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adding lateral scanning, and subsequently the introduc-
tion of OCT in 1991  [2–6]  and its use in clinical practice 
since 1995  [3, 5, 7–23] . Various reviews have covered the 
technology and ophthalmic applications of OCT  [24–31] . 
This article will review the progress in imaging macular 
disease by the introduction of high-resolution spectral-
domain OCT (SD-OCT)  [32, 33] . For the purpose of this 
review, we searched Medline (PubMed 1966 to Septem-
ber 2009) using the key words ‘spectral domain optical 
coherence tomography’ or ‘Fourier domain optical co-
herence tomography’. This search resulted in 260 refer-
ences, of which 103 were published in 2009.

  Technique of SD-OCT 

 The OCT technique is an interferometric imaging 
technique that generates cross-sectional images by map-
ping the depth-wise reflections of low-coherence laser 
light from tissue. Spectral or Fourier domain OCT refers 
to Fourier transformation of the optical spectrum of the 
low-coherence interferometer. The optical spectrum out-
put of an interferometer exhibits peaks and troughs, and 
the period of such a modulation is proportional to the 
optical path differences in the interferometer. Imaging of 
multilayer objects, such as the retina, results in various 
modulation periodicities representing the depth of each 
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 Abstract 

 The introduction of spectral-domain optical coherence to-
mography (SD-OCT) has improved the clinical value for as-
sessment of the eyes with macular disease. This article re-
views the advances of SD-OCT for the diagnostic of various 
macular diseases. These include vitreomacular traction syn-
drome, cystoid macular edema/diabetic macular edema, 
epiretinal membranes, full-thickness macular holes, lamellar 
holes, pseudoholes, microholes, and schisis from myopia. 
Besides offering new insights into the pathogenesis of mac-
ular abnormalities, SD-OCT is a valuable tool for monitoring 
macular disease.  Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 Ophthalmic imaging was revolutionized by optical 
coherence tomography (OCT). OCT derives from low-
coherence interferometry. The first biomedical applica-
tion of low-coherence interferometry was for the mea-
surement of the length of the eye  [1] . The next step was 
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layer with amplitude of the spectrum modulation pro-
portional to the reflectivity of the layer. From these sig-
nals, the A scan profile of the reflectivity in depth can be 
reconstructed. The most important advantage of the 
spectral domain technique over the conventional time 
domain OCT (TD-OCT) technique is the increase in 
scan speed. With the spectral domain technique imaging 
with 25,000–100,000 A scans/s is routinely possible. This 
is more than 100 times faster than with the time domain 
technique. Axial image resolution of OCT depends on 
the bandwidth of the low-coherence light source. Most 
OCT systems use superluminescent diodes with a band-
width of about 20–50 nm allowing an axial resolution of 
5–10  � m. The transversal resolution is limited by the op-
tics of the eye and the number of A scans used to recon-
struct a B scan  [34] , and the image depth is limited by the 
penetration of the laser light into the retinal tissue. Com-
mercial OCT systems use light sources between 800 and 
900 nm wavelength allowing good imaging of the reti-
na, but limited visualization of the choroid. For imaging 

the choroid wavelengths above 1,000 nm have been used 
 [34–37] .

  Currently, various SD-OCT instruments are commer-
cially available: Cirrus TM  HD-OCT, Carl Zeiss Meditec, 
Inc.; RTVue-100 Fourier-Domain OCT, Optovue Corpo-
ration; Copernicus OCT, Reichert/Optopol Technology, 
Inc.; Spectral OCT/SLO, Opko/OTI, Inc.; Spectralis TM  
HRA + OCT, Heidelberg Engineering, Inc.; Topcon 3D 
OCT-1000 (Color + OCT), Topcon; RS-3000 Retiscan, 
Nidek. All systems provide high-quality OCT line scans 
as well as special scan patterns for imaging the optic 
nerve fiber layer around the optic disk and for producing 
3-dimensional OCT images. Segmentation of retinal lay-
ers allows reconstruction of thickness maps from these 
3-dimensional OCT images  [38–42] .  Figure 1  shows the 
differences between a TD-OCT (Stratus TM  OCT) and 2 
SD-OCT instruments (Cirrus HD-OCT, Spectralis HRA 
+ OCT) displaying scans from the same healthy eye. The 
OCT scan recorded with the Spectralis HRA + OCT has 
the best signal/noise ratio due to averaging 36 single OCT 
scans. This improves the signal/noise ratio by a factor of 
6 as compared with a single OCT scan. Averaging of OCT 
scans requires compensation of eye movements during 
OCT recording by a real-time tracking system for eye 
movements. Currently, this feature is realized only in the 
Spectralis HRA + OCT.

  SD-OCT versus TD-OCT in Normal Eyes 

 In healthy eyes, TD-OCT is able to image the retinal 
nerve fiber layer and the inner and outer plexiform layers. 
The outer retinal layers such as external limiting mem-
brane, the junction of the inner and outer photoreceptor 
segments, and the retinal pigment epithelium (RPE) can 

a

b

c

  Fig. 1.  OCT scan from the same healthy eye recorded with 1 TD-
OCT [Stratus OCT ( a )] and 2 SD-OCT instruments [Cirrus HD-
OCT ( b ), Spectralis HRA + OCT ( c )]. 

  Fig. 2.  SD-OCT scan of a patient with exudative age-related mac-
ular degeneration with pigment epithelium detachments. Note 
the thin hyperreflective band in the area of the RPE detachments 
representing Bruch’s membrane (BM). D
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be visualized only in subjects without pathology and 
clear optical media.

  SD-OCT imaging allows to distinguish the ganglion 
cell layer, the inner plexiform layer, the inner nuclear lay-
er, the outer plexiform layer, the outer nuclear layer, the 
external limiting membrane, the photoreceptor inner 
segments (IS), the outer segments (OS), the RPE, and, in 
pathologic cases, Bruch’s membrane ( fig. 2 ).

  Thickness Measurements 

 Before the introduction of SD-OCT, the only commer-
cially available system was TD-OCT-3 Stratus (Carl Zeiss 
Meditec, Dublin, Calif., USA). For assessing retinal thick-
ness, the Stratus OCT system uses only 6 radial lines with 
a total of 768 A scans to produce a thickness map with a 
diameter of 6 mm (27 A scans/mm 2 ). Since the density of 
measuring points is dependent on the distance from the 
center, only measurements inside the central 1,000- � m 
diameter area are based on a sufficient number of A scans 
(128 A scans). Nevertheless, measurements with this sys-
tem have been the standard for many years and have been 
used in various clinical studies. The new SD-OCT instru-
ments use a rectangular scan pattern resulting in a uni-
form density of A scans within the scan area. However, 
the number of A scans/mm 2  differs considerably between 
instruments and may be as high as 2,000 A scans/mm 2 . 
After the introduction of new instruments, various stud-
ies have been published to compare retinal thickness 
measurements between instruments  [42–51] . These stud-
ies have demonstrated that retinal thickness measure-
ments are dependent on the segmentation of the inner 
and outer retinal borders. The segmentation of the inner 
retinal border shows no differences between instruments. 
All instruments identify the vitreoretinal interface as the 
inner retinal border. However, the segmentation of the 
outer retinal border differs considerably between instru-
ments  [42] . The Stratus OCT system images the outer ret-
inal layers (RPE-photoreceptor complex) as two hyper-
reflective bands. The segmentation software of the Stra-
tus OCT system uses the inner hyperreflective band for 
segmentation. The new SD-OCT systems image the out-
er retinal layers as 3 hyperreflective bands. The inner-
most of these hyperreflective bands has the lowest reflec-
tivity. The bands may correspond to the external limiting 
membrane, the junction of the photoreceptor OS and IS 
and the RPE. Some SD-OCT systems use the second in-
ner hyperreflective band as outer border of the retina; 
others identify the most outer reflective band as the out-

er border of the retina. These differences lead to differ-
ences in retinal thickness measurements of up to 70–80 
 � m. This implicates that the different OCT systems can-
not be used interchangeably for the measurement of reti-
nal thickness  [42, 43, 52] .

  SD-OCT in Macular Diseases 

 SD-OCT has improved the visualization of intrareti-
nal morphologic features allowing to evaluate the integ-
rity of each retinal layer. Various macular diseases have 
been studied including age-related degeneration  [16, 22, 
53–57] , diabetic retinopathy  [30, 58–62] , macular edema 
 [63, 64] , disease of the vitreomacular interface such as 
epiretinal membranes  [20, 38, 65] , full-thickness macular 
holes  [13, 19, 66] , pseudoholes, schisis from myopia or op-
tic pits  [59, 67–70] , central serous chorioretinopathy  [71] , 
macular dystrophies  [72] , and juxtafoveolar retinal telan-
giectasis  [73] .

  Age-Related Degeneration 
 In patients with age-related maculopathy, SD-OCT 

has demonstrated that the ultrastructure of drusen can 
be imaged in vivo  [23, 53] . These ultrastructural charac-
teristics may allow to distinguish subclasses of drusen 
and may allow to identify biomarkers for disease severity 
or risk of progression  [57] .

  Studies in geographic atrophy have expanded our 
knowledge of the disease-specific retinal alterations as 
well as disease progression  [16, 22, 74, 75] . SD-OCT pro-
vides adequate resolution for quantifying photoreceptor 
loss  [76]  and allows visualization of reactive changes in 
the RPE cells in the junctional zone of geographic atrophy 
 [77] . In most eyes with geographic atrophy the inner ret-
inal layers are unchanged, whereas the outer retinal layers 
show alterations in all eyes. Especially, the external limit-
ing membrane seems to be disintegrated in the junction-
al zone and absent in areas of atrophy.

  In exudative age-related macular degeneration, the 
main advantage of SD-OCT is the ability to image the 
macula in more detail as compared with TD-OCT. In sin-
gle scans, the density of A scans is 3–14 times higher and 
the acquisition 45–100 times faster in SD-OCT than in 
TD-OCT. This results in an increased axial resolution, 
improved signal/noise ratio, and reduced eye movement 
artifacts with better delineation of contingent negative 
variation activity. Additionally, 3-dimensional scans al-
low visualization of the entire scanned area, resulting in 
a superior ability to detect intra- or subretinal fluid and 
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contingent negative variation activity over TD-OCT’s ra-
dial line/fast macular thickness map scans  [15, 23, 44, 55] . 
Since treatment decisions in exudative age-related macu-
lar degeneration usually rely on the presence of fluid ac-
cumulation in B scans, the higher number of B scans in 
3-dimensional scans obtained with SD-OCT results in 
more sensitive detection of small pathologic findings 
(presence of intra- and/or subretinal fluid accumulation) 
leading to a higher detection rate of disease activity  [55] .

  Diabetic Retinopathy 
 Numerous studies using TD-OCT have assessed the 

potentials of OCT for diagnosing macular edema in dia-
betic patients, comparing OCT imaging with gold stan-
dard tests such as stereoscopic fundus photography, fun-
dus biomicroscopy, and fluorescein angiography. These 
studies demonstrated that OCT is a useful tool for diag-
nosing macular edema in diabetic patients, especially in 
eyes with borderline findings in the gold standard test  [9, 
29, 30] . Only a limited number of studies using SD-OCT 
for assessing diabetic macular edema have been published 
 [45, 58–62, 78] . These studies have confirmed that macular 
thickness measurements in patients with diabetic macular 
edema differ significantly in magnitude between TD-
OCT and SD-OCT systems  [60] . OCT imaging in patients 
with diabetic macular edema has revealed several struc-
tural changes in the retina. These include epiretinal mem-
branes, retinal swelling, cystoid macular edema, and sub-
retinal fluid  [79, 80] . SD-OCT has enabled us to analyze 
the integrity of the outer retinal layers in diabetic macular 
edema. These include the external limiting membrane, the 
photoreceptor IS, the OS, the RPE, and Bruch’s membrane. 
First reports point towards the importance of the integrity 
of the external limiting membrane, the photoreceptor IS 
and the OS as a prognostic feature of visual improvement 
after treatment for diabetic macular edema  [81] .

  Disease of the Vitreomacular Interface 
 Although conventional TD-OCT can visualize the vit-

reoretinal interface, the ability to image the posterior hya-
loid membrane is very limited by the slow scan speed, lim-
ited sensitivity, and poor resolution. The increased axial 
resolution, signal/noise ratio and higher scan rate of SD-
OCT have dramatically improved the visualization of the 
vitreomacular interface and posterior hyaloid membrane. 
Additionally, 3-dimensional scans enabled visualization 
and characterization of vitreomacular configurations  [14, 
20, 65] . These studies found that many eyes with vitreo-
macular traction have concurrent epiretinal membranes 
and eyes with idiopathic epiretinal membranes showed

focal areas of attached vitreous. This suggests that there
is a significant overlap between vitreomacular traction 
and idiopathic epiretinal membranes. The morphologic 
changes of the retina were dependent on the area of vitre-
ous attachment. Eyes with more focal vitreomacular trac-
tion showed a foveal cavitation, whereas eyes with larger 
areas of vitreous attachment were more likely to have cys-
toid macular edema  [14, 20] . Three-dimensional SD-OCT 
scans have improved the comprehensive evaluation of the 
vitreoretinal interface providing clinically significant ad-
ditional information for clinicians. The 3-dimensional re-
construction enables meticulous surgical planning, with 
the potential for improved surgical outcomes.

  Macular Holes 
 Anterior-posterior or tangential vitreomacular trac-

tion is involved in the formation of idiopathic macular 
holes. Eyes with a macular hole present intraretinal 
changes surrounding the hole, including cystic retinal 
edema and disruption of the photoreceptor layer. With 
SD-OCT alterations of the vitreomacular interface as 
well as of the photoreceptor layer have been described  [13, 
82–84] . Especially, the disruption in the junction between 
IS and OS of the photoreceptors has been described 
around macular holes  [82, 83] . Imaging the IS/OS junc-
tion defect in macular holes with SD-OCT is a method of 
assessing structural integrity of the photoreceptors be-
fore and after macular hole surgery. Several studies have 
assessed the extent of the IS/OS junction defect as a prog-
nostic feature of the visual outcome after macular hole 
surgery. However, the results of the studies are not con-
clusive  [13, 19, 66, 84] .

  In various other macular diseases, SD-OCT has im-
proved our understanding of intraretinal abnormalities. 
Alterations of the outer retinal layers imaged with SD-
OCT have been demonstrated in various retinal diseases 
such as in vitelliform macular dystrophy  [85] , acute zon-
al occult outer retinopathy  [86] , occult macular dystro-
phy  [87] , in type 2 idiopathic perifoveal telangiectasia 
 [88] , and acute-stage Vogt-Koyanagi-Harada disease  [89] . 
Inner retinal layer abnormalities have been described in 
early stages of chloroquine retinopathy  [90] , in X-linked 
retinoschisis  [69] , and in ocular albinism  [91] .

  SD-OCT in Animal Models of Retinal Degeneration 

 The new SD-OCT technique allows to study changes 
of retinal integrity in a longitudinal way not only in hu-
man eyes but also in animal models of retinal degenera-
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tion. So far, animal models of retinal degeneration have 
been studied at the structural level using imaging meth-
ods like fundoscopy and confocal scanning laser oph-
thalmoscopy and ex vivo histological approaches  [92, 93] . 
Light and electron microscopy provide (ultra-)high struc-
tural resolution, but fixation procedures, dehydration 
preparatory to subsequent embedding and staining, as 
well as the process of cutting, flattening and mounting 
histological sections are potential sources for significant 
alterations of the vulnerable tissue  [94, 95] . Ex vivo anal-
ysis of retinal tissue has certain limitations and should be 
interpreted carefully. In vivo analysis using SD-OCT has 
significant benefits for the detection of retinal changes 
like edema or focal neurosensory and/or pigment epithe-
lial detachments, or RPE loss. In addition, SD-OCT pro-
vides the possibility to monitor dynamic changes in indi-
vidual animals in a noninvasive longitudinal way  [96] . 
Here, SD-OCT has the potential to complement the exist-
ing in vivo   methods in vision research by providing his-
tology-analog structural details on retinal structure and 
integrity. In addition, it could help to reduce the numbers 
of animals needed for such studies. This has ethical as 
well as economic implications.

  Huber et al.  [97]  reported about the use of SD-OCT in 
mouse models of retinal degeneration. This group used 
 Rho15–/–,   RPE65–/–,  BALB/c, C57/BL6/J, C3H  rd1/rd1 , 
and control C3H wild-type mice for imaging. Mice were 
anesthetized by subcutaneous injection of ketamine (66.7 
mg/kg) and xylazine (11.7 mg/kg), and their pupils were 
dilated with tropicamide eyedrops before image acquisi-
tion. By applying hydroxypropyl methylcellulose on the 
eye, the refractive power of the air-cornea interface was 
effectively negated. A custom-made contact lens was used 
to reduce the risk of corneal dehydration and edema and 
acted as collimator. Mouse eyes were subjected to SD-
OCT using the commercially available Spectralis HRA + 
OCT device. The laminar organization of the murine ret-
ina as determined in vivo   by SD-OCT correlated well 

with ex vivo   light microscopy studies. They presented ev-
idence on the efficacy of a commercially available SD-
OCT device in small animal retinal imaging and provide 
in vivo   structural data on mouse models of retinal degen-
eration. This should facilitate further studies on dynam-
ic changes of retinal structure through the natural course 
of the disease and help to monitor putative therapeutic 
effects of novel interventional strategies.

  Conclusion 

 With the introduction of the spectral domain detec-
tion technique, the number of companies offering OCT 
instruments has expanded significantly. Today, more 
than 7 companies have introduced OCT instruments into 
the ophthalmic market. All of these instruments have a 
similar performance, with an imaging speed of 20,000–
80,000 A scans/s and an axial resolution of 5–7  � m. Im-
age quality of all SD-OCT instruments is sufficient to 
delineate as many as 10 retinal layers. Especially, the 
 improved resolution of the outer retinal layers with
SD-OCT as compared with TD-OCT imaging has a clin-
ical significance. Various studies demonstrated that the 
integrity of the outer retinal layer is directly linked to vi-
sual prognosis  [13, 19, 66, 81, 84] . The second important 
advantage of SD-OCT instruments is the possibility to 
obtain 3-dimensional scans allowing to image structural 
changes of the vitreoretinal interface and the retina in 
large areas. Since SD-OCT and image analysis is a fast 
evolving technique, further improvements of this tech-
nique are expected. New developments may include in-
corporation of adaptive optics into OCT instruments, 
polarization-sensitive OCT, Doppler flow OCT, and 
functional testing. Improvements in data analysis and 
image processing will generate new tools to analyze the 
structure and integrity of retinal morphology and func-
tion.
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