be outlined here only works under the assumption that there are no

background fields, namely, no background gauge field nor a non-zero background dilaton

and that the background metric is asymptotically flat.

Measuring the Young modulus. Expanding the r.h.s. of eq.(4.2) according to eq. (2.1)

and using the decomposition (2.3), one finds that the dipole contribution to the metric
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should satisfy the linearized equation of motion

∇2
⊥h̄

(D)
µν = 16πGd r⊥

µν ∂r⊥δ
n+2(r) , ∇µh̄

µ
ν = 0 , (4.6)

where we have defined

h̄(D)
µν = h(D)

µν − h(D)

2
ηµν , h(D) = ηµνh(D)

µν , (4.7)

and the Laplacian operator is taken along transverse directions to the worldvolume. The

direction cosine r⊥ = r cos θ is transverse to the direction along which the brane is bent.

It is convenient to exhibit the explicit r- and θ-dependence of the the asymptotic form of

the dipole contributions, thus we define

h
(D)
ab = f

(D)
ab cos θ

rn+2
0

rn+1
, h(D)

rr = f (D)
rr cos θ

rn+2
0

rn+1
, h

(D)
ij = r2gijf

(D)
ΩΩ cos θ

rn+2
0

rn+1
, (4.8)

where f
(D)
µν are the asymptotic metric coefficients which do not depend on r neither on θ.9

With this definition, the transverse gauge condition gives rise to the constraint

ηabf
(D)
ab + f (D)

rr + (n− 1)f
(D)
ΩΩ = 0 , (4.9)

and hence one obtains

h(D) = 2f
(D)
ΩΩ cos θ

rn+2
0

rn+1
. (4.10)

The dipole contributions to the metric are therefore given by10

d̂ab = f̄
(D)
ab = f

(D)
ab − f

(D)
ΩΩ ηab , (4.11)

and hence the Young modulus Ỹ abcd can then be obtained via eq.(3.2).

Measuring the piezoelectric moduli. The procedure for obtaining the piezoelectric

moduli follows a similar logic. Using the linearized version of eq. (4.3) together with

the expansion given by eq. (2.7) and corresponding decomposition (see eq. (2.19) and

eq. (2.29)), one finds that the gauge field satisfies

∇2
⊥A

(D)
µ1...µq+1

= 16πGpµ1...µq+1
r⊥∂r⊥δ

(n+2)(r) , ∇µA
µν1...νq = 0 , (4.12)

where it has been assumed that the dilaton vanishes at infinity. Again, it is convenient to

write the asymptotic gauge field coefficients as

A(D)
µ1...µq+1

= a(D)
µ1...µq+1

cos θ
rn+2
0

rn+1
. (4.13)

9Here f
(D)
ΩΩ is the same function for all transverse sphere indices.

10Note that here we have defined dab =
Ω(n+1)r

n

0

16πG
r20 d̂ab and omitted the transverse index r⊥ from dab

r⊥

since, according to the analysis of [12], also valid for the case at hand, perturbations in each direction r⊥

decouple from each other to first order in the derivative expansion.
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The electric dipole moment (3.6) follows from eqs. (4.12)–(4.13) leading to the simple

relation11

p̂a1...aq+1 = a(D)
a1...aq+1

. (4.14)

The piezoelectric moduli κ̃a1...aq+1bccan then be extracted from (4.14) via eq. (3.9). This

concludes our review of how the response coefficients are obtained from the field content

of bent black brane solutions far away from the brane horizon. We shall now turn to the

construction of actual solutions and provide their response coefficients as examples of this

procedure.

4.2 Solution generating techniques

As mentioned in the previous section, we consider the generalized Gibbons-Maeda solutions

of the action (4.1) and obtain bent versions for a subset of these. These solutions consist of

dilatonic black p-branes with smeared electric q-charge. Here we present the leading order

solution for which the metric is given by

ds2 = h−A
(

−fdt2 + d~y
)

+ hB
(

f−1dr2 + r2dΩ2
(n+1) + d~z

)

, (4.15)

where ~y labels the q directions in which the gauge field has non-zero components and ~z labels

the remaining p− q smeared directions. The two harmonic functions entering (4.15) are

f(r) = 1− rn0
rn

and h(r) = 1 +
rn0
rn

sinh2 α , (4.16)

where the two parameters r0 and α are the horizon radius and charge parameter respec-

tively, which are related to the temperature and chemical potential of the solution. The

gauge field in turn is given by

A[q+1] = −
√
N

rn0
rnh(r)

coshα sinhα dt ∧ dy1 ∧ . . . ∧ dyq , (4.17)

while the dilaton reads

φ =
1

2
Na log h(r) , (4.18)

where N = A + B. Finally, the exponents A and B are constant numbers depending

on p, q, n and the dilaton coupling a. We will provide these for the particular subset of

solutions considered below, all of which satisfy N = 1. From the solution (4.15)–(4.18) it

is straight forward to obtain the monopole corrections h
(M)
µν and A

(M)
µ1...µq+1 , appearing in

the decompositions (4.4) and (4.5) respectively, via eqs. (4.2)–(4.3).

Classes of bent metrics. In order to obtain the dipole corrections h
(D)
µν and A

(D)
µ1...µq+1

for a subset of the solutions (4.15)–(4.18) we use different solution generating techniques.

These techniques allows us to construct bent black branes with smeared q-brane charge

and Kaluza-Klein dilaton coupling. To generate these charged geometries we take as seed

11Note that here we have defined pa1...aq+1 =
Ω(n+1)r

n

0

16πG
r20 p̂a1...aq+1 and again omitted the transverse index

r⊥ from pa1...aq+1
r⊥ in parallel with our definition of dab

r⊥ (see footnote 10).
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solution the elastically perturbed neutral black brane obtained in ref. [12], which is reviewed

in detail in appendix B.

The first class of solutions that we consider consists of black dilatonic p-branes with

a single Maxwell gauge field. This class is constructed by uplifting the seed solution with

m + 1 additional flat directions. The resulting metric is then boosted along the time

direction and one of the uplifted directions and followed by a Kaluza-Klein reduction along

that particular uplifted and boosted direction. In this way we obtain p-brane solutions

carrying Maxwell charge (q = 0). All the brane directions lie along the directions labelled

by ~z which were introduced in (4.15). The extra m directions appearing as a byproduct of

the uplift remain flat directions while the other worldvolume directions are now bent. The

resulting solution will therefore be characterized by an isotropic stress-energy tensor. The

details of this construction are presented in appendix C.1.

The second class of solutions we consider are solutions to type II string theory in

D = 10 dimensions where we can use T-duality in order to generate higher-form gauge

fields. The action describing this theory is given in eq. (C.23). The solution generating

technique works in the following way. Starting with a p-brane carrying 0-brane charge,

one can perform successive T-duality transformations on the m flat directions leading to a

p-brane with q-brane charge, where q = m. The effect of this transformation is to introduce

higher-form fields and to unsmear the m flat directions. In practice, this transforms the m

directions originally included in ~z into m directions now included in ~y. We thus end up with

Dq-brane solutions smeared in (p − q)-directions constrained by the condition n + p = 7

with n ≥ 1. These solutions are characterized by an anisotropic stress-energy tensor to

leading order. The details of this construction are presented in appendix C.2.

It should be mentioned that both classes of generated solutions are valid for n ≥ 1, but

in order to measure the response coefficients one must require that n ≥ 3 such that self-

gravitational interactions are sub-leading with respect to the fine structure corrections [11].

Also, it is crucial to point out that we measure the response coefficients under the assump-

tion that the extrinsic curvature components satisfy Kta = 0 for all a. If this was not

the case the solution generating technique that we use here would introduce a background

gauge field and a non-zero background dilaton which we did not consider in measurement

procedure outlined in the beginning of section 4.

4.3 Worldvolume stress-energy tensor and thermodynamics

Here we present the thermodynamic quantities characterizing the worldvolume stress-

energy tensor T ab
(0) and worldvolume electric current J

a1...aq+1

(0) of the solutions generated

using the methods outlined in the previous section. The worldvolume stress-energy tensor

takes the form12

T ab
(0) = εuaub + P⊥

(

γab + uaub −
q
∑

i=1

va(i)v
b
(i)

)

+ P‖

q
∑

i=1

va(i)v
b
(i) , (4.19)

12Notice that this form of the worldvolume stress-energy tensor and current is certainly not the most

general form for the stress-energy tensor and current of the Gibbons-Maeda family of solutions with q < p

charge, however, for the cases q = 0, 1 the form presented here is the most general form [22].
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while the worldvolume electric current reads

J
a1...aq+1

(0) = (q + 1)!Qu[a1va2(1) . . . v
aq+1]

(q) . (4.20)

Note that the form presented here is the same as that obtained to leading order in the

expansion. Indeed, as noted in [8, 12, 13] for elastically perturbed black branes there are

no corrections to the worldvolume stress-energy tensor T ab
(0) to order O(ε̃). This fact is

supported by a general analysis of the effective action for stationary black holes [17] which

applies to the cases studied here. Therefore, the thermodynamic quantities entering (4.19)–

(4.20) do not suffer corrections to this order. Thus, the energy density ε, the pressure P‖

in the q-directions, and the pressure P⊥ in the p−q remaining directions of the worlvolume

are given by the leading order results [22]

ε =
Ω(n+1)

16πG
rn0
(

n+ 1 + nN sinh2 α
)

,

P‖ = −
Ω(n+1)

16πG
rn0
(

1 + nN sinh2 α
)

, P⊥ = −
Ω(n+1)

16πG
rn0 ,

(4.21)

where the various quantities are parameterized in terms of a charge parameter α and the

horizon radius r0. Furthermore, the local temperature T , the local entropy density s, the

local charge density Q and the local chemical potential Φ are given by

T =
n

4πr0(coshα)N
, s =

Ω(n+1)

4G
rn+1
0 (coshα)N ,

Q =
Ω(n+1)

16πG
n
√
N rn0 coshα sinhα , Φ =

√
N tanhα .

(4.22)

Note again that for all the solutions constructed in this paper we have that N = 1.

4.4 Black branes carrying Maxwell charge

In this section we present the response coefficients for the first class of solutions described

in section 4.2 consisting of dilatonic black p-branes with a single Maxwell gauge field. The

details of this construction are presented in appendix C.1. For the q = 0 case the leading

order worldvolume stress-energy tensor (4.19) is isotropic

T ab
(0) =

Ω(n+1)

16πG
rn0

(

n(1 +N sinh2 α)uaub − γab
)

, (4.23)

while the leading order electric current is simply

Ja
(0) = Qua . (4.24)

To first order in the perturbation expansion, solving Einstein equations for the perturbed

metric such that the horizon remains regular requires solving the leading order blackfold

equations [8, 12] obtained by setting dabρ = 0 in eqs. (2.4), (2.5). For a stress-energy tensor

of the form (4.23), this implies that the following equation of motion must be satisfied

n(1 +N sinh2 α)uaubK i
ab = Ki , (4.25)
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where Ki ≡ γabKab
i is the mean extrinsic curvature vector. For example, by only

considering perturbations along a single direction î, i.e., an extrinsic curvature ten-

sor of the form K î
ab = diag(0,−1/R, 0, . . .) one finds the leading order critical boost

ua = [coshβ, sinhβ, 0, . . .] where [22]

sinh2 β =
1

n(1 +N sinh2 α)
. (4.26)

The solution to the intrinsic equation (2.4), generically for q = 0, is obtained by requiring

stationarity of the overall configuration ua = ka/k and setting the global horizon temper-

ature T and global horizon chemical potential ΦH such that T = |k|T and ΦH = |k|Φ [22].

Using these relations we can express the solution parameters r0 and α in terms of the global

quantities using the thermodynamic quantities given in (4.22) such that

r0 =
n

4πT
|k|
(

1− Φ2
H

|k|2
)

1
2

, tanhα =
ΦH

|k| . (4.27)

The solutions constructed in appendix C.1 are automatically stationary due to the station-

arity of the neutral seed solution. The stress-energy tensor components of the solution to

order O(ε̃) are

T ab
(0) =

Ω(n+1)

16πG
rn0

(

n cosh2 αuaub − ηab
)

, T
yiyj
(0) = P⊥δ

yiyj , (4.28)

with a = (t, zi). This result agrees with the form (4.23) by noting that uyi = 0. For p = 1

and m = 1 this would correspond to a charged tube.

Response coefficients. The components of the Young modulus can be obtained from

the bending moment acquired by the bent metric which is given in eq. (C.20) together with

eq. (3.2). It takes the covariant form

Ỹ cd
ab = P⊥r

2
0ξ2(n) cosh

2 α

[

3n+ 4

n2(n+ 2)
ηabη

cd +
1

(n+ 2) cosh2 α
δ(a

cδb)
d + 2u(aδb)

(cud)
]

− k̄ξ2(n)r
2
0

[

T
(0)
ab ηcd + ηabT

cd
(0)

]

,

(4.29)

where k̄ is a dimensionless gauge parameter and the function ξ2(n) is given by

ξ2(n) =
n tan(π/n)

π

Γ
(

n+1
n

)4

Γ
(

n+2
n

)2 , n ≥ 3 . (4.30)
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From eq. (3.3) together with (4.27) we can obtain the associated non-vanishing λ-

coefficients, which read

λ1(k;T,ΦH) =
Ω(n+1)

16πG
ξ2(n)

( n

4πT

)n+2
|k|n+2

(

1− Φ2
H

|k|2
)

n
2
(

3n+ 4

2n2(n+ 2)
−k̄

(

1− Φ2
H

|k|2
))

,

λ2(k;T,ΦH) =
Ω(n+1)

16πG
ξ2(n)

( n

4πT

)n+2
|k|n+2

(

1− Φ2
H

|k|2
)

n
2
+1

1

2(n+ 2)
,

λ3(k;T,ΦH) =
Ω(n+1)

16πG
ξ2(n)

( n

4πT

)n+2
|k|n

(

1− Φ2
H

|k|2
)

n
2

,

λ4(k;T,ΦH) = λ3(k;T,ΦH)nk̄ .

(4.31)

Therefore, from (4.31) we only have 3 independent transport coefficients. Similarly, the

components of the piezoelectric moduli can be obtained from the electric dipole moment

given in eq. (C.22) together with eq. (3.6). When written in a covariant form it reads

κ̃ bc
a = −ξ2(n)r

2
0

(Q
n
δa

(buc) + k̄J (0)
a ηbc

)

. (4.32)

Again, we can obtain the associated non-vanishing κ-coefficients using eq. (3.7) and the

relations (4.27) yielding

κ1(k;T,ΦH) =
Ω(n+1)

16πG

ξ2(n)

2

( n

4πT

)n+2
ΦH |k|n

(

1− Φ2
H

|k|2
)

n
2

,

κ3(k;T,ΦH) = κ1(k;T,ΦH)nk̄ ,

(4.33)

and therefore only one of the response coefficients is independent. Note that some of the

coefficients presented in (4.31) and (4.33) are gauge dependent. The Young modulus (4.29)

and the piezoelectric moduli (4.32) obtained here agree with the results of the case p = 1

studied in ref. [13] when using the map given in appendix B.3. We conclude that the bent

black branes carrying Maxwell charge constructed in this paper are characterized by a total

of 3+1=4 independent response coefficients.

4.5 Smeared black Dq-branes

In this section we specialize to black branes in type II string theory in D = 10 and present

the corrections to the stress-energy tensor (2.1) and current (2.7) as well as the response

coefficients. This class of solutions consists of black p-branes carrying Dq-charge and are

solutions to the equations of motion that follow from the action (C.23). The details of this

construction are presented in appendix C.2. The components of the monopole source of

stress-energy tensor can be obtained from the solution given in eq. (C.25) and read

T ab
(0) =

Ω(n+1)

16πG
rn0

(

n cosh2 αuaub − ηab
)

, T
yiyj
(0) = P‖δ

yiyj , (4.34)

with a = (t, zi). We thus see that the effect of the T-duality transformation is to unsmear

the ~y directions, which can be easily realized when comparing the above stress-energy tensor
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with (4.28). For this particular class of solutions the stress-energy tensor given in (4.34)

can be put into the form (4.19) by taking uyi = 0 and noting that the v
(i)
yi vectors only take

values in the y-directions, e.g., v
(2)
yi = (0, 1, 0, . . . , 0). Similarly, the electric current can be

put into the form (4.20).

Branes carrying string charge. In the case of q = 1 the worldvolume stress-energy

tensor (4.19) reduces to

T ab
(0) =

Ω(n+1

16πG
rn0

(

nuaub − γab − nN sinh2 α(−uaub + vavb)
)

, (4.35)

where we have omitted the index (1) from the vector v
(1)
a . The leading order equilibrium

condition for configurations with N = 1 is obtained by solving eq. (2.5) when dabρ = 0 such

that

n(uaub cosh2 α− vavb sinh2 α)K i
ab = Ki , (4.36)

while the leading order solution to the intrinsic equation (2.4), in the case of q = 1, is

again obtained by the requirement of stationarity ua = ka/k and by taking T = |k|T
and ΦH = 2π|ζ||k|Φ [22]. The solution parameters r0 and α expressed in terms of global

quantities using the thermodynamic quantities (4.22) read

r0 =
n

4πT
|k|
(

1− 1

(2π)2
Φ2
H

|k|2|ζ|2
)

1
2

, tanhα =
1

2π

ΦH

|k||ζ| . (4.37)

The components of the Young modulus can be obtained from the dipole contributions to

the metric given in eq. (C.31). This results in the same form as that obtained previously

in (4.29) but now with T
(0)
ab given by eq. (4.35). The associated non-vanishing λ-coefficients

now enjoy the intrinsic dynamics defined by the relations (4.37) and are given by

λ1(k, ζ;T,ΦH) =
Ω(n+1)

16πG
ξ2(n)

( n

4πT

)n+2
|k|n+2

(

1− 1

(2π)2
Φ2
H

|k|2|ζ|2
)

n
2

×
(

3n+ 4

2n2(n+ 2)
− k̄

(

1− 1

(2π)2
Φ2
H

|k|2|ζ|2
))

,

λ2(k, ζ;T,ΦH) =
Ω(n+1)

16πG
ξ2(n)

( n

4πT

)n+2
|k|n+2

(

1− 1

(2π)2
Φ2
H

|k|2|ζ|2
)

n
2
+1

1

2(n+ 2)
,

λ3(k, ζ;T,ΦH) =
Ω(n+1)

16πG
ξ2(n)

( n

4πT

)n+2
|k|n

(

1− 1

(2π)2
Φ2
H

|k|2|ζ|2
)

n
2

, (4.38)

λ4(k, ζ;T,ΦH) =λ3(k, ζ;T,ΦH)nk̄ .

The piezoelectric moduli is a natural generalization of the q = 0 case given in (4.32). It

can be obtained from the electric dipole moment given in eq. (C.32) and takes the form

κ̃ cd
ab = −ξ2(n)r

2
0

(

2
Q
n
δ[a

(cvb]u
d) + k̄J

(0)
ab ηcd

)

, (4.39)
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where κ̃ cd
ab satisfies the property κ̃ cd

ab = κ̃
(cd)

[ab] . Finally, the associated non-vanishing

κ-coefficients are given by

κ1(k, ζ;T,ΦH) =
Ω(n+1)

16πG

ξ2(n)

2

( n

4πT

)n+2
ΦH |k|n

(

1− 1

(2π)2
Φ2
H

|k|2|ζ|2
)

n
2

,

κ3(k, ζ;T,ΦH) = κ1(k, ζ;T,ΦH)nk̄ .

(4.40)

Again notice that a subset of the coefficients presented in (4.38) and (4.40) show gauge

dependence. We conclude that these branes carrying string charge are characterized by a

total of 3+1=4 independent response coefficients.

Branes charged under higher-form fields. For the case 1 < q < p, one can again

obtain the Young modulus from the bending moment given in eq. (C.31). It will again

lead to the expression written in eq. (4.29) but now with T ab
(0) given by (4.19). For the

piezoelectric moduli, by means of eq. (C.32), we find the natural generalization

κ̃
cd

ba1...aq
= −ξ2(n)r

2
0

(

(q + 1)!
Q
n
δ[b

(cv(1)a1 . . . v
(q)
aq ]

ud) + k̄J
(0)
ba1...aq

ηcd
)

, (4.41)

which satisfies the property κ̃
cd

ba1...aq
= κ̃

(cd)
[ba1...aq ]

.

We thus find that the Young modulus and the piezoelectric moduli of all the strained

charged black brane solutions considered in this paper can be parameterized by a total of

4 response coefficients. The fact that we find the same form for the response coefficients

associated with the Young modulus is not surprising, since all the solutions obtained here

are only perturbed along smeared directions.

5 Discussion

We have obtained the general form of the equations of motion to pole-dipole order of fluid

branes carrying higher-form charge, generalizing the results for neutral pole-dipole branes

obtained in [11, 27]. These results are important in understanding finite size effects when

applying the blackfold approach [14, 15] to charged branes in supergravity [21–23]. While

this has been our main motivation, these results may be of more general use in the study

of charged extended objects in other settings.

By assuming linear response theory we have, following [11, 13], subsequently proposed

general forms of the relevant response coefficients, Young modulus and piezoelectric moduli,

that characterize stationary bent charged (an)isotropic fluid branes. These results, together

with the leading order corrections to the effective action for stationary neutral fluid branes

found recently in [17], constitute useful inputs towards the formulation of the general ef-

fective theory of thin elastic charged fluid branes. It would obviously be an interesting

problem to find this effective theory and extend it to higher orders. In this connection we

note that for the case of p-branes with q > 1 smeared charged, a complete characterization

of stationary blackfold solutions has not been developed yet, which would be a first step

towards constructing the general effective theory. Another important, but technically chal-

lenging, next step would be to obtain the metric of bent black branes to second order in
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the thin brane expansion. This would provide further clues to a more formal development

of electroelasticity of black branes. In that context, it would be interesting to investigate

whether the linear response type relations of eqs. (3.2), (3.6), (3.9) and generalizations

thereof, can be proven using general covariance and the laws of thermodynamics.

To find explicit realizations in gravity of this electroelastic behavior, we have used

solution generating techniques and neutral bent black brane geometries [8, 12] as seed so-

lutions, to construct large classes of bent charged black brane solutions, carrying Maxwell

or higher-form charge smeared along worldvolume directions but transverse to the world-

volume current. In the former case the branes are isotropic, while in the latter they are

anisotropic. By measuring the bending moment and the electric dipole moment which

these geometries acquire due to the strain, we have then explicitly verified that these quan-

tities are captured by classical electroelasticity theory. In particular, we found that the

Young modulus and piezoelectric moduli of our strained charged black brane solutions are

parameterized by a total of 3+1=4 response coefficients, both for the isotropic as well as

anisotropic cases. While our branes provide an interesting realization of electroelastic be-

havior of charged fluid branes, it is not surprising that they are characterized by just one

more response coefficient, as compared to bent neutral black branes. This is a consequence

of the fact that we obtain them by a solution generating technique, which causes the branes

to be bent only in the smeared directions. It would therefore be very interesting to find

more general bent black brane geometries, in which the bending also takes place in the

directions in which the brane is charged. This study will be presented elsewhere.

A particularly interesting special case of this would be to obtain, to first order, the

metric of a bent D3-brane in type IIB string theory. This would allow to explore the physical

interpretation of these response coefficients in the context of AdS/CFT. In this setting,

we expect further finite thickness effects due to the coupling to the 5-form flux, namely

an extra contribution to the dipole electric (magnetic) moment would appear which would

allow us to measure electric (magnetic) susceptibilities. More generally, understanding the

coupling of fluid branes to background fluxes and understanding polarization effects would

be interesting to pursue. Moreover, examining the effect of Chern-Simons terms on the

response coefficients computed in this paper, would also be relevant, in part due to the

relation of these terms to the anomaly [3, 4, 34] via the gauge/gravity correspondence.

Further cases in gravity, including supergravity theories relevant to string theory, that

would be worthwhile to study in the context of this paper would be spinning charged

branes, allowing to see the responses corresponding to the magnetic moment discussed in

section 3.3. In another direction one could generalize the analysis to multi-charge brane

configurations, for which interesting leading order blackfold solutions were discussed in

ref. [23]. We also note that examining the elastic corrections for thermal string probes [21,

33, 35–40] is expected to shed further light on the physics of these finite temperature

objects, that where obtained using the blackfold method.

Finally, it would be very interesting to examine whether the electroelastic behavior

found here can provide clues towards the microscopics of black holes and branes. The

AdS/CFT context, already mentioned above, would probably be the most natural starting

point for this, but more generally for the asymptotically flat black branes considered in this
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paper, this holds the potential of providing valuable insights towards flat space holography.

Put another way, one may wonder whether there is a microscopic way to derive the type

of response coefficients that we have encountered in this work.
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A Details on the derivation of the equations of motion

In this appendix we give further details on the derivation of the equations of motion for

p-branes carrying string charge (q = 1).

A.1 Pole-dipole branes carrying string charge

Pole-dipole p-branes carrying string charge are characterized by an anti-symmetric current

Jµν of the form (2.7). In order to solve eq. (2.8) we introduce an arbitrary tensor field

fµ(x
α) of compact support and integrate (2.8) such that

∫

dDx
√−g fν(x

α)∇µJ
µν = 0 . (A.1)

We now decompose fµ(x
α) in parallel and orthogonal components to the worldvolume such

that [27]

∇λfµ = f⊥
µλ + uaλ∇afµ ,

∇(ρ∇λ)fµ = f⊥
µλρ + 2f⊥

µ(λau
a
ρ) + fµabu

a
λu

b
ρ , ∇[ρ∇λ]fµ =

1

2
Rσ

µλρfσ .
(A.2)

Explicit calculation using (A.2) and the projectors uaλ and ⊥µ
λ leads to

fµab = ∇(a∇b)fµ−f⊥
µν∇au

ν
b , fµρa = ⊥ν

ρ∇af
⊥
µν+(∇au

b
ρ)∇bfµ+

1

2
⊥λ

ρu
ν
aR

σ
µνλfσ. (A.3)

Eqs. (A.2)–(A.3) indicate that on the worldvolume only the components f⊥
µνρ, f

⊥
µν and f⊥

µ

are mutually independent while on the boundary, as in section 2, we need to decompose

∇afµ such that [27]

∇afµ = ηa∇⊥fµ + vâa∇âfµ . (A.4)

On the brane boundary the components f⊥
µν , ∇⊥fµ and fµ are mutually independent.

Given this, solving eq. (A.1) results in an equation with the following structure

∫

Wp+1

√−γ
[

Zµνρf⊥
µνρ + Zµνf⊥

µν + Zµfµ +∇a

(

Zµνaf⊥
µν + Zµab∇bfµ + Zµafµ

)]

= 0 .

(A.5)
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This equation has the same structure as that obtained for the stress-energy tensor (2.1).

Requiring the first three terms to vanish independently leads to the equations of motion

⊥σ
ν⊥λ

ρJ
µ(νρ)
(1) = 0 , ⊥σ

ν

[

Jµν
(0) −∇a

(

⊥ν
λJ

µλρ
(1) uaρ + Jµρν

(1) uaρ

)]

= 0 , (A.6)

∇a

(

Jµν
(0)u

a
ν−2J

µ(νρ)
(1) u[aρ ∇bu

b]
ν −∇b

(

J
µ(νρ)
(1)

)

ubνu
a
ρ

)

−
(

⊥λ
νJ

σ(νρ)
(1) Rµ

σρλ+
1

2
Jσνρ
(1) Rµ

σνρ

)

= 0 .

(A.7)

These equations have exactly the same form as those obtained for the stress-energy ten-

sor [27], the difference between the two is that now we are dealing with anti-symmetric

tensors. Requiring the vanishing of the last three terms in eq. (A.5) in terms of the mutually

independent components leads to the boundary conditions

⊥ν
λJ

µ(λρ)
(1) uaρηa|∂Wp+1 = 0 , Jµλρ

(1) uaλu
b
ρηaηb|∂Wp+1 = 0 , (A.8)

[

∇â

(

J
µ(λρ)
(1) uaλu

b
ρv

â
aηb

)

− ηa

(

Jµν
(0)u

a
ν − 2J

µ(νρ)
(1) u[aρ ∇bu

b]
ν −∇b

(

J
µ(νρ)
(1)

)

ubνu
a
ρ

)]

|∂Wp+1 = 0 .

(A.9)

We now want to recast eqs. (A.6)–(A.9) into a more convenient form. First we note that

the first constraint in eq. (A.6) results in the decomposition of Jµνρ
(1) given in eq. (2.29).

Now, as in the case of the stress-energy tensor [27] we introduce the analogous tensor

structures

Qµνa = pab[µu
ν]
b + Jµνa

(1) , Mµνa = maµν − pab[µu
ν]
b , (A.10)

where Qµνa and Mµνa are both anti-symmetric in their space-time indices and furthermore

Mµνa has the property Mµν(au
b)
ν = 0. This means that the dipole correction to the current

Jµνρ
(1) can be written as

Jµνρ
(1) = 2u[µa Mν]ρa +Qµνauρa . (A.11)

Using these definitions in the second constraint given in (A.6) results in

⊥σ
ν

[

Jµν
(0) −∇a (Qµνa −Mµνa)

]

= 0 . (A.12)

Now, making the most general decomposition of Jµν
(0) which results in eq. (2.30) and taking

all the possible projections of eq. (A.12) leads to the relations

Jρa
⊥(1) = uaµ⊥ρ

ν∇c(Qµνc −Mµνc) , Jσρ
⊥(1) = ⊥σ

µ⊥ρ
ν∇c (Qµνc −Mµνc) . (A.13)

Note that, contrary to the equations of motion for the stress-energy tensor [27], we only

have two constraints. The third one, which in the case of (2.1) lead to the conservation of

the spin current jaµν , is non-existent here because both tensors introduced in (A.10) are

anti-symmetric. Finally, inserting the first relation in eq. (A.13) into eq. (A.7) we obtain

the equation for current conservation

∇a

(

J̃abuµb + uµb u
a
νu

b
ρ∇cMνρc

)

= 0 , (A.14)

– 29 –



J
H
E
P
1
0
(
2
0
1
3
)
0
3
5

where we have defined the effective worldvolume current J̃ab = J̃ [ab] such that

J̃ab = Jab
(0) − uaµu

b
ν∇cQµνc . (A.15)

It is worth noticing that all the terms proportional to the Riemann tensor in eq. (A.7) have

dropped out of the equations of motion as a consequence of the anti-symmetry of (2.7).

Moreover, at first sight, eq. (A.13) seems to contain two sets of independent equations

obtained by projecting tangentially and orthogonally to the worldvolume. This is only

apparent as the orthogonal projection of eq. (A.13),

(

J̃ab + uaνu
b
ρ∇cMνρc

)

Kab
µ = 0 , (A.16)

trivially vanishes due to the anti-symmetry of J̃ab and Mνρc and the symmetry of Kab
µ

in its two worldvolume indices. Taking the parallel projection and reintroducing maµν

and pabµ using (A.10) leads to eq. (2.32). Now, we turn our attention to the boundary

conditions (A.8)–(A.9). Introducing (A.10) leads to

⊥ν
ρQµρaηa|∂Wp+1 = 0 , (Mµρa −Qµρa)ubρηaηb|∂Wp+1 = 0 , (A.17)

[

∇â

(

J âb̂
(1)v

µ

b̂

)

− ηa

(

J̃abuµb + uµb u
a
νu

b
ρ∇cMνρc

)]

∂Wp+1

= 0 . (A.18)

Again, the orthogonal projection of eq. (A.18) vanishes and we are left with

[

vb
b̂
∇âJ

âb̂
(1) − ηa

(

J̃ab + uaνu
b
ρ∇cMνρc

)]

∂Wp+1

= 0 . (A.19)

Reintroducing now maµν and pabµ using (A.10) leads to eq. (2.35). As a final comment,

we note that these equations are invariant under both extra symmetries and their trans-

formation follows from eq. (2.37) and eq. (2.39) yielding

δ1J̃
ab = 0 , δ1Mµνa = 0 , (A.20)

δ2J̃
ab = −Jab

(0)u
c
ρ∇cε̃

ρ + J
c[a
(0)u

b]
ρ∇cε̃

ρ +∇c

(

Jab
(0)ε̃

c
)

, δ2Mµνa = Jab
(0)ε̃

[µ
⊥u

ν]
b , (A.21)

while the variations of J âb̂
(1) were given in section 2.2.

B Elastically perturbed neutral black brane: a review

In this section we review the solution obtained in [12] and the adapted (Fermi normal)

coordinates used to decouple the bending deformation along each orthogonal direction.

We also provide some details on the calculations of the Young modulus and the relation

between the solutions obtained here and the solution obtained in [11] for the bending of

the black string.
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B.1 Extrinsic perturbations

In order to study the extrinsic deformations of the worldvolume of a flat black p̃-brane one

introduces a suitable set of adapted coordinates. Due to linearity, perturbations in different

orthogonal directions of black branes decouple in suitable coordinates. This decoupling

can be achieved by using Fermi normal coordinates. Since the extrinsic curvature of the

worldvolume is the only first order derivative correction which characterizes the bending of

the brane [17], it is therefore possible to rewrite the induced metric on the brane in terms

of the extrinsic curvature tensor K i
ab .

Since in these coordinates the perturbations along each of the transverse directions

yi decouple from each other, one can consider the deformation in each normal direction

separately. One can therefore limit the analysis to the study where K i
ab is non-zero along

a single direction i = î. Introducing a direction cosine, yî = r cos θ, the uniformly boosted

flat black p̃-brane metric in the adapted coordinates is given by [12]

ds2D =

(

ηab − 2K î
ab r cos θ +

rn0
rn

ũaũb

)

dσadσb + f−1dr2 + r2dθ2 + r2 sin2 θdΩ2
(n)

+ hµν(r, θ)dx
µdxν +O(r2/R2) , (B.1)

with f(r) = 1− rn0
rn . We can now drop the index on î without loss of generality. Since the

corrections are of dipole nature one can parametrize the extrinsic perturbation functions

according to hµν(r, θ) = cos θĥµν(r) with

ĥab(r) = Kabh1(r) + ũcũ(aKb)ch2(r) +Kũaũbhγ(r) ,

ĥrr(r) = Kf(r)−1hr(r) ,

ĥΩΩ(r) = Kr2hΩ(r) .

(B.2)

The solution is invariant under the coordinate transformation

r → r +K cos θγ(r) , θ → θ +K sin θ

∫ x

dx
γ(x)

x2f(x)
, (B.3)

for which h1(r) and h2(r) are invariant, but the remaining functions transform according to

hγ(r) → hγ(r)− n
rn0
rn+1

γ(r) ,

hr(r) → hr(r) + 2γ′(r)− n
rn0
rn+1

γ(r)

f(r)
,

h′Ω(r) → h′Ω(r) + 2
γ′(r)

r
+ 2

rn0
rn+2

γ(r)

f(r)
.

(B.4)

This coordinate-gauge freedom can be eliminated by forming invariant functions and taking

combinations of the metric perturbations, e.g.

hr(r) = hr(r) +
2

n
r0

(

rn+1

rn+1
0

hγ(r)

)′

− hγ(r)

f(r)
,

h
′
Ω(r) = h′Ω(r) +

2

n

r0
r

(

rn+1

rn+1
0

hγ(r)

)′

+
2

nr

hγ(r)

f(r)
.

(B.5)
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The perturbations can then be expressed in terms of four coordinate-gauge invariant func-

tions for which the solution is

h1(r) = 2r −AP1/n

(

2
rn

rn0
− 1

)

,

h2(r) = −A
rn0
rn

[

P1/n

(

2
rn

rn0
− 1

)

+ P−1/n

(

2
rn

rn0
− 1

)]

,

hr(r) =
n+ 1

n2f(r)

[(

n

n+ 1
− 2

rn0
rn

)

(2r − h1)− h2

]

,

h
′
Ω(r) =

1

nrf(r)

(

2r − h1 +
n+ 2

2n
h2

)

,

(B.6)

with the constant

A = 2r0
Γ
[

n+1
n

]2

Γ
[

n+2
n

] . (B.7)

Here P±1/n are Legendre polynomials. The solution is ensured to be regular on the hori-

zon for any extrinsic perturbation that satisfy the leading order extrinsic blackfold equa-

tions (2.5) with dabρ = 0. Since the stress-energy tensor (4.19) of the neutral black p̃-brane is

T ab
(0) =

Ω(n+1)

16πG
rn0

(

nũaũb − ηab
)

, (B.8)

this is equivalent to the condition nũaũbKab = K.

Large r-asymptotics. In order to find the dipole corrections to the metric, from which

we will subsequently extract the bending moment of the brane, we focus on the large r-

asymptotics of the solution. Below, we list these for the neutral p̃-branes with n ≥ 3.

Given the asymptotics of the Legendre polynomials P±1/n, one finds the asymptotics of

the coordinate-gauge invariant functions to be

h1(r) =
1

n

rn0
rn−1

− ξ2(n)

n+ 2

rn+2
0

rn+1
+O(r−(n+2)) ,

h2(r) = −2
rn0
rn−1

− 2ξ2(n)
rn+2
0

rn+1
+O(r−(n+2)) ,

hr(r) =
2

n
r − 3

n2

rn0
rn−1

+
4 + 7n+ 2n2

n2(n+ 2)
ξ2(n)

rn+2
0

rn+1
+O(r−(n+2)) ,

hΩ(r) =
2

n
r − n− 3

n2(n− 1)

rn0
rn−1

− 4 + 3n+ n2

n2(n+ 2)(n+ 1)
ξ2(n)

rn+2
0

rn+1
+O(r−(n+2)) .

(B.9)

where13

ξ2(n) =
Γ
[

n−2
n

]

Γ
[

n+1
n

]2

Γ
[

n+2
n

]

Γ
[

n−1
n

]2 =
n tan(π/n)

4πr20
A2 . (B.10)

13The function ξ(n) given in [11] is related to ξ2(n) via ξ(n) = n+1
n2(n+2)

ξ2(n).

– 32 –



J
H
E
P
1
0
(
2
0
1
3
)
0
3
5

Choosing a suitable gauge. To find the actual large r-asymptotics of the metric one

has to settle upon a gauge by choosing γ(r). This choice is of course only for convenience,

since it will not affect the actual response coefficients. The coordinate-gauge invariant

functions are related to the metric perturbations via eq. (B.5). Let us parameterize the

asymptotics of the non-gauge invariant function hγ by

hγ(r) = b0r + b1
rn0
rn−1

+ k1
rn+2
0

rn+1
+ b4

r2n0
r2n−1

+ k2
r2n+2
0

r2n+1
+O

(

r−2n−2
)

, (B.11)

were the coefficients b0, b1 and b4 are in principle determined by matching the asymptotics

with the boundary conditions given in the overlap region [8]. We are however free to choose

a gauge where b0 = 0 and b1 =
1
2 . This leads to,

hr(r) =

[

n2−6+(4n2−8n)b4
2n2

]

rn0
rn−1

+

[

(k1+2k2)+
4+7n+2n2

n2(n+2)
ξ2(n)

]

rn+20

rn+1
+O

(

r−n−2
)

,

hΩ(r) =

[

3−2b4(n
2−2n)

n2(n−1)

]

rn0
rn−1

+

[

2(k1−nk2)

n(n+1)
+

4+3n+n2

n2(n+2)(n+1)
ξ2(n)

]

rn+20

rn+1
+O

(

r−n−2
)

.

(B.12)

With this choice we eliminate some of the leading order terms in hr and hΩ. Note that

we only need the dipole terms of these expansions in order to determine the response

coefficients.

B.2 Measuring the Young modulus

In this section we provide the details on how the Young modulus is obtained by applying

the procedure outlined in section 4.1 to the case at hand. The dipole contributions can be

read off from eq. (B.9) and eq. (B.12) such that

f
(D)
ab = Kab

(

− ξ2(n)

n+ 2

)

+ ũcũ(aKb)c (−2ξ2(n)) +Kũaũbk1 ,

f (D)
rr = K

[

k1 + 2k2 +
4 + 7n+ 2n2

n2(n+ 2)
ξ2(n)

]

,

f
(D)
ΩΩ = K

[

2(k1 − nk2)

n(n+ 1)
+

4 + 3n+ n2

n2(n+ 2)(n+ 1)
ξ2(n)

]

,

(B.13)

where the coefficients f
(D)
ab where defined in eq. (4.8). Since the Young modulus is obtained

using eq. (3.2), one is interested in the bending moment given by eq. (4.11). With the

transverse gauge condition given by eq. (4.9) and a redefinition of k2 such that

k1 =
2

1− n
(ξ2(n)+nk2) and − k̃ξ2(n)−

(n+ 1)(n− 4)

n2(n2 + n− 2)
ξ2(n) = k2

(

2

1− n

)

, (B.14)

one obtains the following form for the bending moment

d̂ab = −ξ2(n)

[

1

n+ 2
Kab + 2ũcũ(aKb)c +

4 + 3n

n(n+ 2)
Kũaũb + k̃ [K(nũaũb − ηab)]

]

. (B.15)
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Then using the fact that nũaũbKab = K and together with (3.2) one finally obtains the

Young modulus

Ỹ cd
ab =− n tan(π/n)

4π
A2

[

Ω(n+1)r
n
0

16πG

(

1

n+ 2
δ

c
(a δ

d
b) + 2ũ(aδ

(c
b) ũd) +

3n+ 4

n+ 2
ũaũbũ

cũd
)

+
[

T
(0)
ab ηcd + ηabT

cd
(0)

]

k̃

]

,

(B.16)

in agreement with what was found in [12].14

B.3 Relation to the black string

In this section we provide the relation to the special case of p̃ = 1 originally obtained in [11].

For this particular example we have Kab = diag (0,−1/R). The leading order stress-energy

tensor of the black string is given by (B.8). Inserting the extrinsic curvature and boost in

eq. (2.5) with dabρ = 0 we find the condition for regularity at the horizon to be s2α = 1/n,

where we have parameterized the boost as

ũa = (cα, sα) =

(

√

n+ 1

n
,

1√
n

)

. (B.17)

Given this parameterization we have that

ũcũ(aKb)c =
1

R

[

0 1
2cαsα

1
2cαsα s2α

]

. (B.18)

This can then be used together with eq. (B.15) to find the coefficients,

d̂tt =
2k2n

2(n+ 2)2 + (n+ 1)(4 + 3n+ 2n2)ξ2(n)

n2(n2 + n− 2)R
,

d̂tz =

√
n+ 1 (2nk2 + (n+ 1)ξ2(n))

n(n− 1)R
,

d̂zz =
(n+ 1)(4 + 3n)ξ2(n)

n2(n+ 2)R
.

(B.19)

In order to compare to the original result for the black string [11] one can use the relation

ξ2(n) =
n2(n+ 2)

n+ 1
ξ(n) , (B.20)

and change the gauge by

k2 =
1

2
((1− n)k̄2 − n(n+ 2)ξ(n)) , (B.21)

14Note that the Young modulus presented in [12] was defined with the opposite sign compared to the one

presented here.
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for which one finds the expected form

d̂tt = − 1

R

(

k̄2(n+ 2) + (n2 + 3n+ 4)ξ(n)
)

, d̂tz = − k̄2
R

√
n+ 1 , d̂zz =

1

R
(3n+ 4)ξ(n) .

(B.22)

Finally, we note that k̄2 = 0 corresponds, via eq. (B.21), to

k2 = −n(n+ 2)

2
ξ(n) = −n+ 1

2n
ξ2(n) , (B.23)

which by eq. (B.14) leads to

k̃ = −(n+ 1)(n+ 4)

n2(n+ 2)
. (B.24)

C Generating solutions and explicit form of metrics

In this appendix we provide the details on the construction of the two classes of solutions

described in section 4.2 using the different solution generating techniques.

C.1 Uplift-boost-reduce transformation

We generate charged solutions by using the solution generating technique consisting of

applying an uplift-boost-reduce transformation to the neutral solution given in appendix B.

In this way we obtain the first order extrinsic perturbations to charged solutions. The end

configuration will consist of dilatonic black p-brane metrics charged under a Maxwell gauge

field with Kaluza-Klein dilaton coupling.

The first step in this construction is to uplift the D-dimensional seed solution given

by eq. (B.1) with m+ 1 additional flat directions,

ds2d+1 = ds2D +

m
∑

i=1

(dyi)
2 + dx2 , (C.1)

where d = p̃ + m + n + 3. We denote the coordinates that span the original p̃-brane

directions by σa = (t, zi) with i = 1, . . . , p̃. The additional flat directions are labeled by

yi with i = 1, . . . ,m. Lastly, we have separated the flat x-direction from the rest as it will

serve as the isometry direction which we will perform the reduction over.

The second step is to apply an uniform boost [cκ, sκ], with rapadity κ along the t and

x-direction such that

g
(d+1)
tt = gttc

2
κ + s2κ , g(d+1)

xx = gtts
2
κ + c2κ , g

(d+1)
tx = sκcκ(gtt + 1) ,

g
(d+1)
tzi

= cκgtzi , g(d+1)
xzi = sκgtzi , (C.2)

where g(d+1) is the boosted metric and g is the metric given by (C.1).

Finally, we can perform a reduction along the x-direction. The Einstein frame decom-

position is given by

ds2(d+1) = e2ãφds2(d) + e2(2−d)ãφ(dx+Aµdx
µ)2 , ã2 =

1

2(d− 1)(d− 2)
, (C.3)
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where Aµ is the gauge field and φ the dilaton. The Lagrangian density is decomposed

according to

√

−g(d+1) R(d+1) =
√

−g(d)

(

R(d) −
1

2
(∂φ)2 − 1

4
e−2(d−1)ãφF 2

[2]

)

, (C.4)

with F[2] = dA[1]. With this decomposition we find,

g(d)µν = e−2ãφ

(

g(d+1)
µν − g

(d+1)
µx g

(d+1)
νx

g
(d+1)
xx

)

, Aµ =
g
(d+1)
xµ

g
(d+1)
xx

, e2(2−d)ãφ = g(d+1)
xx . (C.5)

Defining p = p̃ + m this provides us with the extrinsic perturbed solution of the black

p-branes carrying q = 0 charge in the presence of a dilaton. We thus have access to the

explicit 1/R corrections to the fields. Note that only p̃ directions are extrinsically perturbed

while the remaining m directions remain flat. The rapidity κ now takes the interpretation

of a charge parameter.

Large r-asymptotics. We are interested in the large r-asymptotics of the solution and

we provide them in terms of the large r-asymptotics of the neutral solution. We denote

the boost velocities of the neutral solution by ũa. It is convenient to define the object

Hµν = cos θ
[

ĥµν − 2rKµν

]

, (C.6)

with ĥµν given by eq. (B.2) together with eq. (B.9) and eq. (B.12). Here Kµν is the

extrinsic curvature tensor of the neutral brane solution which is equal to the extrinsic

curvature tensor of the generated solution provided Kta = 0 for all a, which we assume in

the following. The large r-asymptotic behavior of the dilaton is

e−2ãφ = 1 +
s2κũ

2
t

d− 2

rn0
rn

+
s2κ

d− 2
Htt

(

1− d− 3

d− 2

rn0
rn

s2κũ
2

)

+O
(

rn+2
0

rn+2

)

. (C.7)

The large r-asymptotics of the metric components is

gtt = ηtt +

(

1 +
d− 3

d− 2
s2κ

)

rn0
rn

ũ2t +Htt

(

1 +
d− 3

d− 2
s2κ +

rn0
rn

Ctt
)

+O
(

rn+2
0

rn+2

)

,

gzizj = ηij +

(

ũiũj + ηij
s2κũ

2
t

d− 2

)

rn0
rn

+

(

Hij + ηij
s2κHtt

d− 2

)

+
rn0
rn

Czizj +O
(

rn+2
0

rn+2

)

,

gtzi = cκ
rn0
rn

ũtũi +Hticκ − 2cκs
2
κũtũ(tHi)t

d− 3

d− 2

rn0
rn

+O
(

rn+2
0

rn+2

)

,

gyiyi = 1 +
s2κũ

2
t

d− 2

rn0
rn

+
s2κ

d− 2
Htt

(

1− d− 3

d− 2

rn0
rn

s2κũ
2
t

)

+O
(

rn+2
0

rn+2

)

,

grr = 1 +

(

1 +
s2κũ

2
t

d− 2

)

rn0
rn

+Hrr +
s2κ

d− 2
Htt +

rn0
rn

Crr +O
(

rn+2
0

rn+2

)

,

gΩΩ = gξiξj

(

1 +
s2κũ

2
t

d− 2

rn0
rn

)

+HΩΩ +
gξiξjs

2
κ

d− 2
Htt +

rn0
rn

CΩΩ +O
(

rn+2
0

rn+2

)

,

(C.8)
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where

Ctt = s2κũ
2
t

d− 3

d− 2

(

s2κ
d− 2

− 2c2κ

)

,

Czizj =
s2κ

d− 2

[

ũ2tHij +

(

ũiũj − ηij
d− 3

d− 2
s2κũ

2
t

)

Htt

]

− 2s2κũtũ(iHj)t ,

Crr =
s2κ

d− 2

[

ũ2tHrr +

(

1− d− 3

d− 2
s2κũ

2
t

)

Htt

]

,

CΩΩ =
s2κũ

2
t

d− 2

(

HΩΩ − gξiξjHtt
d− 3

d− 2
s2κ

)

,

(C.9)

with Hij = Hzizj , ηij = ηzizj and ũi = ũzi . The components gξiξj constitute the metric of

a (n+1)-sphere of radius r. For the gauge field one finds in terms of the parameters of the

neutral solution

At = sκcκ

[

rn0
rn

ũ2t +Htt

(

1− 2s2κ
rn0
rn

ũ2t

)]

+O
(

rn+2
0

rn+2

)

,

Azi = sκ

[

rn0
rn

ũtũi +Hti − 2s2κ
rn0
rn

ũtũ(tHi)t

]

+O
(

rn+2
0

rn+2

)

.

(C.10)

With the large r-asymptotics we can now read off the dipole contributions and compute

the response coefficients following the prescription given in section 4.2. For this matter it

is convenient to use the relation between the metric obtained here and the asymptotically

flat generalized Gibbons-Maeda solutions.

Relation to the generalized Gibbons-Maeda solutions. The solutions given

by (C.5) overlap with a subset of the asymptotically flat Gibbons-Maeda family presented

in section 4.2. The p̃-directions correspond to uniformly boosted directions with boost

ua while the m-directions remain unaffected. It is possible to connect to this family of

solutions by means of the identification of the dilaton coupling,

a2 = 4(d− 1)2ã2 =
2(p̃+m+ n+ 2)

p̃+m+ n+ 1
. (C.11)

The leading order critical boost and charge parameter can be identified, e.g., from the

components of the gauge field such that

ũt coshκ = ut coshα and ũi = ui coshα with sinh2 α = ũ2t sinh
2 κ , (C.12)

where ũa is the critical boost of the neutral solution while the normalization conditions

ũaũa = uaua = −1 are satisfied. The critical boost is seen to be in agreement with eq. (4.26)

for N = 1. Finally, they correspond to solutions with

A =
d− 3

d− 2
, B =

1

d− 2
, (C.13)

and therefore N = 1.
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Dipole terms. The dipole contributions can be read off from the asymptotic expansion

of the solution (C.8) and (C.10). In terms of the dipole contributions of the seed solution

one finds

f̂
(D)
tt =

(

1 +
d− 3

d− 2
s2κ

)

f
(D)
tt , f̂

(D)
tzi

= cκf
(D)
tzi

, f̂ (D)
zizi =

1

d− 2
s2κf

(D)
tt + f (D)

zizi , (C.14)

f̂ (D)
yiyi =

1

d− 2
s2κf

(D)
tt , f̂ (D)

rr =
1

d− 2
s2κf

(D)
tt + f (D)

rr , f̂
(D)
ΩΩ =

1

d− 2
s2κf

(D)
tt + f

(D)
ΩΩ ,

where f̂µν denote the dipole coefficients of the charged solution (see eq. (4.8)). Notice that

taking κ to zero reproduces the result of the neutral seed solution.

Now in order to obtain the dipole contribution to the stress-energy tensor (2.1) we

use the method outlined in section 4.2. The transverse gauge condition given by eq. (4.9)

naturally takes the form

(ηabf̂ab +mf̂yy) + f̂rr + (n− 1)f̂ΩΩ = 0 . (C.15)

which ensures that relation obtained in (B.14) stays the same, that is,

k1 =
2

1− n
(ξ2(n) + nk2) , (C.16)

and similarly using eq. (4.10) one finds f̂ (D) = 2f̂ΩΩ. It is therefore possible to apply

eq. (4.11) to measure the bending moment. In terms of the neutral dipole coefficients one

finds

d̂tt = c2κf
(D)
tt + f

(D)
ΩΩ , d̂tzi = cκf

(D)
tzi

, d̂zizj = f (D)
zizj − f

(D)
ΩΩ , d̂yiyj = −f

(D)
ΩΩ . (C.17)

Recall that the solution is not boosted along the yi directions and that these directions are

flat, i.e., Kyia = 0 for all a and i. Using the gauge choice given by eq. (B.14) such that

k1 = − 3n+ 4

n(n+ 2)
ξ2(n)− nk̃ξ2(n) , (C.18)

it is possible to see that in fact f
(D)
ΩΩ = −ξ2(n)k̃K and hence the dipole terms in those

directions are indeed pure gauge.

Using the relations given in eq. (C.12) one can express the coefficients of the bending

moment in terms of the generalized Gibbons-Maeda boost and charge parameters. Fur-

thermore, it turns out that it is more natural to work in the gauge given by

k̃ = k̄ − 3n+ 4

n2(n+ 2)
, (C.19)

in the presence of charge, since the classical symmetries of the Young modulus will be man-

ifestly apparent in this gauge. Suppressing the transverse index in the extrinsic curvature

the bending moment is found to be

d̂ab = −ξ2(n) cosh
2 α

[

Kab

(n+ 2) cosh2 α
+ 2ucu(aKb)c +

3n+ 4

n2(n+ 2)
ηabK

]

− k̄ξ2(n)
[

n cosh2 α uaub − ηab
]

K ,

(C.20)
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which, as mentioned in section 4.2, is only valid under the assumption that all time com-

ponents of the extrinsic curvature are zero, that is, Kta = 0 for all a.

Similarly, for the gauge field, the non-vanishing dipole terms can be read off from the

asymptotic expansion given in eq. (C.10)

a
(D)
t = cκsκf

(D)
tt , a(D)

zi = sκf
(D)
tzi

. (C.21)

Using eq. (4.14) one can read off the electric dipole moment. Again, using the relations

given in eq. (C.12) and the above assumptions we have that

p̂a = −ξ2(n) coshα sinhα
[

ucKca + k̄uaK
]

. (C.22)

It is now possible to obtain the response coefficient from eq. (C.20) and eq. (C.22), which

are presented in section 4.2.

C.2 T-duality transformation

With the solutions given in the previous section it is possible to use T-duality on the residual

m isometries, if we impose n+ p̃+m = 7 and start from a solution with m ≥ 1. In order

to make contact with type II string theory in D = 10 we consider the truncated effective

action with zero NSNS 2-form B field and only one R-R field.15 Thus the configurations

are solutions of the equations of motion that follow from the action

S =

∫

d10x
√−g

[

R− 1

2
(∂φ)2 − 1

2(q + 2)!
e

3−q
2

φH2
[q+2]

]

. (C.23)

Let z be an isometry direction, then in the Einstein frame, the T-duality transformation

takes the form

gµν = e
1
8
φ̂(ĝzz)

1
4

(

ĝµν −
ĝµz ĝνz
ĝzz

)

, gzz = e−
7
8
φ̂(ĝzz)

− 3
4 ,

e2φ =
e

3
2
φ̂

ĝzz
, A[q+2] = A[q+1] ∧ dz ,

(C.24)

where the hatted quantities denote the fields before the transformation. The first T-

duality transformation is applied to the solution given by (C.5).16 We apply the T-duality

transformations in successive order to transform the m flat directions and gain an (m+1)-

form gauge field. Performing a recursive bookkeeping one finds the relation between the

m’th T-duality transformation and the starting configuration to be

gµν = e
m
6
φ̂ĝµν , gyiyj = δije

m−7
6

φ̂ , φ =
3−m

3
φ̂ . (C.25)

15By using type IIB S-duality (φ → −φ) it is not difficult to include the case of the NSNS 2-form field as

well. In that way we can also obtain bent versions of smeared F-strings and NS5-branes. Note that for the

case of q = 5 we have p = 6 and n = 1, so while we can compute the bent geometries our results for the

response coefficients are not valid since we need n ≥ 3. For q = 1 it is possible to have n ≥ 3. In particular,

we find that the response coefficients for the F1-string turn out to be the same as that of the D1-brane.
16To relate our constructions with the black branes of supergravity we take φ̂ = −φ with φ being the

dilaton given in eq. (C.5).
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Here the yi directions come from the m isometry directions and µ labels the remaining

directions. Note that one can take m = 0 and get the starting solution in which no yi

directions are present. The solution now overlaps with the metric given in (4.15) where

the q = m directions included in ~y remain flat while the p̃ = p− q directions included in ~z

are extrinsically perturbed.

Large r-asymptotics. The large r-asymptotics of the solution (C.25) can be obtained

from (C.8), (C.9) and (C.10) by noting that

A =
1

d− 2
→ q + 1

8
, and B =

d− 3

d− 2
→ 7− q

8
. (C.26)

The value N = 1 is therefore also preserved under the transformation. The isometry

directions naturally differ from the rest and leads to

gyiyi = 1− 7− q

8

rn0
rn

s2κũ
2
t −

7− q

8
s2κHtt

[

1−
(

1 +
7− q

8

)

rn0
rn

s2κũ
2
t

]

+O
(

rn+2
0

rn+2

)

. (C.27)

Dipole terms. The dipole terms can be read off from the asymptotic expansion of the

solution as before and read

f̂
(D)
tt =

(

1 +
7− q

8
s2κ

)

f
(D)
tt , f̂

(D)
tzi

= cκf
(D)
tzi

, f̂ (D)
zizi =

q + 1

8
s2κf

(D)
tt + f (D)

zizi , (C.28)

f̂ (D)
yiyi = −7− q

8
s2κf

(D)
tt , f̂ (D)

rr =
q + 1

8
s2κf

(D)
tt + f (D)

rr , f̂
(D)
ΩΩ =

q + 1

8
s2κf

(D)
tt + f

(D)
ΩΩ ,

where f̂µν denote the dipole coefficients of the charged solution.

The dipole contribution to the stress-energy tensor (2.1) can be extracted using the

method outlined in section 4.2. The transverse gauge condition given by eq. (4.9) takes the

same form as eq. (C.15) which ensures again that the relation given in eq. (C.16) remains

the same after the successive T-duality transformations. We can therefore use eq. (4.11)

to read off the bending moment and obtaining the only non-zero components

d̂tt = c2κf
(D)
tt + f

(D)
ΩΩ , d̂yiyj = −f

(D)
ΩΩ − s2κf

(D)
tt ,

d̂zizj = f (D)
zizj − f

(D)
ΩΩ , d̂tzi = cκf

(D)
tzi

.
(C.29)

The non-vanishing dipole terms appearing in the higher-form gauge field expansion read

a
(D)
ty1...yq

= cκsκf
(D)
tt , a(D)

ziy1...yq = sκf
(D)
tzi

. (C.30)

This class of solutions are special in the sense that the charge is always smeared along

the directions along which the brane is bent. In other words, the directions in which the

q-brane charge lies are always flat and therefore never critically boosted. It is therefore

possible to introduce a set of vectors v
(i)
a , i = 1 . . . q describing the q directions in which the

smeared q-charge is located (see section 3). The bending moment given in eq. (C.29) can

then be written in terms of the generalized Gibbons-Maeda boost and charge parameters
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using the relations (C.12) and read

d̂ab = −ξ2(n) cosh
2 α

[

Kab

(n+ 2) cosh2 α
+ 2ucu(aKb)c +

3n+ 4

n2(n+ 2)
ηabK

]

− k̄ξ2(n)

[

n(cosh2 α uaub − sinh2 α

q
∑

i=1

v(i)a v
(i)
b )− ηab

]

K ,

(C.31)

under the same assumptions on Kab as before. Furthermore, the electric dipole moment is

obtained using eq. (4.14) and can be written as

p̂ba1...aq = −(q + 1)!ξ2(n) coshα sinhα
[

ucv
(1)
[a1

. . . v(q)aq Kb]c + k̄u[bv
(1)
a1 . . . v

(q)
aq ]

K
]

. (C.32)

The two dipole moments (C.31) and (C.32) have an identical form when compared to the

dipole moments given by eq. (C.20) and eq. (C.22). This is perhaps not too surprising, since

the extrinsic perturbations of all the solutions are always along the smeared directions, i.e.,

the type of bending is similar for all the solutions considered here. From the bending and

electric dipole moments one can read off the corresponding response coefficients and these

are presented in section 4.2.
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