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Starting from hyperbolic dispersion relations for the m&at amplitudes of pion—nucleon scat-
tering together with crossing symmetry and unitarity, oas derive a closed system of integral
equations for the partial waves of both thehannel iN — 7iN) and thet-channel ¢rrr — NN)
reaction, called Roy—Steiner equations. After giving @boiverview of the Roy—Steiner system
for niN scattering, we demonstrate that the solution oftthbannel subsystem, which represents
the first step in solving the full system, can be achieved bgma®f Muskhelishvili-Omnés tech-
niques. In particular, we present results for Breraves featuring in the dispersive analysis of the
electromagnetic form factors of the nucleon.
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1. Introducing Roy—Steiner equations forriN scattering

Partial-wave dispersion relations (PWDRSs) together with unitarity andiogpsgmmetry as
well as isospin and chiral symmetry (i.e. all available symmetry constraints)repeatedly proven
to be a powerful tool for studying processes at low energies with higtigion [1 {}#]. ForN scat-
tering the (unsubtracted) hyperbolic dispersion relations (HDRs) fousial Lorentz-invariant
amplitudes read]5] (using the notation fif [6], sfe [7] for more details)

+
At(st) = /ds’[s, - gl ! ]lmNs’t /dt"mA gt),

u s-—

BY(st) = N"(st)+ /ds[“_gf]mswt )4+ /dt’ s-ulmBTEe),
N+(S’t):gz[nﬂl—s_mzl_u}v (s—a)(u—a)=b=(s—a)(u-a), (1.1)

and similarly forA—, B~, andN—, whereN* are the nucleon pole terms and the “external” (un-
primed) and “internal” (primed) kinematics are related by real hyperbalanpetersa andb (as
well as vias+t +u = 2(m? +M2) = § +t’ +U'), so that HDRs allow for the combination of all
physical regions, which is known to be crucial for a reliable continuatiom the subthreshold
region and hence for an accurate determination ofrtNeo-term. Furthermore, the imaginary
parts are only needed in regions where the corresponding partialdemenpositions converge
and the range of convergence can be maximized by tuning the free bgpedrametea. While
the s-channel integrals start at the thresheld= W? = (m+ My)?, thet-channel contributes al-
ready above the pseudothreshtjd= 4M2 far below the thresholth = 4n?. Depending on the
asymptotic behavior of the imaginary parts, in principle it could be necetsanptract the HDRs
to ensure the convergence of the integrals, thereby parameterizing@mégdy information with
polynomials containing a priori unknown subtraction constants. How¢additional) subtrac-
tions may also be introduced to lessen the dependence of the low-enkrggrson high-energy
input; the corresponding subtraction parameters then obey respagativeukes. ForriN scatter-
ing it proves particularly useful to subtract at the subthreshold gsirt u,t = 0), as this pre-
serves thes <> u crossing symmetry (which can be made explicit in terms of the crossing variable
= (s—u)/(4m) via D*(v,t) = A* + vB* = £D*(—v,t)). This is especially favorable for the
t-channel subproblem and facilitates matching to chiral perturbation tfigd@y to determine the
subtraction constants, which thus can be identified with the subthreshadsizp parameters.
In addition to the presentation if [7], we also introduce a (partial) third setixtra which is related
to the parametera;, anday; of the subthreshold expansions (witf), = ag, for all n > 0)
AT (v,t) = g—+d ot dgit +ajgv?+ o (vivat?) | AT (v,t) = agv +ag vt + o (viut?) .
(1.2)

1For the PWDRSs oftrrscattering, called Roy equatio[lO], an analogous matching practmtiherir scattering
lengths as pertinent subtraction parameters has been conduc@. im[tdhtrast torrrt scattering, thetN scattering
lengths can be extracted with high accuracy from hadronic-atom @lﬂlam may thus serve as additional con-
straints on the subtraction constants in the Roy—Steiner system.
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In order to derive the partial-wave HDRs, called Roy—Steiner (RS)tams one needs to
expand thes- andt-channel imaginary parts i (]1.1) into the respective partial waves argesu
qguently project the full expanded equations onto eith@r t-channel partial waves; the resulting
sets of integral equations together with the respective partial-wave unigtions then form the
s- andt-channel RS subsystems. According[fo [5], the (unsubtrastediinnel RS equations read
(based on the MacDowell symmetf}, ;) (W)= —f;, (-W) forall £ > 0 [14])

fLW) =N, (W) + = /dt {GraW,t') Im 12(t) + His(W, ') Im £t}

+= /d\N’ KM,WW’)Imff, (W) + Kby (W, ~W) Im . )(W’)}, (1.3)

where due t(G-parlty only even/odd contribute for isospith = +/—, respectively, and the partial-
wave projections of the pole terms as well as the (lowest) kernels are aabiyykicown, the latter
including in particular the Cauchy kernedj, (W, W') = &, /(W —W) +... . Thes-channel =

partial waves are intertwined by the usual unitarity relations, which aredadn thes-channel
isospin basi$s € {1/2,3/2} only. Once thé-channel partial waves are known, the structure of the
s-channel RS subsystem is therefore similar torteRoy equations, cf[[1]. As shown if][7], the
corresponding (unsubtractedihannel RS equations are given by

() = Ni(t) + 711 / ow’ﬁo{éy(t,w’) Im £, (W) + Gy (t, —W') Im f('M)_(w')}

4z /dt’ Ry (L) 1m £ () + R (6, ) m 2 ¢) | (1.4)

and similarly for thefﬂ except for the fact that these do not receive contributions fromfihe
Here, only even or odd’ couple to even or odd (corresponding te-channel isospir; = 0 or

It = 1), respectively, anﬁ}J/ (as well as the analogonlifj, for the f7) contains the Cauchy kernel.
Moreover, it turns out that only higheérchannel partial waves contribute to lower ones. Assuming
Mandelstam analyticity, the equatiofis {1.4) are valid\forc [2M,;, 2.00 GeV usinga= —2.71IM2,
whereas [(1]3) holds foV € [m+ My, 1.38Ge\] usinga = —23.19M2. Thet-channel unitarity
relations are diagonal il and only linear in thef) (below the first inelastic threshotgle)

IMf(t) = o7 (th () 120 0(t—t), otk (t) =sindk )XV o (t) = /I—to/t
from which one can infer Watson's final state interaction theofein [18hstéhat (in the “elastic”
region) the phase dff! is given by the phaséjt of the respectiverrt scattering partial Wavé,t.

Due to the simpler recoupling scheme for thie thet-channel RS subsystem can be recast as
a (single-channel) Muskhelishvili-Omnes (MO) probldni [16 with a finite matgipointty, [H]

for f2, fJ, and the linear combinatiolid(t) = m\/J/(J+ 1) f(t t) with I (ty) = O for all
J>1ofthe generlc form (the details are glvenm'u 71
—io(t
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Figure 1: Flowchart of the solution strategy for the Roy—Steiner eysfor 1N scattering. The third step
consist in the self-consistent iteration (denoted by thlaickws) of the preceding steps until convergence.

higher partial waves
Imf(lé>ld)i(8 < Sm)

where the inhomogeneitigst) subsume the nucleon pole terms, sathannel integrals, and the
highert-channel partial waves. Fap <t < ty, solving for |f(t)| only according to Watson’s
theorem required(t) for t; <t <ty and Imf(t) fort > ty. Introducingn > 1 subtractions does
not change the general structure of the RS/MO system, e.§-teves are given by

nsub {0 7 dlt/ Im f1(t)
-l —th)(t—t)T T o —t)

s s

n-su n—1/ - / 14/
riy =abo " W Lo M rh=at

demonstrating thalt? and hencef? is effectively subtracted by one power less tHan which
motivates the additional (partial) third subtractiontin, cf. (T:2), that affects solely the’.

The solution strategy for the full RS system in the low-energy (or evethseghold/pseudo-
physical) regions, where only the lowest partial waves are relevahninatastic contributions may
be (approximately) neglected, is shown in Hig. 1; $¢e [7] for more details.

2. Thet-channel Muskhelishvili-Omnes problem:P-wave solutions

As the first step in the numerical solution of the full RS system, we check th&istency of
ourt-channel MO solutions with the results of the KH80 analygi$ [17], whictstilleused nowa-
days although no thorough error estimates are given (and despite ttabiitsa of more modern
experimental data). Here, we present results foPHreaves in the (elastic) single-channel approx-
imation of the MO problem, which is well justified for thie and higher partial waves, whereas the
Swave requires a two-channel description includiag intermediate states as described]n [7]. To
produce the results (that will also serve as input for the solution of-ttennel RS subsystem, cf.
Fig. 1) partly shown in Fig[]2, we have used as inpmtphase shifts from[[18J-channel partial
waves [ < 4) from SAID [[[9] forW < 2.5GeV, and above the Regge model[of[20]. To facilitate
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Figure 2: n-subtracted MO solutions for tHe-wave moduli.
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Figure 3: Two-pion-continuum contribution to 1@ and ImGy,.

comparison with the results of KH80, we use the respective subthresh@dpter values and a
niN coupling ofg?/(4m) = 14.28 [B, [17] (as starting point, the final values will result from the
iteration procedure, cf. Fig] £).Moreover, KH80 uses different types of dispersion relations, in
particular so-called fixet-ones, which can be emulated (up to thghannel contributions that are
not present at all in the fixetlease) by taking the “fixetdimit” |a] — . As argued in[[7], all
t-channel input above/ty, = 0.98GeV is set to zero, which forces the MO solutions to match zero
att = tm. While Fig.[2 displays the results fta| — oo, investigating the effect of using a different
(i.e. higher) matching point leads to the same conclusion: with increasing maihéabtractions,
thus lowering the dependence on the high-energy input by introducing sabtbreshold param-
eter contributions as subtraction polynomials, the solutions show a nicergenege pattern both

in general (proving the internal consistency and numerical stability oR&/MO framework) and

in particular towards the KH80 results (being consistent with relying on Ki#80es forg and

the subtraction parameters). TRewaves feature prominently in the dispersive analysis of the
nucleon electromagnetic form factors, see €.d. [21] and refereneesthand in Fig[]3 we illus-
trate the effects on the spectral functions (by approximating the vectorf@ionfactorFY via a

2Modern analyses yield significant smaller values formiecoupling, cf. e.gg?/(4m) = 13.7+0.2 of [E].
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twice-subtracted Omnes representation, [¢f. [7])
10 vy et 10 vy g1
IMGE(t) = am (Fr(t) fr)e(t—ty), ImGy, (t) = 8/ (Fr(t) f2(t)e(t—ty) .
We are confident that a self-consistent iteration procedure betwesnbltiimns for thes- and
t-channel eventually will yield a consistent and precise description (imgjuelror estimates) of
the low-energyrN scattering amplitude in all kinematical channels.
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