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Abstract: Hydrodynamics can be consistently formulated on surfaces of arbitrary co-

dimension in a background space-time, providing the effective theory describing long-

wavelength perturbations of black branes. When the co-dimension is non-zero, the sys-

tem acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying

an effective action approach, the most general form of the free energy quadratic in the

extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations

is constructed to second order in a derivative expansion. This construction generalizes

the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to

the case in which the fluid is rotating. It is found that stationary fluid brane configura-

tions are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response

coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover,

the elastic degrees of freedom present in the system are coupled to the hydrodynamic de-

grees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family

of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-

extremal brane effective actions can be accounted for by a multipole expansion of the

stress-energy tensor, therefore establishing a relation between the different formalisms of

Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective de-

scription of stationary fluid branes. Finally, it is shown that the Young modulus found in

the literature for black branes falls into the class predicted by this approach - a relation

which is then used to make a proposal for the second order effective action of stationary

blackfolds and to find the corrected horizon angular velocity of thin black rings.
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1 Introduction

Higher-dimensional gravity has been shown to be fruitful as a testing ground for theories of

hydrodynamics. In recent years many new properties, transport and response coefficients

of (charged) fluids [1–6] and superfluids [7–11] have been uncovered through the study of

long-wavelength fluctuations of black branes. These fluctuations can be along the worldvol-

ume [12–15] or boundary directions [1, 2] where the fluid lives yielding the usual dynamics of

viscous fluid flows, or transverse to it, originating instead genuine elastic behavior [5, 6, 16].

The blackfold approach [17–19], being the effective hydrodynamic theory that de-

scribes the long-wavelength perturbations of black branes, has taught us that the fluid

system dual to the gravitational object needs not to live on the boundary of the space-time

(fluid/gravity) but can also live on the horizon (membrane paradigm) or in an intermedi-

ate region [15, 20]. In this regime, black holes and black branes should be seen as fluid
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branes [19, 21]: fluids living on dynamical surfaces of arbitrary co-dimension embedded in

a background space-time.

The relation between the toy model of a fluid brane and gravitational physics can

be thought of in the following way. Classically, black holes share many properties with

other products of gravitational collapse, namely, they are characterized by a very dense

distribution of matter but they differ from other stellar objects due to the formation of an

event horizon. The crust of stars is composed of matter in a high pressure state, as the

matter distribution that characterizes the black hole, and hence relativistic elasticity can

be a good approximation for describing deformations of the star crust. It is then intuitively

understandable why deformations of the matter source of a black hole can give rise to elas-

tic behavior [5, 22–24]. On the other hand, it is also possible in some cases to perform

inhomogeneous fluctuations of the event horizon without deforming the source leading to

an effective viscous fluid behaviour [12–15]. These different possibilities are mapped onto

the fluid brane toy model as transverse deformations to the surface where the fluid lives

(elastic), or to fluctuations on the different thermodynamic quantities and fluid velocities

that characterize the overall fluid configuration (fluid) [19, 21]. It is then possible to think

of a black hole as having source degrees of freedom (elastic modes) and horizon degrees of

freedom (hydrodynamic modes) which in general interact with each other when the entire

system is subject to a perturbation. The natural question to ask is then: in which situa-

tions can the horizon be perturbed without perturbing the source and vice-versa? Focusing

on stationary black brane configurations, in this work we partly answer this question when

backreaction effects can be neglected.

Even though fluid branes have gained a role in gravitational physics, the physical prob-

lem of how a fluid living on a surface reacts to a deformation of the surface is a much older

one dating back to the first observations of the strange biconcave shape of a red blood cell

in the seventeenth century [25]. The models that described the shape of a cell, assuming

a constant pressure along the surface, are the same models that describe the shape of a

soap bubble, working under the principle of minimization of the surface area. However, in

the 60’s, Helfrich and Canham proposed what is now called the Helfrich-Canham bending

energy for fluid membranes [26, 27], consisting of introducing an additional contribution

to the free energy of the cellular membrane of the form:

F [Xµ] = α

∫

A
dAK2 , (1.1)

where K is the mean extrinsic curvature vector, dA is the area element induced on the

surface, A is the area of the surface, and α is the modulus of rigidity. The inclusion of this

term was enough to understand the biconcave shape of the red blood cell [25], a fact that

then led to the study of several properties of this fluid-elastic system [28–32]. The rigidity

term (1.1) has also found its role in particle physics when Polyakov [33], and independently

Kleinert [34], added it to the Dirac-Nambu-Goto action in order to obtain an improved

effective action for QCD. In this context, corrections of the type (1.1) are known as finite

thickness corrections to brane actions.

– 2 –
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In this paper, we generalize the Helfrich-Canham bending energy to account for possi-

ble pressure differences along the surface as well as for the possibility of the fluid being in

stationary motion. Taking a brane-like stringy perspective, what we will be accomplishing

is a systematic derivative correction to extremal and non-extremal brane actions, including

all the possible correction terms quadratic in the extrinsic curvature, in the extrinsic twist

potential and of second order in derivatives along the surface and obtaining the equations

of motion for the resulting system. The first covariant formalism for obtaining the cor-

rect variations of surface tensors was developed by Carter in connection with his model

of geodynamic-type (or stiff) strings and branes [35–37]. A more intuitive method that

instead exploits the symmetries of the worldvolume surface was developed by Capovilla-

Guven [38] and applied to different physical systems including lipid vesicles [39–41]. On

the other hand, a general framework for deriving the equations of motion of finite thickness

probe branes based on a multipole expansion of the stress-energy tensor was developed by

Vasilic-Vojinovic [42, 43]. Carter pointed out in [36] that the dynamics of geodynamic-type

objects could be accounted for by adding dipole terms to the stress-energy tensor. Using

mainly the formalism developed by Capovilla-Guven [38] and Vasilic-Vojinovic [43], it is

shown that this is indeed the case.1

The upshot of the developments in hydrodynamics in connection with gravitational

physics mentioned in the beginning of this section is that many systematic methods for

constructing theories of fluid dynamics have been developed [46–52]. Inspired by partition

function methods [46–49] and the effective action approach [50, 51] we construct the free

energy for generic stationary fluid flows living on dynamical surfaces to second order in a

derivative expansion. We show that neutral fluids living in a surface of co-dimension greater

than one are characterized by 3 elastic response coefficients, 3 hydrodynamic response coef-

ficients and 1 spin response coefficient. Each of these response coefficients is associated with

a particular term which is added to the action and from our analysis we conclude that the 3

elastic terms are coupled to 4 of the hydrodynamic terms due to geometric constraints. Con-

trary to the case of space-filling stationary fluid flows which are described by only 3 hydro-

dynamic response coefficients [46], these fluids are described by a total of 7 independent re-

sponse coefficients in a curved background. Using the generic form of the stress-energy ten-

sor and dipole moment obtained from the action we match it with the Young modulus mea-

sured for black branes [5, 16] and hence propose a second order effective action for blackfolds

which is then used to predict the corrected horizon angular velocity of thin black rings. We

stress, however, that our construction is not the most general one to 2nd order in the deriva-

tive expansion. We will be ignoring terms that are constructed from the Levi-Civita symbol

and which are dimension-dependent. The reason for this will be explained in section 5.

This paper is organized as follows. In section 2 we lay down the general framework

for the variational calculus and the construction of the effective action in a derivative

expansion. We then show how to iteratively account for higher order derivative corrections

1Note that in the case of spinning corrections to the motion of point particles, it was already known that

the equations of motion were captured by a multipole expansion of the stress-energy tensor [44]. In the

context of curvature corrections to cosmic strings, this was also derived in [45]. Here, we have generalized

these results to arbitrary space-time dimension and for p-branes.

– 3 –
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and obtain expressions that exhibit the coupling between the hydrodynamic and elastic

modes. Section 3 is quite technical but equally important. There we show how these

corrections can be understood as a multipole expansion of the stress-energy tensor and

proceed to construct conserved currents and charges. In section 4 we match our results

with the measurement of the Young modulus for black branes, firmly establishing what is

meant by an elastic expansion for black holes. In section 5 we comment on open issues

and future work. We also include appendix A where we describe in detail the notation

used in this paper and collect different results of variational calculus and of geometry of

embeddings. In appendix B we analyze the boundary conditions for hydrodynamic modes.

2 Effective action for (non)-extremal branes

In this section we construct the most general effective action and corresponding free energy

for a neutral stationary fluid brane quadratic in the extrinsic curvature and extrinsic twist

potential to second order in a derivative expansion. We consider a (p + 1)-dimensional

surface with worldvolume topology Wp+1 = R × Bp embedded in a background space-

time of D = n + p + 3 dimensions with metric gµν(x
α) and space-time coordinates xα.

The position of the surface is described by a set of mapping functions Xµ(σa), where the

set of coordinates σa cover the embedded submanifold. The indices µ, ν, λ . . . are space-

time indices, the indices a, b, c . . . denote directions along the worldvolume surface while

the indices i, j, k . . . denote transverse directions to the worldvolume. The worldvolume

inherits an induced metric of the form γab = gµνu
µ
auνb , where uµa = ∂aX

µ, and if the

worldvolume is bent one can assign to it an extrinsic curvature defined as Kab
µ = ∇au

µ
b ,

where the covariant derivative ∇a is defined in appendix A. Any space-time vector vµ can

be decomposed into tangential and orthogonal components to the worldvolume surface

such that vµ = vauµa + vinµ
i , where the set of tangential and orthogonal projectors satisfy

gµνu
µ
anν

i = 0. Given the set of orthogonal projectors one can define the extrinsic twist

potential ωa
ij = −nj

µ∇an
iµ, which is anti-symmetric in its two transverse indices, as

well as the outer curvature Ωab
ij associated with it (see appendix A). It is also useful to

introduce projectors onto the worldvolume and onto its transverse space while keeping

track of space-time indices. For that matter we introduce the first fundamental tensor γµν

defined as γµν = γabuµau
ν
b , which projects onto Wp+1 , and the orthogonal projector ⊥µν

given by the expression ⊥µν = gµν − γµν . Further, we assume the existence of a set of

commuting worldvolume Killing vector fields that we take to be of the generic form:

ka∂a = ∂τ +
∑

a=1

Ω(a)∂φa , σa = (τ, φa, . . .) . (2.1)

Here the set of angular velocities Ω(a) is constant. The existence of such worldvolume

Killing vector fields is a requirement for stationarity of the overall fluid configuration (see

for example [53]). We begin by reviewing the 0th order action and generalizing the analysis

of [21] while simultaneously highlighting some of the elastic properties of fluid branes. The

method for iteratively correcting the action then follows.
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2.1 0th order fluid-elastic system

To 0th order in a derivative expansion the surface is described by an induced metric γab
and the set of commuting Killing vector fields (2.1). The only natural scalar invariant

that can be constructed from these two is the modulus of the Killing vector defined as

k = | − γabk
akb|1/2. Therefore, the action must be a functional of k,2

I [Xµ] =

∫

Wp+1

L
(√−γ,k

)

=

∫

Wp+1

dp+1σ
√−γ λ0(k) . (2.2)

In what follows, we will omit dp+1σ from our integrals. Our goal is to make a small defor-

mation δXµ of the worldvolume geometry along both tangential and orthogonal directions.

To this aim we decompose the deformation as δXµ = Φµ = Φauµa +Φinµ
i . Under arbitrary

small variations the metric changes by a Lie derivative such that

δγab = 2∇(aΦb) − 2Kab
iΦi . (2.3)

Further, we assume the set of angular velocities in (2.1) to be held constant during the

variation and hence the variations of the Killing vector fields δka are zero. Therefore, the

variation of the action (2.2) can be written only in terms of the variation of the induced

metric. This fact leads to a result of the form:

δI [Xµ] =

∫

Wp+1

√−γ
(

∇a

(

T abΦb

)

− Φb∇aT
ab − T abKab

iΦi

)

, (2.4)

where we have defined the monopole source of stress-energy tensor in the usual way,

T ab =
2√−γ

δL
δγab

. (2.5)

Before we analyze the explicit form of (2.5) note that in order to obtain the equations of

motion from (2.4) one must require δI [Xµ] = 0. The first term in (2.4) is a boundary term

and can be written in the form
∫

∂Wp+1

√
−hT abηaΦb , (2.6)

where ηa is a unit normal vector to the brane boundary and h the determinant of

the induced metric on the boundary. Hence, a well posed variational principle requires

T abηa|∂Wp+1 = 0. The second term in (2.4) results in an identity which is trivially satisfied

as we will show below,

∇aT
ab = 0 . (2.7)

In total, the variational principle (2.4) yields the non-trivial equation of motion

T abKab
i = 0 . (2.8)

Eq. (2.7) expresses stress-energy tensor conservation and is responsible for the fluid be-

havior along worldvolume directions while eq. (2.8) contains the elastic degrees of freedom

which are manifested along transverse directions to the worldvolume. These equations will

be analyzed in greater detail as we progress in this section.

2Note that λ0(k) is also implicitly a function of the global temperature T . For explicit examples of

non-extremal brane actions see [19, 54–57].
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The explicit form of the stress-energy tensor. To evaluate the stress-energy ten-

sor (2.5) we need the variation of k with respect to γab, this is simply

δk = −k

2
uaubδγab , ua =

ka

k
. (2.9)

For an action of the type (2.2) the stress-energy tensor takes the following form:

T ab = T ab
(0) = λ0(k)γ

ab − λ′
0(k)ku

aub . (2.10)

Here λ′
0(k) indicates a derivative with respect to k. This is easily recognized as the

stress-energy tensor of a perfect fluid and indeed leads us to identify the set of normalized

vectors uaua = −1 as fluid velocities, while thermodynamics allows us to identify the

pressure P and energy density ǫ such that

P = λ0(k) , ǫ+ P = −λ′
0(k)k . (2.11)

This means that to 0th order, the action (2.2) is the just the usual action for stationary

perfect fluids [58] but now living on a submanifold in the ambient space-time. Assuming

the Gibbs-Duhem relation ǫ + P = T s and knowing that for such systems the constant

global temperature T is related to the local temperature via T = kT [53], using the

identification (2.11) one obtains an expression for the local entropy density

s = − 1

T
λ′
0(k)k

2 . (2.12)

Given these identifications, the set of eqs. (2.7) are interpreted as the fluid equations on

the worldvolume Wp+1. However, the stress-energy tensor (2.10) satisfies the conservation

equation (2.7) regardless of any thermodynamic interpretation. Indeed, using (2.10) in

eq. (2.7) results in

−∇bλ0(k) +
1

2k
λ′
0(k)∇bk2 = 0 , (2.13)

which is trivially satisfied. In order to obtain the above, one needs to use the fact that the

expansion θ ≡ ∇au
a vanishes by virtue of the Killing equation ∇akb = ∇[akb] and that

for any worldvolume scalar or tensor T, the Lie derivative along the Killing vector field

vanishes £kT = 0.

The elasticity of fluid (mem)-branes. Eq. (2.8) encodes the elastic degrees of free-

dom of the brane. In fact, note that it has a direct analog in terms of classical elasticity

theory: it is the equation of motion obtained by varying the free energy of a thin stretched

membrane when bending effects can be neglected [21, 59]. For very thin membranes, the

effect of bending is always subleading when compared to deformations caused by stretching

or compression [59]. To further see the connection with elastodynamics it is instructive

to imagine the following scenario. Suppose that to a given fluid configuration satisfying

eq. (2.8) one applies a small deformation of the embedding surface in an arbitrary orthogo-

nal direction Φi. Prior to the deformation the metric γ̄ab measured distances between fluid

– 6 –
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elements on the surface, while after the deformation the actual value of γab measures the

new distances on Wp+1. Therefore γab describes the state of strain of the brane and one

can define the Lagrangian strain tensor Uab
3 as [21]

Uab = −1

2
(γab − γ̄ab) . (2.14)

For infinitesimal displacements along Φi, the strain tensor changes by a Lie derivative and

hence

£ΦiUab ≡ dUab = −1

2
dγab = Kab

iΦi . (2.15)

Thus, we conclude that the extrinsic curvature tensor Kab
i measures the strain induced

on the brane due to a deformation of the surface along orthogonal directions [5, 21].

Making the extra assumption of the existence of a background Killing vector field kµ

whose pullback onto the worldvolume coincides with the worldvolume Killing vector field

ka allows us to write T su̇µ = −s∂µT . This, together with the form of the stress-energy

tensor (2.10) and the identification (2.11), allows us to rewrite eq. (2.8) when contracted

with the deformation vector Φi as

dP = −PdV , (2.16)

where we have defined the relative change in volume along an orthogonal direction as

dV = (1/2)γabdγab. Eq. (2.16) allows for the definition of the modulus of hydrostatic

compression K that measures the brane response to variations in volume such that

1

K =

(

∂V
∂P

)

T

= − 1

λ0(k)
. (2.17)

Further elastic properties can be highlighted by using the first law of thermodynamics for

the fluid dǫ = T ds and defining the solid density ρ = ǫ + P = −λ′
0(k)k which along the

directions Φi expresses the first law of thermodynamics for an elastic membrane that has

been subject to hydrostatic compression dρ = T ds−PdV [21]. To every fluid membrane one

can also assign an elasticity tensor that measures the deformation of the stress-energy ten-

sor (2.10) due to surface deformations. In order to see this precisely one performs a small de-

formation of the equations of motion (2.8) along the vector Φi. To this aim, one requires the

deformation of the extrinsic curvature tensor along orthogonal directions (see appendix A),

δ⊥Kab
i = ni

µ∇a

(

⊥µ
ν∇b(Φ

jnν
j)
)

−Ri
bajΦ

j −Kac
iKc

bjΦ
j , (2.18)

where Rµνλρ is the Riemann curvature tensor of the background geometry. Using this

transformation rule, an infinitesimal deformation of eq. (2.8) yields

EabcdKab
iKcd

jΦj + T abni
µ∇a∇b(Φ

jnµ
j) = T abRi

abjΦ
j , (2.19)

3This is the usual definition of Lagrangian strain [60] but now including the timelike direction as well.
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where we have defined the elasticity tensor for fluid branes Eabcd through the Hookean

relation dT ab = EabcddUcd, which for systems of the type (2.2) takes the general form [21]

Eabcd = 2

(

λ0(k)γ
a(cγd)b −

(

∂λ0(k)

∂γab

)

γcd − 2

(

∂2λ0(k)

∂γab∂γcd

))

. (2.20)

The structure of (2.20) is that of a material characterized by a varying modulus of compres-

sion. The case of Dirac-branes is obtained when λ0(k) is constant and the two last terms

vanish. The fact that the elasticity tensor is only probing compression and stretching is be-

cause we are working in the limit in which the fluid is confined to an infinitely thin surface as

it will become clear in section 3. We note that the linearized equation (2.19) has been previ-

ously obtained by Carter in [37], here we merely applied it to a fluid brane. It is interesting

to note that eq. (2.19) already encodes some of the structure of the equations of motion

when bending effects are taken into account. The reason for this is explained in section 3.

The free energy interpretation. The 0th order action (2.2) can be interpreted as

the free energy of the fluid-elastic system [19, 55]. After identifying the stress-energy

tensor (2.10) with that of a perfect fluid, then by defining the local Gibbs free energy

density G and using (2.11) one obtains

G = ǫ− T s = −λ0(k) . (2.21)

Wick rotating the integral over the worldvolume of the density G and integrating over

the time circle of radius β = 1/T we obtain the total free energy F of the system (2.2).

This interpretation can also be realized at the level of the global charges. First note

that the first term in the variational principle (2.4) is a total divergence term. For the

action (2.2) to be invariant under an infinitesimal shift of worldvolume coordinates along

a worldvolume Killing vector field, one must have that

∇a

(

T abkb

)

= 0 . (2.22)

This is satisfied due to the Killing equation and the symmetry of T ab. The set of surface

currents T abkb is conserved and with those it is possible to construct a set of conserved

surface charges (mass and angular momenta) of the form

M =

∫

Bp

dV(p)T
abnaξb , J (a) = −

∫

Bp

dV(p)T
abnaχ

(a)
b . (2.23)

In writing these expressions we have assumed that the worldvolume timelike Killing vector

field ξa∂a ≡ ∂τ , whose norm is the redshift factor R0, is hypersurface orthogonal with

respect to Wp+1. Further, we have introduced the spatial measure dV(p) on the worldvol-

ume, a unit normal vector na = ξa/R0 orthogonal to spacelike slices of Wp+1 and defined

the rotational Killing vector fields in (2.1) as χ(a)∂a = ∂φa . In section 3 we will show that

this set of surface charges is indeed the set of global conserved charges associated with the

fluid brane. Using the definition of the local entropy density (2.12) it is straightforward

to construct the global entropy of the system from the entropy current Ja
s = sua:

S = −
∫

Bp

dV(p)J
a
s na . (2.24)
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Having defined the charges (2.23) and the global entropy it is possible to verify that

F = M − Ω(a)J(a) − TS, where βF = IE and IE = −I is the Wick rotated (Euclidean)

action. Hence the variational principle dF = 0 with fixed Ω(a) and global temperature T ,

requires the first law of thermodynamics to be satisfied [19, 55]:

dM = Ω(a)dJ(a) + TdS . (2.25)

2.2 General framework for higher order corrections

We will now show how some of the ideas of the previous section can be pushed to second

order in a derivative expansion. The general method, following [46, 51] , consists in

adding all possible scalars constructed out of derivatives of worldvolume quantities to

the action (2.2). We will split the type of corrections that can be supplemented to the

action in three parts. Hydrodynamic corrections are those which only involve derivatives

of fields that characterize the intrinsic geometry of the brane. These are, for example,

terms proportional to ∇ak, ∇[akb], to the worldvolume Riemann tensor Rabcd or to the

tangential projection of the background Riemann tensor Rabcd. Elastic corrections, on

the other hand, are scalars proportional to the extrinsic curvature tensor Kab
i. Note that

by (2.3) or (2.14), the extrinsic curvature tensor is a one-derivative term along transverse

directions to the worldvolume. Finally, spin corrections are corrections proportional to

the extrinsic twist potential ωa
ij , which is also a one-derivative term. This means that we

will consider a generic action of the form

I [Xµ] =

∫

Wp+1

L(√−γ, γab,k
a,∇a,Kab

i, ωa
ij) . (2.26)

Since the Killing vectors ka are held constant during the variation, variations of (2.26)

can be analyzed solely through variations of the metric γab, the extrinsic curvature tensor

Kab
i and the extrinsic twist potential ωa

ij . For this purpose, we define the dipole moment

Dab
i and the spin current Sa

ij of the fluid-elastic system as4

Dab
i =

1√−γ

δL
δKab

i
, Sa

ij =
1√−γ

δL
δωa

ij
. (2.27)

To study small deformations of the geometry (2.26) along both tangential and orthogonal

directions to the worldvolume it is required the knowledge of the variation of Kab
i as well

as of ωa
ij along these directions. Using (2.18) for the transverse variations of Kab

i, we

have that for the tangential variations

δ||Kab
i = Φcni

ρ∇cKab
ρ + 2Kc(a

i∇b)Φ
c , (2.28)

while for the extrinsic twist potential we have that (see appendix A)

δωa
ij = ni

ρn
j
λΦ

b∇bωa
ρλ + ωb

ij∇aΦ
b − 2Kab

[inj]
ρ∇b(Φknk

ρ) +Rij
kaΦ

k , (2.29)

4The reason for the interpretation of the quantities (2.27) as the dipole moment and spin current will

become clear in section 3.
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where ωa
λρ = nλ

in
ρ
jωa

ij . Using the transformation rules (2.18), (2.28) and (2.29), the

total variation of (2.26) takes the form

δI=

∫

Wp+1

√
−γ

[

∇a

(

T
abΦb +Dac

iKcb
iΦb−Φin

iµ∇bDab
µ+Dab

µ∇bΦ
µ+Sa

ijωb
ijΦb−2Sb

ijKb
aiΦj

)

+Φb

(

−∇aT
ab +Dac

ρ∇b
Kac

ρ − 2∇a

(

Dac
iK

b
c

i
)

− Sa
ijΩa

bij − ω
bρλ∇aSa

ρλ

)

+Φi

(

−T
ab
Kab

i + n
i
ρ∇a∇bDabρ +Dabj

R
i
ajb − 2ni

ρ∇b

(

Saρ
jK

abj
)

+ Sakj
R

i
akj

) ]

,

(2.30)

where we have used the definition of the outer curvature Ωab
ij (see appendix A). As in the

0th order case (2.4), the variation yields a total divergence which can be integrated to a

boundary term. However note that any component of the form ∇bΦ
µ is not independent

on the brane boundary, indeed one can decompose it such that ∇bΦ
µ = ηbη

a∇aΦ
µ +

vb
â∇âΦ

µ, where va
â are boundary coordinate vectors and the indices â, b̂, . . . label boundary

directions. The normal component to the brane boundary ηa∇aΦ
µ is independent but

va
â∇âΦ

µ is not. Hence, assuming that the variations Φµ vanish on the boundary of the

brane boundary itself (if existing), a well defined variational principle requires

Dabi
ηaηb|∂Wp+1

= 0 , Saij
ηa|∂Wp+1

= 0 , (2.31)
[

∇â

(

Dabi
n
µ
iηavb

â
)

− ηa

(

T
ab
ub

µ +Dac
iKc

bi
ub

µ −⊥µ
ρ∇bDabρ + 2nu

jSbji
Kb

a
i

)]

|∂Wp+1
= 0 .

Further, the second term in (2.30) yields a set of non-trivial identities that must vanish.

With the help of the Codazzi-Mainardi equation

Ri
cba = ni

ρ (∇bKac
ρ −∇aKcb

ρ) , (2.32)

and the Ricci integrability condition [38, 61]

Rab
ij = Ωab

ij −Kac
iKb

cj +Kbc
iKa

cj , (2.33)

it can be brought to the form

∇aT
ab − uµ

b∇a∇cDacµ + 2Sa
ijKac

iKbcj = DaciRb
aic + SaijRb

aij − ωbij∇aSa
ij .(2.34)

In sections 2.4 and 2.5 we will give a few examples of how this equation is satisfied for the

actions we consider. Eq. (2.34) can be seen as the modified intrinsic dynamics of eq. (2.7).

The reader may wonder if there is another definition of the stress-energy tensor for which

eq. (2.34) would just express its conservation. Indeed in section 3 we will show that it is

possible to define the linear momentum which is always conserved in flat space. Finally,

the variational principle δI [Xµ] = 0 yields the non-trivial equation of motion:

T abKab
i = ni

ρ∇a∇bDabρ − 2ni
ρ∇b

(

Sa
ρjKab

j

)

+DabjRi
ajb + SakjRi

akj . (2.35)

This is of course the modified version of the equation of motion (2.8) due to the presence

of dipole Dabi and spinning Sa
ij effects and, in fact, it is the generalization to arbitrary

co-dimension and to curved backgrounds of the classical equation of motion of a deformed

thin membrane when bending effects and rotation in transverse directions are taken into

account. To see this precisely, let us focus on a flat background and consider the well
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studied case of the Helfrich-Canham bending energy (1.1) for co-dimension-1 surfaces in

the absence of spinning effects, that is, Sa
ij = 0. In this case, as we will show below, we

have Dabi = 2αγabKi where Ki = γabKab
i is the mean extrinsic curvature vector. The

equation of motion (2.35) can then be rewritten as

− 2α∇4Xi + PabKab
i = 0 , (2.36)

with Pab = T ab+2αKab
iK

i and where ∇4 is the square of the Laplacian, or the biharmonic

operator usually found in classical elasticity theory [59].5 Therefore, the theory described

by eqs. (2.31)–(2.35) is a general relativistic generalization of classical elastodynamics of

thin membranes.

It is also possible to construct surface currents and charges associated with the

systems (2.26), however, since there are subtleties that can only be resolved when relating

this approach to a multipole expansion of the stress-energy tensor, we will leave that for

section 3. On the other hand, the construction of the global entropy and entropy current

as in (2.24) to second order in the derivative expansion will be lacking in this work as

it has not been developed for the systems we consider. Such endeavor is possible to

accomplish and it will be presented in a future publication [62].

For now, we will study the different contributions that can arise at each order in

the derivative expansion. To each term involving one derivative we associate it with the

expansion parameter ε. Two-derivative terms are of order O
(

ε2
)

. For clarity of explana-

tion, we decompose the possible corrections to the intrinsic stress-energy tensor T ab into

hydrodynamic Πab, elastic τab and spin Θab contributions such that

T ab = T ab
(0) +Πab + τab +Θab . (2.37)

The higher order corrections Πab, τab, Θab as well as the dipole moment Dabi and the spin

current Sa
ij will be the sum of the contributions from the different scalars that can be

added to the action (2.26). Generically,

Πab =
∑

α

Πab
α , τab =

∑

α

τabα , Θab =
∑

α

Θab
α , Dabi =

∑

α

Dabi
α , Saij =

∑

α

Saij
α . (2.38)

Note however that the hydrodynamic corrections do not contribute to the dipole moment

Dabi neither to the spin current Saij by virtue of the definition (2.27).

2.3 1st order action

To 1st order in the derivative expansion the only possible terms that can be added are of

hydrodynamic nature. This would be terms of the form:

ka∇ak , ∇ak
a . (2.39)

However these terms vanish because ka is a Killing vector field. This is in agreement with

the analysis of [46, 51] for both stationary and non-dissipative fluids. Indeed, for a generic

5Note that in classical elasticity theory Pab is conserved while here, due to eq. (2.34) it is not. However,

the tensor Pau = Pabub
µ − n

µ
i ∇aDabi is conserved in flat space and PaµKaµ

i = PabKab
i. Note also that

for co-dimension-1 surfaces, the extrinsic twist ωa
ij vanishes.
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dissipative fluid the entropy current to first order in derivatives is proportional to the

square of the expansion θ ≡ ∇au
a and to the square of the shear σab.6 These two quantities

vanish for stationary flows. One may also consider extrinsic curvature corrections to 1st

order in derivatives but due to the transverse index in Kab
i, any scalar built of the extrinsic

curvature needs to be contracted with another copy of itself. Therefore, extrinsic curvature

corrections only enter to second order in the derivative expansion. The same argument

holds for terms proportional to the extrinsic twist potential.7 This is in agreement with

the results obtained from gravity for the leading order corrections to thin black rings [17]

and blackfolds [16] for co-dimension surfaces higher than three for which a system of the

type (2.26) is supposed to be the correct description [5]. An exception to this argument

of absence of extrinsic corrections to first order is the case of co-dimension-1 surfaces

where we can simply omit the transverse index from Kab
i. These cases will be dealt with

in section 2.7. All in all, for surfaces of co-dimension greater than one we conclude that

there are no corrections to first order in the derivative expansion.

2.4 2nd order elastic corrections

To second order in the derivative expansion, focusing on the elastic corrections, we can

add a total of 5 different terms to the action (2.26) which are quadratic in the extrinsic

curvature. These terms are of the following form:

λ1(k)K
iKi , λ2(k)K

abiKabi , λ3(k)k
akbKac

iKc
bi ,

(2.40)

λ4(k)k
akbKab

iKi , λ5(k)k
akbkckdKab

iKcdi .

The first term in (2.40) is the generalization of the Helfrich-Canham bending energy (1.1)

for surfaces of arbitrary co-dimension and for a non-trivial response coefficient λ1(k). The

first two terms in (2.40) for the case in which both λ1(k) and λ2(k) are constant build

up Carter’s model of stiff strings and branes [36] and have also been extensively studied

by Guven [38, 63]. The other three terms have not been considered previously in the

literature and they constitute the generalization of the Helfrich-Canham bending energy for

stationary fluid (mem)-branes. However, the last two terms in (2.40) are not independent

and can be removed by a change of basis and a field redefinition as it will be explained in

section 3.2. Nevertheless, we consider their contribution as it will be convenient for later

comparison with gravity results in section 4. We note that the reason why the second term

in (2.40) was not necessary to be added to the action of cellular membranes is that the

first two terms are coupled to each other and in certain conditions, such as in flat space,

they can be shown to be equivalent. We will explain this in detail in section 2.6 when

6The shear tensor is defined as σab = P acP bd
(

∇(cud) − θ
p
γcd

)

, where P ab is the projector along trans-

verse directions to the fluid flows and defined as P ab = γab + uaub.
7If we considered terms constructed from the Levi-Civita symbol then it would be possible to add a term

of the form k
aǫijωa

ij . However, even though these are not considered in this paper, they are of physical

interest, as they may be useful in the description of spinning black holes (see section 5).
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we study the coupling between modes. Decomposing each scalar in (2.40) as λα(k)Lα, we

summarize below the contributions of each term to τab and Dabi:8

Scalar τab
α Dabi

α

λ1(k)L1 λ1(k)L1γ
ab − λ′

1(k)kL1u
aub − 4λ1(k)K

ab
iK

i 2λ1(k)γ
abKi

λ2(k)L2 λ2(k)L2γ
ab − λ′

2(k)kL2u
aub − 4λ2(k)K

ac
iK

b
c
i

2λ2(k)K
abi

λ3(k)L3 λ3(k)L3γ
ab − λ′

3(k)kL3u
aub − 2λ3(k)k

c
k
dKa

ciK
b
d
i

2λ3(k)k
d
k
(aKb)

d
i

λ4(k)L4 λ4(k)L4γ
ab − λ′

4(k)kL4u
aub − 2λ4(k)k

c
k
dKab

iKcd
i λ4(k)k

a
k
bKi + λ4(k)γ

ab
k
c
k
dKcd

i

λ5(k)L5 λ5(k)L5γ
ab − λ′

5(k)kL5u
aub 2λ5(k)k

a
k
b
k
c
k
dKcd

i

We see that τab is the sum of a total of 5 contributions τab =
∑5

α=1 τ
ab
α and contains a

perfect fluid part (see (2.10)) and an elastic part. When τab is added to the 0th order contri-

bution (2.10) we decompose it into the total perfect fluid part T ab and elastic part such that

T ab = T ab
(0) + τab = T ab + E(acdeKde

iKb)
ci , (2.41)

where the elastic deformation to the worldvolume stress-energy tensor Eabcd has the form

Eabcd = −2
(

2λ1(k)γ
abγcd + 2λ2(k)γ

adγbc + λ3(k)γ
adkbkc + λ4(k)γ

abkckd
)

. (2.42)

Rewriting the 0th order contribution (2.2) as λ0(k)L0 with L0 = 1 and using the

identification (2.11), the total fluid part T ab can be written as

T ab = Pγab + (E + P)uaub , (2.43)

where

P =
5

∑

α=0

λα(k)Lα , E + P = −
5

∑

α=0

λ′
α(k)kLα . (2.44)

Indeed, the quantity defined above as the modified pressure P is nothing more than

the sum of all scalar contributions, that is, the 0th order scalar (2.2) plus the 2nd

order ones (2.40). The dipole moment Dabi is also the sum of 5 different contributions

Dabi =
∑5

α=1Dabi
α and can be put into the elegant form

Dabi = YabcdKcd
i , (2.45)

where we have defined the Young modulus of the fluid brane as

Yabcd = 2

(

λ1γ
ab
γ
cd + λ2γ

a(c
γ
d)b + λ3k

(a
γ
b)(c

k
d) +

λ4

2

(

γ
ab
k
c
k
d + γ

cd
k
a
k
b
)

+ λ5k
a
k
b
k
c
k
d

)

. (2.46)

Here we have omitted the dependence of the response coefficients λα on k. The Young mod-

ulus (2.46) is the physical quantity that encodes all the possible responses of stationary fluid

branes to bending deformations. Furthermore, it exhibits all the symmetries of the usual

elasticity tensor of a classical anisotropic crystal Yabcd = Y(ab)(cd) = Ycdab. As we will see

8Note that elastic corrections do not contribute to the spin current Sa
ij .
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in section 4, the Young modulus measured from gravity for bent black branes is a particular

case of (2.46). Given the structures (2.45)–(2.46) and the identification (2.11) we present

two useful and equivalent rewritings of the action (2.26) including only elastic corrections:

I [Xµ]=

∫

Wp+1

√−γ

(

P (k) +
1

2
Dab

iKab
i

)

=

∫

Wp+1

√−γ

(

P (k) +
1

2
Yab

cdKab
iKcd

i

)

.(2.47)

In section 4, we will study an example of this action. However we note that this action

is exactly the type of action expected for the bending of thin membranes from classical

elasticity theory [59], here we have presented a relativistic generalization of it.

Vanishing of the intrinsic equation of motion. In section 2.2 we mentioned that the

intrinsic equation of motion (2.34) resulted in mere non-trivial identities for the actions we

consider. One can verify that this is indeed the case for all corrections presented in the table

above. Here we will just present two examples of how this is done. For the contribution

λ1(k), when introducing τab1 and Dabi
1 into eq. (2.34) a part of the stress-energy tensor is

conserved due to (2.13), the remaining part is brought to the form

2λ1(k)Ki

(

∇bKi −∇aK
abi

)

= 2λ1(k)γ
acKiRb

aic . (2.48)

Using the Codazzi-Mainardi equation (2.32), the l.h.s. of the equation above can be seen

to be equivalent to the r.h.s.. In fact, for the terms λ1(k) and λ2(k) one only needs to

use (2.13) and (2.32) to show the identity (2.34). We now take the case of the term λ5(k).

After using eqs.(2.13) and (2.32) we are left with

λ5(k)k
akckeKcd

iKaei∇bkd + λ5(k)k
a∇a

(

kckdkeKed
iKc

b
i

)

= 0 . (2.49)

Now we need to remember that the Lie derivative along any worldvolume Killing vector

field of any worldvolume tensor must vanish, that is,

£k

(

kckdkeKed
iKc

b
i

)

= ka∇a

(

kckdkeKed
iKc

b
i

)

− kckdkeKed
iKaci∇akb = 0 . (2.50)

When eq. (2.50) is used, eq. (2.49) is trivially satisfied. This fact, together with the Killing

equation, is enough to verify the identity (2.34) for the terms λ3(k) and λ4(k).

2.5 2nd order spin corrections

Spin corrections to O
(

ε2
)

in the derivative expansion are the terms that can be added to

the action which are quadratic in the extrinsic twist potential. These do not contribute

to the dipole moment Dabi. Therefore, ignoring terms constructed from the Levi-Civita

symbol, we can add two different scalars to the action

̟1(k)k
akbωaijωb

ij . ̟2(k)ω
a
ijωa

ij , (2.51)

Denoting each term by ̟α(k)Wα we summarize below their contribution to the stress

energy tensor Θab and to the spin current Saij :
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Scalar Θab
α Saij

α

̟1(k)W1 ̟1(k)W2γ
ab −̟′

1(k)kW2u
aub 2̟1(k)k

akbωb
ij

̟2(k)W2 ̟2(k)W1γ
ab −̟′

2(k)kW1u
aub − 2̟2(k)ω

aijωb
ij 2̟2(k)ω

aij

The stress-energy tensor of these contributions contains a perfect fluid part that can be

incorporated in the total pressure defined in (2.44). Defining a spin deformation tensor of

the form

Sab = 2̟1(k)k
akb + 2̟2(k)γ

ab , (2.52)

the action (2.26) including only the 0th order contribution (2.2) and spin corrections can

be written in two useful ways:

I [Xµ]=

∫

Wp+1

√−γ

(

P (k)+
1

2
Sa

ijωa
ij

)

=

∫

Wp+1

√−γ

(

P (k)+
1

2
Sabωa

ijωbij

)

. (2.53)

We will see however that the term ̟2(k) is not a desirable one in a physical theory.

Vanishing of the conservation equations. As in section 2.4 the vanishing of the con-

servation equation (2.34) can be shown by following the same steps as in the previous section

together with the definition of the outer curvature (see appendix A) and the Ricci integra-

bility condition (2.33). However, there is a subtlety in this demonstration. For the scalar

̟1(k)W1, one can show that the last term in eq. (2.34) vanishes independently, that is,

ni
ρn

j
λ∇aSaρλ

1 = 0 , (2.54)

a result that follows from the fact that £k

(

kbωb
ij
)

= kani
ρn

j
λ∇a

(

kbωb
ρλ
)

= 0. However,

even though the scalar ̟2(k)W2 satisfies (2.34), it does not satisfy (2.54) individually.

Eq. (2.54) expresses conservation of angular momenta in transverse directions to the

worldvolume, as we will see in section 3. Therefore the term ̟2(k)W2 is explicitly

violating this conservation.

2.6 2nd order hydrodynamic corrections and mode coupling

In this section we examine the possible 2nd order hydrodynamic corrections to the ac-

tion (2.26) and the stress-energy tensor T ab as well as the coupling between these modes and

the ones found in the previous sections. For all these corrections the dipole moment Dabi

vanishes. There are 7 types of scalars that can be constructed from the intrinsic geometry:9

υ1(k)∇a∇ak , υ2(k)R , υ3(k)k
akbRab , (2.55)

υ4(k)∇[akb]∇[akb] , υ5(k)∇ak∇ak , υ6(k)R
a
ba

b , υ7(k)k
akbRc

acb .

9Remember that since we are dealing with stationary flows both the expansion θ and shear σab are zero

and hence any term proportional to these vanishes. These are, however, non-zero for generic non-dissipative

flows [51]. Further, the reader may wonder why we have not considered couplings of the form Rij
ij or

contractions with Ri
aib. The reason is that these terms are not well defined on the worldvolume and are

related to geometric quantities with support on the transverse space. See [64] for a setting in which these

terms play a role.
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Here we have introduced the Ricci tensor Rab and Ricci scalar R of the worldvolume

geometry. The terms υ6(k) and υ7(k) can be related to some of the other hydrodynamic

terms and to the elastic modes in (2.40) through the Gauss-Codazzi equation as we will

explain below. This of course expresses the extra difficulty of the problem compared to [46,

51] since not only couplings to the worldvolume geometry need to be considered, but also

couplings to the background geometry. Further, the terms υ1(k), υ3(k), υ4(k) and υ5(k) are

not independent of each other and are related by on-shell equivalences. To see this note that
∫

Wp+1

√−γυ3(k)k
akbRab =−

∫

Wp+1

√−γυ3(k) [∇a,∇b]k
akb

=

∫

Wp+1

√−γυ3(k)
(

∇ak∇ak+ k∇a∇ak−∇[akb]∇[akb]
)

.

(2.56)

Moreover, the terms υ1(k) and υ5(k) are directly related to each other, modulo a boundary

term, such that,
∫

Wp+1

√−γυ1(k)∇a∇ak = −
∫

Wp+1

√−γυ′1(k)∇ak∇ak+ boundary term . (2.57)

Therefore, using eqs. (2.56)–(2.57) we can eliminate the terms υ4(k) and υ5(k) and only

consider the first three in (2.55).10 The scalars (2.55) yield boundary contributions that

were not included in the general analysis of (2.30). For this reason we have prepared

appendix B where these issues are clarified.

In order to perform orthogonal variations of (2.55) it is only necessary to know how

the worldvolume Christoffel symbols γab
c vary with respect to the induced metric (see

appendix A). Denoting each term by υα(k)Vα, we summarize below the contribution of

each of these 3 relevant hydrodynamic terms to the stress-energy tensor Πab:

Scalar Πab
α

υ1(k)V1
υ1(k)V1γ

ab − υ′
1(k)kV1u

aub − γab∇c (υ1(k)∇c
k)− kuaub∇c∇cυ1(k)− 2υ1(k)∇a∇b

k+

2∇(a
(

υ1(k)∇b)
k

)

υ2(k)V2 υ2(k)V2γ
ab − υ′

2(k)kV2u
aub − 2υ2(k)Rab + 2∇a∇bυ2(k)− 2γab∇c∇cυ2(k)

υ3(k)V3
υ3(k)V3γ

ab − υ′
3(k)kV3u

aub −∇c∇c
(

υ3(k)k
a
k
b
)

+ γab∇c∇d

(

υ3(k)k
c
k
d
)

−
2∇c∇(a

(

υ3(k)k
b)
k
c
)

Looking at the table above, we see that again there are contributions of the perfect fluid

form which can be included in the definition of P and E in (2.44), and other new contri-

butions which are second order in derivatives of the intrinsic variables. It is also possible

to show that all such contributions satisfy the identity (2.34). The only necessary ingre-

dients to show this are eq. (2.13), the Codazzi-Mainardi equation (2.32), the fact that the

worldvolume Einstein tensor is divergenceless ∇aGab = ∇a

(

Rab − (1/2)γabR
)

= 0 and

stationarity of the overall configuration.

10This is exactly the same type of analysis as in [51] but now applied to a submanifold embedded in a

background space-time.
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Coupling between elastic and hydrodynamic modes. Here we study the coupling

between the elastic modes (2.40) and the hydrodynamic modes (2.55). The most important

piece of knowledge is the Gauss-Codazzi equation [61],

Rabcd = Rabcd −Kac
iKbdi +Kad

iKbci . (2.58)

relating the intrinsic geometry to the extrinsic geometry. We begin by contracting (2.58)

with the induced metric γbd, this leads to

γbdRabcd = Rac −Kac
iKi +Kab

iKb
ci . (2.59)

If further contracted with kakc, this equation expresses the coupling between the hy-

drodynamic terms υ3(k), υ7(k) and the two elastic contributions λ3(k), λ4(k). Indeed we

can see why we can eliminate υ7(k) in favor of the other three terms. Hence, if γbdRabcd

is non-zero, only 2 of these 4 terms can be regarded as independent,11 while if Rac or

γbdRabcd is vanishing, only 1 of the 3 remaining terms can be regarded as independent.

However, if both the background and the worldvolume are flat, the two elastic terms left

are exactly equivalent to each other and hence both can be gauged away as explained in

section 3.2. If we now contract (2.59) with γac we obtain

γacγbdRabcd = R−KiKi +Kab
iKab

i . (2.60)

This equation, in turn, expresses the coupling between the hydrodynamic terms

υ1(k), υ6(k) and the two elastic constributions λ1(k), λ2(k). Therefore, if the background

is curved, only 3 of these 4 terms can be regarded as independent and again, if Ra
ba

b or

R vanish, only 2 of the 3 remaining terms are independent. If both the background and

the worldvolume are flat only 1 of the 2 elastic contributions is independent. For the

fluid membranes studied in theoretical biology for which the Helfrich-Canham bending

energy (1.1) was crucial to understand, the term υ2(k) = constant, even though entering

at the same order in derivatives, is not added to the action as it is a purely topological

invariant. Moreover, in flat space, and since the two elastic contributions λ1(k) and

λ2(k) are coupled through the relation (2.58), there was no need to consider λ2(k) in

describing red blood cells. On the other hand, the hydrodynamic contribution υ1(k) is

independent and can be excited without exciting the remaining ones. Furthermore, the

spin modes (2.51) are decoupled from the hydrodynamic and elastic modes to order O
(

ε2
)

.

Summarizing our results, for surfaces of co-dimension greater than one, if the back-

ground and the worldvolume are curved, the fluid-elastic system (2.26) admits a 7 pa-

rameter family of stationary fluid branes.12 On the other hand, if either the background

or the worldvolume are flat, there exists a 5 parameter family of stationary fluid branes.

Finally, if both the background and the worldvolume are flat, there exists a 3 parameter

11Note that the elastic contribution proportional to λ4(k) can be gauged away as it will be explained in

section 3.2.
12We are taking into account the contribution ̟1(k) but not ̟2(k) since the latter is pathological (see

section 2.5). We are also not taking into account the contributions λ4(k) and λ5(k) since it can be removed

by a change of basis, see section 3.2.
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family described by the response coefficients λ1(k), ̟1(k), υ1(k). The presence of elastic

degrees freedom introduces further non-trivial response coefficients than those analyzed

in [46, 47, 51] for both stationary and non-dissipative space-filling fluid flows.

2.7 Fluid membranes and co-dimension-1 surfaces

As mentioned in section 2.3, in the case of co-dimension-1 surfaces there are non-trivial

elastic corrections to 1st order in the derivative expansion. Since the transverse space is

only 1-dimensional, the extrinsic curvature tensor can be written as K⊥
ab = Kab. We omit

the transverse index and only use it if necessary. For this reason, there are two non-trivial

and independent elastic contributions to 1st order in derivatives

ϑ1(k)K , ϑ2(k)k
akbKab . (2.61)

These terms contribute to T ab and Dab⊥ while the equations of motion (2.31)–(2.35)

remain the same but have only one component along the transverse space. The first

term in (2.61) had been previously considered in the literature [38] but it does not

play a role in real fluid membranes since the mean extrinsic curvature is required to

be kept constant due to experimental constraints, that is, the variation of (2.26) must

be supplemented with local constraints [39]. The second term in (2.61) has not been

previously considered in the literature and is accounting for the fact that the fluid may

be rotating. However, it can be removed by a change of basis as it will be explained in

section 3.2. Nevertheless, we consider its contribution. Denoting each scalar in (2.61) by

ϑα(k)Cα and their contributions to T ab as τ̃ab, we summarize the results below:

Scalar τ̃abα Dab⊥
α

ϑ1(k)C1 ϑ1(k)C1γab − ϑ′
1(k)kC1uaub − 2ϑ1(k)K

ab ϑ1(k)γ
ab

ϑ2(k)C2 ϑ2(k)C2γab − ϑ′
2(k)kC2uaub ϑ2(k)k

akb

As one can see, there is a total contribution to the pressure and energy densities defined

in (2.44). Summing up the two different contributions to the dipole moment, one concludes

that for co-dimension-1 surfaces, it is necessary to add to the action composed of the

terms (2.40) and (2.55) a 1st order contribution of the form

I(1) [X
µ] =

∫

Wp+1

√−γ
(

ϑ1(k)γ
ab + ϑ2(k)k

akb
)

Kab =

∫

Wp+1

√−γ Dab
⊥Kab . (2.62)

Here, Dab
⊥ itself measures the most general response of a stationary fluid brane due to a

1st order bending. To second order there is also another set of contributions that can be

added to the action which mix the fluid and elastic behavior.13 These are

ϑ3(k)k
akbkc∇aKbc , ϑ4(k)k

b∇aK
a
b , ϑ5(k)k

a∇aK , (2.63)

ϑ6(k)k
aKb

a∇bk , ϑ7(k)γ
ackbR⊥

cba .

13The extrinsic twist potential does not play a role in co-dimension-1 surfaces since it vanishes.
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However, the term ϑ5(k) vanishes since ka is a Killing vector field while the contributions

ϑ4(k) and ϑ6(k) can be related to the term ϑ3(k) by on-shell equivalences as in eq. (2.57).

Furthermore, the last contribution ϑ7(k) can be related to two other terms as we will

explain below. It is then only sufficient to consider the first contribution in (2.63). For

this we need new machinery. For simplicity, we examine an action of the form:

I [Xµ] =

∫

Wp+1

L(√−γ, γab,k
a,∇aKbc) . (2.64)

To study terms proportional to ∇aKbc it is necessary to define a new moment Dabc
⊥ of

quadrupole nature:

Dabc
⊥ =

1√−γ

δL
δ∇aKbc

⊥
. (2.65)

Using appendix A for the correct variations we find the modified intrinsic and extrinsic

dynamics of the fluid-elastic system:

∇aT
ab + 3∇aDadc∇dK

b
c + 2Dadc∇d∇aK

b
c = 2DadcRe

da
bKec +∇aDadcR⊥

cd
b
, (2.66)

T abKab −
(

3∇aDabc + 2∇aDbac
)

KbdK
d
c + 2∇dDabcKabK

d
c

− 2Dabc
(

Kad∇bK
d
c +Kbd∇aK

d
c −Kab∇dK

d
c

)

= ∇aDabcR⊥
bc⊥ .

(2.67)

The boundary conditions are summarized in appendix B. Inspecting eqs. (2.66)–(2.67)

it is easy realized that it does not fall into the class described by the equations of

motion (2.34)–(2.35). Indeed, for this type of corrections to be properly accounted for,

it would be necessary to understand quadrupole corrections to brane actions in the spirit

of section 3. Below, we summarize the contributions to the stress-energy tensor and

corresponding quadrupole moment of the term ϑ3(k):

Scalar τ̃abα Dabc⊥
α

ϑ3(k)C3 ϑ3(k)C3γab − ϑ′
3(k)kC3uaub ϑ3(k)k

akbkc

Therefore the only contribution to the quadrupole moment can be written as

Dabc
⊥ = ϑ3(k)k

akbkc , (2.68)

and encodes the most general response to corrections proportional to ∇aKbc for co-

dimension-1 surfaces. Therefore, for co-dimension-1 surfaces, one needs to add to the

action (2.26), a 2nd order contribution of the form

I(2) [X
µ] =

∫

Wp+1

√−γDabc
⊥ ∇aKbc . (2.69)

We end this section by noting that the terms ϑ4(k), ϑ5(k) and ϑ7(k) are coupled to each

other. To see this we contract (2.32) with γackb in order to obtain:

γackbR⊥
cba = kb (∇bK −∇aKb

a) . (2.70)

– 19 –



J
H
E
P
0
9
(
2
0
1
3
)
0
7
3

This is why we did not need to study the term ϑ7(k) separately. Further note that

the term kb∇bK vanishes since kb is a Killing vector field and hence if the background

Riemann tensor vanishes, so does the contribution of the term ϑ3(k) since it is related

by on-shell equivalences to the term ϑ4(k). To summarize, the family of curved fluid

branes of co-dimension-1 embedded in a curved background is parametrized by a total of

8 independent response coefficients.

Two-dimensional fluid membranes. Here we perform a counting of the independent

parameters of two-dimensional stationary fluid membranes of co-dimension-1 in a flat back-

ground. This particular case is of general interest as it accounts for the response coefficients

of two-dimensional spatial surfaces of cellular membranes embedded in three-dimensional

Euclidean space. For two-dimensional surfaces, the induced Riemann curvature tensor is

characterized entirely by the worldvolume Ricci scalar such that

Rabcd =
R
2
(γacγbd − γadγbc) , (2.71)

which implies in particular that Rab = (1/2)Rγab. This in turn implies that the hydrody-

namic term υ3(k)k
akbRab is redundant and can be expressed in terms of the contribution

υ2(k)R in (2.55). Furthermore, we have that for two-dimensional surfaces without bound-

aries the Gaussian energy for constant υ2(k) yields

∫

A
dAυ2(k)R = 8παG(1− g) , (2.72)

where g is the genus of the surface and υ2(k) = αG for constant αG [39]. In such cases the

term υ2(k)R is purely topological and need not be considered in the effective action. This

is the reason why the contribution υ2(k)R is not considered in the effective action of fluid

membranes [39] neither, for example, when considering finite thickness corrections to the

string action [33, 34]. In such situations, the effective action, due to the Gauss-Codazzi

equation (2.58), is only described by the response coefficients λ1(k), υ1(k), ϑ1(k). For

non-trivial response coefficient υ2(k), the Gaussian energy (2.72) is not necessarily a

topological invariant and needs to be considered in the effective action. In this case,

the family of stationary fluid membranes is characterized by the response coefficients

λ1(k), λ2(k), λ3(k), υ1(k), ϑ1(k).

3 Multipole expansion as derivative corrections

In this section we establish a relation between the action formalism of section 2.2 and a

multipole expansion of the stress-energy tensor for curved branes. This expansion, to pole-

dipole order, is sufficient to capture all the corrections studied in sections 2.4–2.6 but not

enough to capture the quadrupole corrections studied in section 2.7. Here, we focus on the

pole-dipole order and leave the extension to pole-quadrupole order for future work. The

relation between this expansion and the corrections of the previous sections is particularly

useful as it gives physical meaning to the corrections themselves and it allows to establish

a precise link between gravity and the effective description of fluid branes.
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3.1 Equations of motion

The multipole expansion consists in expanding the stress-energy tensor of a curved brane

in a Dirac-delta series, in the same spirit as in electromagnetism the electric current is

expanded in order to describe finite thickness dielectric effects [43]:

T̂
µν(xα)=

∫

Wp+1

d
p+1

σ
√
−γ

(

B
µν(σa)

δD(xα −Xα(σa))√−g
−∇ρ

(

B
µνρ(σa)

δD(xα −Xα(σa))√−g

)

+ . . .

)

.(3.1)

The stress-energy tensor (3.1) is symmetric, since it should be coupled to gravity, which

implies Bµν = B(µν) as well as Bµνρ = B(µν)ρ. The structure Bµν is a monopole source of

stress-energy while the structure Bµνρ is a dipole source and encodes the finite thickness

effects. Introducing higher order structures in the expansion (3.1) results in higher order

moments such as the quadrupole moment. Further, to each structure in the expansion we

associate an order parameter ε̃ such that Bµν = O (1) and Bµνρ = O (ε̃). More impor-

tantly, note that the expansion parameter ε̃ is not the same as the expansion parameter ε

introduced in section 2 with the purpose of keeping track of the derivative expansion. For

example, in the case of the hydrodynamic expansion for unbent black branes [12–15], one

can iteratively correct the metric to arbitrary order in ε while still being at order O (1) in

ε̃. However, if the deformations of black branes involve strains along transverse directions

to the worldvolume the corrections will be encoded in Bµνρ [5, 6, 16], as well as in higher

order structures, inducing a multipole expansion in ε̃. In particular, corrections propor-

tional to one copy of the extrinsic curvature are encoded in Bµνρ. Note, however, that if

Bµνρ contains a one-derivative term, then the worldvolume effective theory that it gives

rise to is of order O
(

ε2
)

. This means, for example, that deformations of black branes can

acquire dipole moments Bµνρ to order O (ε) without affecting the effective theory to that

same order. This is due to the fact that the covariant derivative in (3.1) is acting on Bµνρ.

This digression will become clearer as we progress in this section.

The equations of motion for an object characterized by a stress-energy tensor of the

form (3.1) can be obtained at the probe level, and in the absence of other external back-

ground fields, by solving the conservation equation

∇ν T̂
νµ = 0 , (3.2)

using the methods described in [43]. To express these equations in a nice form it is

useful to decompose the structure Bµνρ into tangential and orthogonal constituents to the

worldvolume Bµνρ = 2u(µbB
ν)ρb
⊥ +uµau

ν
bB

ρab
⊥ with B

(µν)a
⊥ = B

µ[ab]
⊥ = 014 and to introduce

the variables15

Sµνa = Bµνa
⊥ + u[µbB

ν]ab
⊥ , Nµνa = u(µbB

ν)ba
⊥ , mab = Bab − uaρu

b
λ∇cN

ρλc . (3.3)

14The symbol ⊥ here means that the space-time indices of the tensor are transverse to the worldvolume.

For example, γλ
ρB

ρab
⊥

= 0.
15Here we have gauged away the parallel components uρ

aB
µνa since by the ‘extra symmetry 1’ [43] they

can be gauged away everywhere on the worldvolume. On the boundary, these components may be non-zero

but if we assume the absence of extra sources on the boundary they vanish. In any case, this extra structure

can be trivially incorporated into our description by redefining Bab → B̃ab = Bab − ua
ρu

b
λ∇cB

ρλc and

adding an extra term to the boundary conditions [43].
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In terms of these, the equations of motion can be written as [43]

⊥µ
λ⊥ν

ρ∇aS
λρa = 0 , (3.4)

∇b

(

mabua
µ − 2ubλ∇aS

µλa + uµcu
c
ρu

b
λ∇aS

ρλa
)

= SλρcRµ
cλρ . (3.5)

Eq. (3.4) expresses the conservation of transverse angular momenta. In the point particle

case, these equations reduce to the ones derived by Papapetrou for spinning point

particles [44]. Eqs. (3.4)–(3.5) must be supplemented by a similar decomposition of Bµν

as Bµν = Bµν
⊥ + 2u(µbB

ν)b
⊥ + uµau

ν
bB

ab , where the first two sets of coefficients are related

to the dipole structure via the relations [43]

Bµν
⊥ = ⊥µ

λ⊥ν
ρ∇aN

λρa , Bµa
⊥ = uaλ⊥µ

ρ∇b

(

Sλρb +Nλρb
)

. (3.6)

These relations imply that the only free coefficients in the theory are Bab and Bµνρ.

Eq. (3.5) can be rewritten in a simpler form. In order to do so, we decompose the term

inside the parenthesis on the l.h.s. into tangential and orthogonal parts to the worldvolume

and define a linear momentum tensor of the form16

Pνµ =
(

mab − uaρu
b
λ∇cS

ρλc
)

uµau
ν
b + 2γνρ⊥µ

λ∇cS
ρλc . (3.7)

The linear momentum (3.7) is not necessarily symmetric. Further, it is tangential in its

first index but not in its second, that is, ⊥ρ
νPνµ = 0. Using this definition, the equation

of motion (3.5) can be recast à la Carter17 [37]:

γλν∇λPνµ = SλρcRµ
cλρ , (3.8)

where the term on the r.h.s. can be seen as a force Fµ = SλρcRµ
cλρ acting on the

worldvolume due to the coupling to the background Riemann tensor. Moreover, note

that when the Riemann curvature tensor vanishes, the linear momentum Pµν is conserved

along the surface. The set of eqs. (3.8) can be split into two sets by projecting along the

worldvolume directions with ubµ and orthogonally to the worldvolume with ni
µ, leading to,

∇aPab − PaiKb
ai = SλρcRb

cλρ , (3.9)

PabKab
i +∇aPai + ωa

i
jPaj = SλρcRi

cλρ . (3.10)

Here we have used the definitions Pab = uaνu
b
µPνµ and Pbi = ubνn

i
µPνµ. These

equations are written in the same fashion as in the work of Guven et al. [63], however,

we have generalized it for pole-dipole branes and for curved backgrounds. Now note that

in the case of absence of dipole effects Sλρc = Pai = 0 , eqs. (3.9)–(3.10) reduce to those

obtained to 0th order in the expansion (2.7)–(2.8) upon the identification Bab = T ab
(0) . The

space-time stress-energy tensor that gives rise to the worldvolume theory (2.7)–(2.8) is the

one given in (3.1) with Bµνρ = 0. This is what is meant by the fluid being confined to an

infinitely thin surface since the stress-energy tensor T̂µν is localized there to order O (1).

16The reason for attributing the name of ‘linear momentum’ to (3.7) is explained in appendix A.
17This sentence should be pronounced with French accent.
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Before we understand the relation between the multipole expansion and the action

variations of the previous section, it is important to provide the boundary conditions that

arise from solving eq. (3.2). In terms of the linear momentum (3.7) these can be written as

Sµνaηaην |∂Wp+1 = 0 , ⊥µ
λ⊥ν

ρS
λρaηa|∂Wp+1 = 0 , (3.11)

[

2∇â

(

Sµνaηav
â
ν

)

− ηbPbµ
]

|∂Wp+1 = 0 ,

where we have used the definition of the boundary vectors introduced in section 2.2.

3.2 Relation to the action principle

To connect the results of the previous section with those of section 2 it is necessary to

clarify the physical meaning of the different components of the structure Bµνρ. This has

been done in [5] and we review it here. If we focus on flat space-time and on uniform p-

branes extended along all x0, . . . , xp directions we can evaluate the total angular momentum

on the transverse plane labelled by the indices µ, ν as:

Jµν
⊥ =

∫

Σ
dD−1x

(

T̂ 0µxν − T̂ 0νxµ
)

= 2

∫

Bp

dV(p)B
µν0
⊥ , (3.12)

where Σ is a spatial slice of the background space-time. This leads to the introduction of

a spin current jaµν such that jaµν = 2Bµνa
⊥ . Further, we can evaluate the worldvolume

dipole moment of the brane as

Dabρ =

∫

Σ
dD−1xT̂µνuµ

auν
bxρ =

∫

Bp

dV(p)B
ρab
⊥ , (3.13)

leading to the introduction of a worldvolume dipole density dabρ = Bρab
⊥ . This last one, as

we will see below, can be interpreted as the bending moment of the brane. Given these

definitions we can rewrite the tensors Sµνa and Nµνa introduced in (3.3) as

Sµνa =
1

2
jaµν − dab[µuν]b , Nµνa = dab(µuν)b . (3.14)

We will now focus on different aspects that relate the multipole expansion (3.1) with the

action (2.26).

The dipole moment. Here we consider the case where the transverse angular mo-

menta (3.12) vanishes, that is, jaµν = 0. In this case, the linear momentum (3.7) can

be written as

Pνµ =
(

T̂ ab − dcbiKa
ci

)

uµau
ν
b + uνb⊥µ

λ∇ad
abλ , (3.15)

where we have defined the symmetric tensor T̂ ab = Bab + 2d(aciKb)
ci. With this, the

equations of motion (3.9)–(3.10) can be written as18

∇aT̂
ab = −ubµ∇a∇cd

acµ + daciRb
aci , (3.16)

18These equations have been previously obtained in [5] but in a different form.
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T̂ abKab
i = −ni

µ∇a∇bd
abµ − dabjRi

ajb . (3.17)

Comparing this with eqs. (2.34), (2.35) when the spin current vanishes, that is Sa
ij = 0,

we find that both are equivalent upon identifying

T̂ ab = T ab , dabi = −Dabi , (3.18)

which in turn implies Bab = T ab − 2d(aciKb)
ci. The boundary conditions (3.11) and (2.31)

can also be seen to be equivalent upon the same identification. With this we have shown

that all corrections to brane actions quadratic in the extrinsic curvature can be accounted

for by a multipole expansion to pole-dipole order of the stress-energy tensor. Moreover,

the conservation equation (3.4) reduces to the integrability condition

dab[νKab
µ] = 0 . (3.19)

This condition is automatically satisfied for the actions we consider due to the form of Dabi

given in (2.45). Indeed, the form of (2.45) is what is expected for the bending moment of

thin membranes [5, 59], an interpretation which is now justified due to eq. (3.13). In fact,

when a rod is bent, a varying concentration of matter across the transverse directions

induces a bending moment which is proportional to the Lagrangian strain (2.14) [5, 59].

Further, note that this analogy with classical elasticity is direct when one deals with

co-dimension-1 surfaces for which the transverse index in the extrinsic curvature can be

omitted [59].

The spin current. Now we consider the case for which the worldvolume dipole mo-

ment vanishes dabi = 0 but the transverse momenta is non-zero. In this case, the linear

momentum (3.7) takes the form

Pνµ = Babuµau
ν
b + uνb⊥µ

ρj
cρiKb

ci . (3.20)

In turn, the intrinsic equation of motion (3.9) reads

∇aB
ab = −1

2
jaijΩa

bij , (3.21)

while the extrinsic equation (3.10) takes the form [5]

BabKab
i = −ni

µ∇b

(

ja
µjKab

j

)

+
1

2
jakjRi

akj . (3.22)

Comparison of this last equation with eq. (2.35) when dipole effects are absent Dabi = 0

leads us to identify

Bab = T ab , jaij = 2Saij . (3.23)

This identification is sufficient for the intrinsic dynamics (2.34) and boundary condi-

tions (2.31) to match those given by eq. (3.21) and eq. (3.11) when eq. (3.4) is imposed. The

conservation equation (3.4) reduces instead to the conservation equation of the spin current

1

2
⊥µ

λ⊥ν
ρ∇aj

aλρ = 0 . (3.24)
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This is the reason why we have discarded the term ̟2(k) in section 2.5 as it does not

satisfy this equation. Given this identification we have shown that corrections quadratic

in the extrinsic twist potential19 can be accounted for by a multipole expansion of the

stress-energy tensor and that these are interpreted as the fluid-elastic system acquiring

motion in transverse directions to the worldvolume by means of eq. (3.12). Both the

integrability condition (3.19) and the spin conservation equation (3.24) may be derived as

constraint equations from the action (2.26) in the spirit of [63]. We leave this exercise for

when we analyze in detail spinning corrections to black holes [62].

The ‘extra symmetry 2’. The stress-energy tensor (3.1), truncated to order ε̃, enjoys

of a perturbative symmetry coined the ‘extra symmetry 2’ by the authors of [43] which

results from the freedom of shifting the worldvolume surface by a small amount, that is,

Xµ(σa) → X̃µ(σa) = Xµ(σa) + ε̃µ(σa) , (3.25)

where ε̃µ is an infinitesimal shift vector of order ε̃. The interpretation of this symmetry

can be understood if one remembers that the expansion (3.1) delocalizes the stress-energy

tensor by giving the surface a finite thickness. Since the thickness is finite, the worldvolume

can be placed anywhere inside the surface [43]. This symmetry acts on the structures Bµν

and Bµνρ as20

δ2B
µν = −Bµνuaρ∇aε̃

ρ − 2Bλ(µΓν)
λρε̃

ρ ,

δ2B
µνρ = −Bµν ε̃ρ ,

(3.26)

and leaves the stress-energy tensor (3.1) invariant to order ε̃. Along worldvolume

directions, this transformation coincides with worlvolume reparametrizations21 but it is

non-trivial along transverse directions. To see this directly in the equations of motion we

separate the transformation into parallel and orthogonal parts such that ε̃µ = ε̃inµ
i+uµaε̃

a.

Then, according to (3.26) we have that along orthogonal directions

δ⊥2 m
ab=−

(

ucµm
ab+u(aµm

b)c
)

∇c

(

ε̃inµ
i

)

, δ⊥2 d
abi=−mabε̃i , δ⊥2 j

aij=O
(

ε̃2
)

.(3.27)

Further note that due to the identifications (3.18) and (3.23) the stress-energy tensor

T ab transforms as δ2T
ab = δ2m

ab − mc(aKb)
ciε̃

i = mabε̃iKi. Since the transformation

of jaij is of higher order it suffices to look at the equation of motion (3.17). Using the

transformation rule (3.27) together with (2.18)22 it is straightforward to check that the

equation of motion (3.17) is invariant under the ‘extra symmetry 2’. This can also be

seen at the level of the action (2.47). In this case, note that mab can be replaced by T ab
(0)

due to the identification (3.18) and (2.41). Therefore the variation of the dipole moment

19This also holds when the corrections are proportional to only one copy of the extrinsic twist potential.
20In order to obtain this transformation rule from (3.1) one should use (2.3) and the fact that ∂ρB

µνρ = 0

since Bµνρ is a function of σa and not of the space-time coordinates. Further, note that any scalar or tensor

which is a function of the space-time coordinates does not transform under a shift of the worldvolume

surface. See ref. [43].
21This is true except at the boundary when extra boundary sources are present [43].
22When using eq. (2.18), Φi should be replaced by ε̃i.
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can be written as δ⊥2 d
abi = −T ab

(0)ε̃
i. This means that, by virtue of the definition of the

dipole moment (2.27) and the identification (3.18), a term of the form T ab
(0)ε̃iKab

i must be

added to the action. Now, from the form of the action (2.47) it is necessary to know how√−γP (k) transforms. Using eq. (2.3) this is simply

δ⊥2
(√−γP (k)

)

= −T ab
(0)ε̃iKab

i . (3.28)

Clearly, due to the transformation rule (3.28) together with the transformation of δ⊥2 d
abi

the action (2.26) is invariant under the ‘extra symmetry 2’. Now consider the case in which

the expansion parameter ε̃ is controlled by the radius of curvature of the worldvolume.

In this case we can write ε̃i(σa) = k̃(σa)Ki for some arbitrary function k̃(σa), leading to

δ⊥2 d
abi = −T ab

(0)k̃(σ
a)γcdKcd

i. This means that the Young modulus (2.46) picks up a gauge

dependent part of the form

Ỹabcd = k̃(σa)
(

T ab
(0)γ

cd + T cd
(0)γ

ab
)

= k̃(σa)
(

2λ0(k)γ
abγcd − λ′

0(k)k(u
aubγcd + ucudγab)

)

,
(3.29)

where we have used the explicit form of T ab
(0) given in eq. (2.10). This indicates that

the elastic contributions λ1(k) and λ4(k) given in (2.40) pick up gauge dependent terms.

Similarly, for surfaces of non-vanishing mean extrinsic curvature, this can be understood as

the pressure P (k) picking up a dependence quadratic in the extrinsic curvature such that,

P (k) → P̃ (k) = P (k)− T ab
(0)γ

cdk̃(σa)Kab
iKcdi . (3.30)

Thus, a natural choice of gauge is one for which the pressure P only depends on k.23

It is worth noting that since the variation of jaij is of higher order, the equation of

motion (3.22) is not invariant under the ‘extra symmetry 2’. This in fact means that the

truncation dabi = 0 of the pole-dipole equations (3.4)–(3.5) is not gauge invariant. To

make it gauge invariant one should add an extra d̃abi term of the form d̃abi = −mabε̃i.

Relating this with the action (2.53) which accounts for spin corrections, it means that

one should in fact add a term of the form (1/2)ỸabcdKab
iKcdi in case of non-vanishing

mean extrinsic curvature or a term −d̃abiKabi generically. However, we can always choose

a gauge for which P is only dependent on k, which is the gauge choice leading to (3.22),

or equivalently, choose a gauge for which dabi = 0.

Alternative basis for elastic modes and field redefinition. In section 2.4 we

mentioned that the two last terms in (2.40) were not independent of the remaining terms

which could be seen by choosing a different basis and a field redefinition. To see this

precisely let us define the 0th order elastic equation of motion (2.8) as E i
(0) = T ab

(0)Kab
i ,

where T ab
(0) is given in (2.10). Now note that due to the form of T ab

(0) we can rewrite the

23Note that the inclusion of the hydrodynamic contributions (2.55) does not spoil the invariance of the

action (2.26) under the ‘extra symmetry 2’. This is because since these scalars only contribute to the

monopole stress-energy tensor, their variation is of order O
(

ε̃2
)

.
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two last contributions in (2.40) as

λ4(k)k
akbKab

iKi = λ4(k)f̃(k)
(

KiKi − λ−1
0 (k)E i

(0)Ki

)

,

λ5(k)k
akbkckdKab

iKcdi = λ5(k)f̃
2(k)

(

KiKi − 2λ−1
0 (k)E i

(0)Ki + λ−2
0 (k)E i

(0)E(0)i
)

,
(3.31)

where we have defined f̃(k) = (λ0(k)k)/λ
′
0(k). We see that these two terms can be

expressed in the basis KiKi, E i
(0)Ki, E i

(0)E(0)i. However, note that adding any term to

the action proportional to E i
(0)E(0)i will result in a set of equations of motion proportional

to E i
(0) and hence vanish on-shell for any configuration. This means in fact that the term

proportional to λ5(k) in (3.31) is redundant. Additional terms added to the action of

the form E i
(0)Ki do not in general lead to trivial equations of motion as one can see by

considering the action

I [Xµ] =

∫

Wp+1

√−γλ6(k)E i
(0)Ki . (3.32)

Evaluating the monopole stress-energy tensor and dipole moment we obtain

T ab =
(

λ6(k)γ
ab − λ′

6(k)ku
aub

)

E i
(0)Ki − 2λ6(k)E i

(0)K
ab

i − λ6(k)E
abcdKcd

iKi , (3.33)

as well as Dabi = λ6(k)γ
abE i

(0) + λ6(k)T
ab
(0)K

i. In the expression for the monopole stress-

energy tensor (3.33) we have used the definition of the elasticity tensor introduced in (2.20).

Now note that when these quantities are introduced in the equation of motion (2.35) with

Sa
ij = 0 all the terms proportional to E i

(0) vanish on-shell and we are left with the linearized

equation (2.19) with Φi = λ6(k)K
i. Eq. (2.19) is non-trivial and not proportional to E i

(0)

even in flat space and neither when λ6(k) or λ0(k) are constant. This means that the first

term in (3.31) cannot be removed by a change of basis. Furthermore, the action (3.32)

explains why the structure of eq. (2.19) already takes into account effects due to bending.

However, any contribution of the form (3.32) can be removed by a redefinition of the pres-

sure through the transformation (3.30) where ε̃i = k̃(σa)Ki = λ6(k)K
i. Indeed, this gives

an interpretation of the ‘extra symmetry 2’ as a field redefinition of order O (ε̃) since in fact

this transformation is defined by the redefinition of Xµ(σa) via (3.25). Concluding, both

terms written in (3.31) are not physical, neither is the contribution ϑ2(k) given in (2.61).

3.3 Construction of conserved charges

In this section we show how to construct conserved currents and charges for systems obeying

the pole-dipole equations of motion (3.4)–(3.5). We begin by using the technique developed

by Carter for geodynamic-type branes [36]. This consists in finding a conserved surface

current Pν
k
, by definition purely tangential ⊥µ

νPν
k
= 0, such that

γλν∇λPν
k
= 0 . (3.34)

The surface charges constructed from such current would then be conserved charges of the

system. We will now show that the same type of ansatz as the one used by Carter can be

extended to a large class of pole-dipole branes. We take the surface current to be of the form

Pν
k
= Pνµkµ +Σνµρ∇µkρ , (3.35)
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for an arbitrary space-time Killing vector field kµ and with ⊥λ
νΣ

νµρ = 0. Here we have

used the definition of the linear momentum (3.7). We now introduce the ansatz (3.35)

into eq. (3.34) and use eq. (3.8), leading to

kµ

(

Sλρcuνc +Σνλρ
)

Rµ
νλρ +

(

P [νµ] +∇cΣ
c[νµ]

)

∇νkµ = 0 , (3.36)

where we have used the fact that for any Killing vector field ∇ν∇µkρ = Rρµνλk
λ. Looking

at the term proportional to the Riemann tensor, it seems that the correct choice of Σνµρ is

Σνµρ = −Sµρcuνc , (3.37)

as long as P [νµ] = −∇cΣ
c[νµ] is satisfied. We now focus on the class of pole-dipole branes

for which the integrability condition (3.19) is satisfied. In this case, a simple exercise

using (3.7) allows one to show that

P [νµ] = ∇cS
[νµ]c −⊥µ

λ⊥ν
ρ∇aS

λρa = ∇cS
[νµ]c , (3.38)

where we have used eq. (3.4) to eliminate the second term on the r.h.s. above.24 Hence, the

choice (3.37) leads to a conserved surface current of the form (3.35). For the case derived

by Carter in [36], where jaµν = 0, we have that Σνµρ = −dνµρ. Furthermore, note that

the integrability condition (3.19) is satisfied for all the actions we considered in section 2.

Carter suggested in [36] that charges obtained from the relevant surface integral of

the current (3.35) are the conserved charges of the pole-dipole brane. The naive way to

implement this would be similar to the 0th order case (2.23), that is, a generic charge Qk

associated with a background Killing vector field is simply given by the integral of the

surface current (3.35) over spatial slices of the worldvolume

|Qk| =
∫

Bp

dV(p)Pν
k
nν . (3.39)

However, we can test if this is indeed the case, since we have the full space-time stress-

energy tensor (3.1). Since (3.1) is symmetric, any current of the form P ν
k
= T̂ νµkµ(x

α) will

be conserved in the full space-time, that is,

∇νP
ν
k
= 0 . (3.40)

The conservation of the space-time currents (3.40) must have a counterpart in terms of

conserved currents of the worldvolume theory since the effective description of the dynamics

of curved branes to pole-dipole order is given in terms of a worldvolume theory. In order to

obtain the corresponding worldvolume conserved currents one solves (3.40) by contracting

it with an arbitrary scalar function f(xµ) of compact support and integrating it over

space-time according to the method developed in [43]. This results in the worldvolume

currents [62]

P̂ a
k
=

(

Babkb + uaµ⊥ν
λ kλ∇c

(

Bµρνucρ
)

+Baµρ∇ρkµ +Bµνρkµu
b
νK

a
bρ

)

, (3.41)

24It may be useful to write the l.h.s. of eq. (3.4) explicitly in terms of the variables introduced in (3.14).

This is simply the sum of eq. (3.24) with eq. (3.19).
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which satisfy the conservation equation ∇aP̂
a
k
= 0.

Under the assumptions that the timelike Killing vector field ξµ is hypersurface

orthogonal with respect to the space-time metric gµν and that ξµ is parallel to the

worldvolume timelike Killing vector field ξa, i.e. ξµ = uµaξ
a, which is also assumed to be

hypersurface orthogonal with respect to the worldvolume metric, we can write the total

conserved charge as25

|Q̂k| =
∫

Bp

dV(p)P̂
a
k
na , (3.42)

where all quantities involved in (3.42) should be evaluated on the worldvolume surface

xα = Xα(σa). Therefore, the difference between the charges (3.39) and (3.42) is given by

|Qk| − |Q̂k| = 0 . (3.43)

A few comments are now in place. From the above we see that the space-time currents

introduced in (3.40) correspond to the surface currents introduced in (3.34) and hence

the space-time charges agree with the surface charges computed using surface currents.

Furthermore, this allows us to identify Pa
k

= P̂ a
k
. Moreover, the currents (3.35) are

not invariant under the ‘extra symmetry 2’ transformation and in fact, due to the

transformation rule (3.26), transform as

Pa
k
→ P̃a

k
= Pa

k
−Babkbu

c
ρ∇cε̃

ρ
⊥ . (3.44)

However, the charges computed using (3.39) are invariant under the same transformation

rule for any choice of k. In order to see this explicitly one should use (3.26) in (3.42)

together with (2.3). It is worth noting that as in (2.23), the choice of Killing vector field

k in eq. (3.42) results in either the total mass, angular momentum along worldvolume

directions or angular momentum along transverse directions to the worldvolume of the

fluid-elastic system. Moreover, in the limit where both dipole and spin effects are turned

off, the charges computed from eq. (3.42) agree with those computed from (2.23). As a

final comment, we note that the conserved surface currents (3.35) can be obtained directly

from (2.26) by requiring the action to be invariant under space-time translations along

Killing directions. We show how this is done for the case jaµν = 0 in appendix A.

In order to see this explicitly one should use (3.26) in (3.42) together with (2.3).26 On

the other hand, the charges computed from the naive method (3.39) are not invariant under

the ‘extra symmetry 2’ in general, only in the case of flat space. It is worth noting that as

in (2.23), the choice of Killing vector field k in eq. (3.42) results in either the total mass,

angular momentum along worldvolume directions or angular momentum along transverse

directions to the worldvolume of the fluid-elastic system. Moreover, in the limit where

25Note that the expression for the conserved charges eq. (3.42) differs from the one obtained in [5]. The

expression obtained in [5] is not invariant under the ‘extra symmetry 2’.
26In fact, any scalar functional of the form T [f ] =

∫

dDx
√−gT̂µνfµν(x

α), where fµν(x
α) is an arbitrary

tensor field of compact support, is invariant under the transformation (3.26) [43]. See appendix A to

understand how (3.42) is derived.
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both dipole and spin effects are turned off, the charges computed from eq. (3.42) agree

with those computed from (2.23). As a final comment, we note that the conserved surface

current (3.35) can be obtained directly from (2.26) by requiring the action to be invariant

under space-time translations along Killing directions. We show how this is done for the

case jaµν = 0 in appendix A.

4 Matching with gravity

In this section we apply some of the results of the previous sections to the bending of neutral

black branes in pure Einstein gravity. It is well known that the stress-energy tensor of black

p-branes takes the form of a perfect fluid [19] and if the brane is subject to a long-wavelength

perturbation then the stress-energy tensor (2.10) receives corrections at each order in the

derivative expansion. If the type of perturbation is along the worldvolume directions then

the corrections are generically of dissipative nature and do not fall into the class studied in

section 2. However, if the perturbations are along transverse directions and lead to station-

ary configurations then the system (2.26) could potentially describe the effective behavior of

the perturbed brane. Indeed, this is the case to 0th order (2.2) as demonstrated in [16, 17].

The interest in this type of stationary perturbations comes from the several applications of

the blackfold method [17–19] to the construction of higher-dimensional black hole solutions.

The method consists in taking the metric of a boosted black p-brane and wrapping it over

a submanifold Wp+1 of characteristic curvature R. The end product of such methodol-

ogy is the perturbative construction of higher-dimensional black holes for which their near

horizon geometry is that of a bent boosted black p-brane to a certain order ε = r0/R in

the perturbative expansion. Here r0 is the thickness of the brane, which for Schwarzschild

branes coincides with the horizon radius. To be more precise, it is instructive to write the

metric of a boosted Schwarzschild black p-brane in D = n+ p+ 3 space-time dimensions

ds
2
(0) =

(

γab(X
µ(σa)) +

rn0 (σ
a)

rn
ua(σ

a)ub(σ
a)

)

dσ
a
dσ

b +
dr2

1− rn
0
(σa)

rn

+ r
2
dΩ2

(n+1) + . . . . . (4.1)

Here we have promoted the horizon radius r0 as well as the boost velocities ua and brane

worldvolume metric γab to slowly varying functions of σa over the submanifoldWp+1. When

promoting the various fields to functions of the worldvolume coordinates, the metric (4.1)

is in general no longer a solution of Einstein equations and should be corrected by including

terms proportional to the derivatives of r0, u
a and γab. To 0th order in ε the metric of the

black hole solution constructed from wrapping Schwarzschild p-branes is given by (4.1) and

since, as it will be explained below, its stress-energy tensor is of the perfect fluid form, the ef-

fective dynamics are described by a system of the form (2.2) with equations of motion (2.7)–

(2.8). In fact, this has been shown to be the case directly from Einstein equations [16, 17].

Here we are interested in perturbations which are first order in derivatives of the metric

γab along transverse directions. In this case, to first order in ε, a small perturbation hµν
should be added to the metric (4.1). Generically, it can be put into the following form [16]

ds2(1) =

(

ηab − 2Kab
îr cos θ +

rn0
rn

uaub

)

dσadσb +
dr2

1− rn0
rn

+ r2dθ2 + r2 sin2 θdΩ2
(n)

+ hµν(r, θ)dx
µdxν +O

(

r2/R2
)

.

(4.2)
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Here we have used the label î to indicate that the perturbation is taken along a single

transverse direction to the worldvolume and also introduced ηab, which is the flat metric

on the worldvolume. As explained in [16, 65], perturbations in each individual transverse

direction decouple from each other at this order. The important piece of knowledge about

the perturbation hµν is that it is a dipole type perturbation hµν(r, θ) = cos θĥµν(r) and

that all of its components are proportional to the extrinsic curvature Kab
î [16]. For the

metric (4.2) to be regular it must satisfy the equations of motion (2.7)–(2.8), which can

be shown through the usage of the method of matched asymptotic expansion [16, 17]. The

metric (4.2) is valid to order O(ε) and promoting all fields to functions of σa as in (4.1)

allows for iteratively correcting the metric of black holes constructed from wrapping

Schwarzschild p-branes. However, as argued in section 2.3 and shown in [16, 17], there are

no corrections to the asymptotic charges, angular velocities, entropy and temperature to

order O(ε) from (4.2). However, as explained in the beginning of section 3.1, introducing

corrections proportional to the extrinsic curvature induces a multipole expansion of the

stress-energy tensor (3.1). Therefore, even though there are no corrections to the charges,

the metric acquires a bending moment [5, 6, 16] to this order, which we will analyze below.

There is an exception to the absence of corrections to the charges to this order, which

is the case n = 1, related to the presence of backreaction effects [16, 17]. As argued in [5],

there are two types of corrections that (4.1) can be subject to: backreaction corrections

and curvature corrections. Newtonian estimates [5] indicate that curvature corrections

become more important when n > 2. Curvature corrections (or elastic) are included in

the formalism of section 2 since the resulting equations of motion satisfy stress-energy

conservation (3.2), while backreaction effects are not. In the cases where backreaction

is subleading, the perturbation (4.2) is said to be a pure bending. Therefore, it is only

for the cases n > 2 that one should expect an effective description of the form (2.26).

The procedure of iteratively correcting the metric by introducing strains along transverse

directions to the worldvolume has only been completed to order O (ε) leading to the

metric (4.2) and, due to the current state of affairs, there is no data available to O
(

ε2
)

in this long-wavelength perturbation. Nevertheless, it is possible to obtain information

about (2.26) from the metrics (4.1) and (4.2) as we will describe below.

4.1 0th order metric: thermodynamic fluid variables

To 0th order the metric describing the fluid-elastic system is the one presented in (4.1).

The stress-energy tensor obtained from the ADM formalism or the Brown-York prescrip-

tion is of the perfect fluid form (2.10) where the pressure and energy density take the

following form [18]

P = −
Ω(n+1)

16πG
rn0 , ǫ =

Ω(n+1)

16πG
(n+ 1)rn0 . (4.3)

The local fluid temperature T and local entropy density s can be obtained from (4.1) by

reading off the surface gravity and the horizon area respectively,

T =
n

4πr0
, s =

Ω(n+1)

4G
rn+1
0 . (4.4)
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The Gibbs-Duhem relation ǫ+ P = T s and the first law of thermodynamics dǫ = T ds are

obeyed due to the form of (4.3)–(4.4). Due to the relation between global temperature

and local temperature T = k T mentioned above eq. (2.12), one can find the relation

between the thickness r0 and k such that (4πT )r0 = nk and hence the dependence of the

pressure P given in (4.3) on k ,

P (k) = −
Ω(n+1)

16πG

( n

4πT

)n
kn . (4.5)

The dependence of P on k is in fact enough to predict the energy density and en-

tropy through eq. (2.10) and eq. (2.12) . Using the identification (2.11) one has that

λ0(k) = P (k), and hence that λ′
0(k) = nP (k)/k. Therefore, using (2.10) we find

T ab
(0) = P (k)γab − nP (k)uaub , (4.6)

which is the stress-energy tensor for the fluid (4.3)–(4.4) with equation of state

ǫ = −(n + 1)P . To 0th order, we have full predictability of black hole masses, angular

momenta and entropy using (2.23) and (2.24) since we know all the local microscopic

properties of the fluid (4.3)–(4.4). This has been used to show the existence of several

new black hole solutions [55, 56, 66, 67].

4.2 1st order metric: Young modulus

As mentioned above, there are no corrections to the asymptotic charges and local thermo-

dynamic potentials to order O (ε) of the metric (4.2) when n > 1, however, the bending

moment Dabi given in (2.45) is a O(ε) correction since it is only proportional to one copy

of Kab
i. The bending moment can be measured from the metric (4.2) using the methods

of [5] and briefly, consists in finding the stress-energy tensor of the form (3.1) that sources

the metric (4.2). This was first done in [5] for neutral black strings bent into a circle and

later generalized for Schwarzschild black p-branes bent into an arbitrary shape in [16]. The

bending moment found in [16] is of the form (2.45) as expected from classical elasticity

theory with a Young modulus given by27

Yabcd = − P (k) r20(k) ξ(n)

(

1

n+ 2
γa(cγd)b + 2u(aγb)(cud) +

3n+ 4

n+ 2
uaubucud

)

+ k r20(k)P (k) ξ(n)
(

2γabγcd − n
(

uaubγcd + ucudγab
))

,

(4.7)

where k is a constant and the function ξ(n) takes the form

ξ(n) =
n tan(π/n)

π

Γ
(

n+1
n

)4

Γ
(

n+2
n

)2 . (4.8)

Note that the function ξ(n) evaluates to zero when n = 1 and diverges when n = 2, in

agreement with the expectation that elastic corrections are subleading when compared to

bakreaction corrections for the cases n = 1, 2. One of the key results in this work is the

27Note that in [16] the Young modulus Ỹ abcd is related to Yabcd via the relation Yabcd = Ỹ abcd.
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prediction of the structure of (4.7) from (2.46). Indeed comparison of (4.7) with (2.46)

using the results of section 3.2 leads to the identification

λ1(k) = k r20(k)P (k) ξ(n) , λ2(k) = −P (k) r20(k) ξ(n)

2(n+ 2)
, λ3(k) = −P (k) r20(k) ξ(n)

k2

(4.9)

λ4(k) =
k r20(k)nP (k) ξ(n)

k2 , λ5(k) = − 3n+ 4

2(n+ 2)

P (k) r20(k) ξ(n)

k4 .

A few remarks are now in place. Note that the elastic contributions λ1(k) and λ4(k)

are gauge dependent. Inspecting the second line of (4.7), we see that it has the same

structure as the gauge dependent part of the Young modulus defined in (3.29). This

comparison allows us to identify k̃(σa) = −k r20(k) ξ(n). Furthermore, it is not surprising

that the scalars associated with λ1(k) and λ4(k) are only gauge dependent. This is because

since the metric (4.2) is valid only to order O (ε), it cannot probe the hydrodynamic

contributions (2.55) since these are second order corrections to T ab. Therefore, since Rabcd

can be neglected to this order and since the measurement of (4.7) was done in flat space,

according to eq. (2.58) we have that, L1 = L2 and L3 = L4. It is worth noting that

measuring (3.1) from the metric (4.2) does not uncover any of the corrections to τab or

Πab given in section 2.4 and section 2.6 since these are of order O
(

ε2
)

. In fact, besides the

measurement of Dabi, from (4.2) one also obtains Bab as defined in (3.3) which takes the

same form as in (4.6). In other words, to order O (ε), the perturbation (4.2) does not affect

the monopole contribution to the stress-energy tensor (3.1). This means, for example, that

one cannot see the full invariance of (3.1) under the ‘extra symmetry 2’ to order O (ε).

4.3 Elastic corrections to black rings

As mentioned towards the end of section 4, the procedure of iteratively correcting the

metric (4.1) in a derivative expansion has not been completed to order O
(

ε2
)

. However,

the measurement ofDabi is all that is necessary to predict the structure of τab using the table

given in section 2.4. One may assume that if the deformation to the metric (4.1) is a pure

bending then the only excited modes are those presented in (2.40) and the hydrodynamic

contributions υ2(k) and υ3(k).
28 However, we can turn the hydrodynamic contributions

off by considering the simple embedding of a string bent into a ring, for which Rabcd = 0,

placed in a flat background. This means that the elastic contributions λ1(k) and λ4(k)

continue to only be gauge dependent. Further, due to the homogeneity and isotropy of

the ring solution we take k to be constant along the worldvolume, which means that all

the contributions from the hydrodynamic term υ1(k) will vanish (see table in section 2.6).

Given these facts, what we would like to test is if 1st order data is enough to predict black

hole charges to 2nd order in the derivative expansion, at least for specific cases. For this

purpose one would require the knowledge of the thermodynamic quantities (4.3) and, in

particular, of the dependence of the pressure on k to order O
(

ε2
)

. From here on we will

28There is no Gauss-Codazzi-type equation that relates any of the elastic contributions (2.40) to the

hydrodynamic contribution υ1(k) so if the deformation is pure bending this term is not, in principle, excited.
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assume that this functional dependence to order O
(

ε2
)

is the same as that given in (4.5).

The effective action for this configuration would then just be that given by (2.47) with the

identification (4.9). Using the definition of the modified pressure (2.44), this is simply

I [Xµ] =

∫

Wp+1

√−γ P
(

k,Kab
i
)

. (4.10)

We parametrize the flat background as

ds2 = −dt2 + dr2 + r2dφ2 +
n+1
∑

i=1

dx2i , (4.11)

and place the ring at r = R such that σ0 = τ = t , , σ1 = φ and xi = 0. The induced

metric is just γabdσ
adσb = −dτ2 + R2dφ2. The only non-vanishing component of the

extrinsic curvature is given by Kφφ
r = −R. This implies, due to the form of the linear

momentum (3.15) that, Pai = 0 and the equations of motion (3.10) reduce to

PabKab
i = 0 . (4.12)

Since that there is only one non-vanishing component of the extrinsic curvature, (4.12) is

actually just Pφφ = 0. Instead of computing all the components of the stress-energy tensor

involved in Pφφ using the table given in section 2.4, it is more practical to simply compute

the scalar P
(

k,Kab
i
)

and vary (4.10). In order to do so, we choose a gauge for which the

leading order pressure P does not depend on the extrinsic curvature, which in turn implies

that we choose k = 0 in (4.7) (see section 3.2). Using (2.46) together with (4.9) we find

P
(

k,Kab
i
)

=

(

P (k) +
λ2(k)

R2
+ λ3(k)Ω

2 + λ5(k)Ω
4R2

)

. (4.13)

Varying now the action (4.10) leads to the equation of motion (4.12). This can be solved

perturbatively in the manner Ω = Ω(0) + Ω(2)ε
2 and T = T(0) + T(2)ε

2, where ε2 = r20/R
2.

Here Ω(0) and T(0) for this configuration can be obtained from (2.2) together with (4.4)

and are given by the relations Ω(0)R = 1/
√
n+ 1 and 4π

√
n+ 1T(0) = n

3
2 [66]. Introducing

this decomposition in the equations of motion (4.12) leads to a solution to Ω(2) of the form

Ω(2) =
(n− 4)

√
n+ 1

2n2(n+ 2)R
ξ(n) ε2 . (4.14)

Note that the end result (4.14) does not depend on the correction T(2). Given the

corrected rotation velocity Ω we can proceed and compute the total mass and angular

momentum using (3.39). For this we need the conserved surface current (3.35), which for

this particular case takes the form

Pν
k
= Pνµkµ − dν[µρ]∇µkρ . (4.15)

Thus, the mass of the fluid-elastic system is given by

M =

∫

Bp

dV(p) Pττ = 2π R T ττ = 2π RP(0)

(

(n+ 2)− 2(n+ 1)

n
ξ(n) ε2

)

, (4.16)
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Where P(0) is the modulus of P (k) given in (4.5), when Ω = Ω(0). The angular momentum

along the direction φ reads

J=−
∫

Bp

dV(p)

(

Pab
ξaχ

(φ)
b +

1

2
d
aφr

ξa∂rχ
(φ)
φ

)

=2πR2
P(0)

√
n+ 1

(

1 +
(n+ 1)(n+ 12)

2n2 (n+ 2)
ξ(n) ε2

)

. (4.17)

As mentioned in section 2.2, an entropy current formalism has not been developed for the

system (2.26) so we do not have a first principle method to compute the total entropy

of the fluid-elastic system. However, this is not necessary in order to check if 1st order

data can account for black hole charges to 2nd order neither if the action (2.26) with the

identification (4.9) is the correct effective description of higher-dimensional black rings in

the blackfold regime. Since the action (4.10) can be interpreted as the free energy (see

section 2.1) we can obtain the product (TS)1 using (TS)1 = M − ΩJ − F . Furthermore,

since the charges M and J are supposed to be the ones associated with a stationary black

hole in asymptotically flat space time, they must satisfy the Smarr relation

(TS)2 =
(n+ 1)

(n+ 2)
M − ΩJ . (4.18)

A simple exercise tells us that (TS)1 = (TS)2 +O
(

ε4
)

for any value of n. Note that this

result is again independent of the correction T(2). Therefore, we conclude that 1st order

data in the case of black rings is enough to have full predictability of black hole charges

to 2nd order. We will discuss in the next section other possible cases for which 1st order

data is enough to predict charges to 2nd order.

5 Discussion

In this section we summarize the main results found in this work and discuss various open

problems. We begin by stating the key results. In section 2 we have found the most general

action quadratic in the extrinsic curvature as well as in the extrinsic twist potential and

in second order worldvolume derivatives. For co-dimension-1 surfaces it was required, to

the same order, to consider terms proportional to worldvolume derivatives of the extrinsic

curvature. It was shown that the equations of motion obtained from this type of actions

provide a relativistic generalization of classical elasticity theory of thin membranes when

bending effects as well as spin effects are taken into account (2.36). Since the well studied

case of fluid membranes is described by an action of the type (2.26), our work ended up

generalizing the Helfrich-Canham bending energy (1.1) to the case in which the fluid living

on the membrane is stationary and for non-trivial response coefficients. In such cases, for co-

dimension-1 surfaces (not necessarily two-dimensional), there exists 4 extra contributions

to second order than those considered previously in the literature described by the response

coefficients λ3(k) , υ1(k), υ3(k), ϑ3(k). Some of these response coefficients could potentially

be measured in a physical experiment involving fluids moving on cellular membranes.

In general, the results of section 2 indicate that the study of hydrodynamics of fluids

living on surfaces of arbitrary co-dimension is of increased complexity when compared

to the hydrodynamics of space-filling fluids. In fact, for neutral stationary fluids it was

found a set of 3 response coefficients [46, 47] while for non-dissipative fluids a total of
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5 transport coefficients [51]. Here instead, for surfaces of co-dimension greater than one

and according to certain assumptions,29 we have found a total of 7 independent response

coefficients, while for co-dimension-1 surfaces we found a total of 8 independent response

coefficients. In this counting we have ignored the spin contribution ̟2(k) as it does not

fit into the pole-dipole approximation of section 3, which suggests that it violates spin

conservation. We also ignored the elastic contributions λ4(k), λ5(k) and ϑ2(k) since they

can be removed by a change of basis and a field redefinition (see section 3.2). We have also

shown in section 2.6 how the elastic and hydrodynamic modes couple to each other using

the Gauss-Codazzi equation and in which conditions we can regard each of the different

contributions as independent.

The work presented in section 2 also indicates that all the techniques and methodologies

used to study hydrodynamics of space-filling fluids can be applied to the case of fluid branes

when the elastic modes (2.40) are taken into account. The requirement of stationarity can

be relaxed and the method used here can also be applied to non-dissipative fluids as in [51].

In this case, the material space introduced in [51], where the fluid variables are defined,

must be formulated with respect to the p spatial directions of the worldvolume Wp+1.

We have found in section 3 that all the corrections studied in section 2 can be accounted

for by the formalism of Vasilic-Vojinovic [43] where a multipole expansion of the stress-

energy tensor is carried out to pole-dipole order, except for the terms (2.63) which require

an extension of these ideas to pole-quadrupole order. Indeed, the formalism constructed

by these authors provides the most general equations of motion that take into account

finite thickness effects of curved branes, regardless of the existence of any underlying effec-

tive action. Having established this connection, we note that most of the finite thickness

corrections to brane effective actions considered in the literature [33, 34, 36–38, 45, 63]

fit into the formalism of section 3. In particular, we established a precise map between

extrinsic curvature corrections and the bending moment of the brane as well as extrinsic

twist corrections and the spin in transverse directions to the brane. It would be interesting

to understand if this map can be useful for the effective description of long strings [68].

In this work we have generalized extrinsic curvature corrections to brane effective

actions to the case of non-extremal branes and connected the formalism of Vasilic-

Vojinovic [43] with the formalism of Carter [37] and the formalism of Capovilla-Guven [38].

The establishment of this connection is of particular usefulness as it allows us to connect

effective theories of fluid branes with gravity. In section 4 we have shown that the Young

modulus measured from bending neutral black branes falls into the class predicted by the

effective action analysis of section 2 and used this fact to predict the corrected horizon

angular velocity for thin black rings. This gives further motivation for studying the elastic

expansion of higher-dimensional black holes via the blackfold approach since now, uncover-

ing the various response coefficients of stationary black branes simultaneously implies the

uncovering of the possible response coefficients and the structure of the free energy of real

fluid membranes. This fact can be put into a broader context: this is another instance where

29We remind the reader that in section 1 we stated that terms constructed with the Levi-Civita symbol

would be ignored.
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the study of gravitational physics can shed light into the physics of an apparent unrelated

system. Therefore, since thin black branes seem to behave like the membranes of living

cells, gravity can be used as a laboratory for uncovering properties of fluid membranes.

We now turn to several of the open problems encountered in this work:

The spin/elastic contributions we missed. As mentioned in section 1, we have

ignored terms constructed from the Levi-Civita symbol, in particular, we have ignored

dimension-specific corrections of the form

kaǫ̂iĵωa
îĵ , ǫabijΩab

ij , ǫabijRab
ij , ǫabijKac

iKb
cj . (5.1)

The second term above has been studied in the context of cosmic strings [37]. Further, the

last 3 contributions are coupled to each other due to the Ricci integrability condition (2.33).

It would be interesting to understand if this last set of terms can be accounted for by

the formalism of section 3 to pole-dipole order. The first of these terms is of particular

interest as it gives rise to the spin current measured from Myers-Perry branes [5]. Here,

we have introduced the Levi-Civita symbol on a transverse two-plane labelled by the

indices î, ĵ. To make this statement precise, note that for this case Saîĵ = kaǫîĵ . If one

compares this with the result for Myers-Perry branes found in [5], this is exactly the type

of correction needed for describing black holes spinning in transverse directions to the

worldvolume. It would be interesting to study the wrapping of Myers-Perry branes from

this effective action perspective and to construct doubly-spinning black rings to 2nd order

in the derivative expansion. This problem will be addressed in a future publication [62].

The entropy current and charged fluid branes. In this work we have lacked a first

principle computation of the entropy for the fluid-elastic system (2.26). However, using the

methods of [46, 69] together with some inspiration from the formulation of viscoelasticity of

Fukuma-Sakatani [52, 70] it is possible to classify the several terms in the entropy current

as well as to obtain a first principle computation of the total entropy. A related problem

is to generalize the action (2.26) to the case where the fluid carries either a q = 0, q = 1 or

q = p-brane charge as in the cases studied in [55, 56]. For q = 0 and for p = q-brane charge

the action takes essentially the same form but for p 6= q and q > 0 new contributions need

to be added. This would allow to predict the structure of the piezoeletric moduli measured

for charged black branes [6]. This problem is related to the entropy current formulation

because in both cases it requires obtaining from the action a conserved current without

additional corrections to the action (2.26) itself. This issue is now under investigation and

it will be published elsewhere [62].

Constraints on the response coefficients. During the analysis of the mode coupling

in section 2.6 we only looked at relations that arise from geometric constraints, such as

the Gauss-Codazzi equation (2.58). However, there may be stability and thermodynamic

constraints imposed by elasticity theory or the entropy current analysis in the spirit of [71]

that further restrict the set of response coefficients obtained in section 2. Furthermore, it

would be interesting to understand the physical meaning of each of the elastic contributions

in (2.40) by obtaining, for example, the corrected speed of propagation of elastic waves or
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the corrections to the elasticity tensor of fluid branes introduced in (2.20). The lack of

such knowledge is unsatisfactory and deserves further study.

Elastic corrections to black holes. In section 4 we applied the 2nd order effective

action to the case of black rings in asymptotically flat space and found that the black hole

charges were consistent with the free energy interpretation and the Smarr relation. This

is compelling evidence that the effective description of higher dimensional black holes in

the blackfold regime is given by an action of type (2.26) with the identification (4.9). It is

also important to refer that the predictions made in [5, 6] for the corrected horizon angular

velocity of (charged) black rings were not accurate enough as they did not take into account

the contributions to the monopole stress-energy tensor T ab given in the table of section 2.4.

We note that we have not obtained a complete prediction of all the corrected black hole

thermodynamic quantities. This is because we have not developed a first principle com-

putation of the total entropy of the system neither accounted for a proper definition of

the global temperature in terms of a local temperature. Once this is done, the formalism

presented here allows for the full predictability of black hole charges to order O
(

ε2
)

in

the derivative expansion. We note, however, that due to the lack of 2nd order data, at

the moment it is only possible to accurately obtain the corrected horizon angular velocity

for black holes made of bent strings such as the black rings of section 4 and the helical

rings and strings found in [66]. This is because for embeddings with non-vanishing Rabcd ,

2nd order information about the response coefficients of the hydrodynamic modes (2.55)

is required. In fact, a simple exercise tells us that applying the same prescription as for

the case of black rings in section 4 to the case of black odd-spheres [66] does not lead to

consistent results. The study of the bending of the black branes (4.1) to 2nd order would be

interesting since it would uncover these extra response coefficients. The bending of strings

to O
(

ε2
)

is an easier task since the hydrodynamic modes (2.55) will vanish but it would

still be a worthy endeavour as it would allow to confirm the corrections to the monopole

stress-energy tensor found in section 2.4 as well as the prediction (4.14).

We end this work by noting some interesting facts about fluid membranes. When

applying the considerations of section 2 to fluid membranes one does not have to be con-

cerned with backreaction effects and hence the effective description of the system is that

given by (2.26). If we take the simplest case of a membrane embedded in a flat background,

then there is a total of 5 response coefficients, 2 of which are related to stationary flows

and have not been considered previously in the literature. While some of these may be

subject to local constraints for real cell membranes, as the scalar associated with ϑ1(k) is,

and ignoring viscous effects, according to the analysis of section 2, this is how fluids bend.
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A Notation, geometry and variations

In this section we write down in detail the notation used in this work and their relation to

the work of other authors. We consider surfaces of (p+1)-dimensional worldvolume Wp+1

embedded in a background space-time endowed with metric gµν(x
α). The coordinates

xα, α = 0, . . . , D − 1 are space-time coordinates. To the worldvolume we assign a set of

coordinates σa, a = 0, . . . , p , where p is the total number of spatial dimensions of the

worldvolume. The worldvolume Wp+1 is located at the space-time surface xµ = Xµ(σa),

where Xµ(σa) is a set of mapping functions describing the position of the surface in the

ambient space-time. Introducing the projector along worldvolume directions ua
µ = ∂aX

µ

we can construct the induced metric on the worldvolume as γab = gµνua
µub

ν , as well as its

extrinsic curvature Kab
ρ = ∇aub

ρ symmetric in the indices a, b. The covariant derivative

along worldvolume directions ∇a = uρa∇ρ, compatible with both the worldvolume metric

γab and the space-time metric gµν , acts on an arbitrary tensor V cµ as

∇aV
cµ = ∂aV

cµ + γab
cV bµ + Γµ

νλu
ν
aV

cλ , (A.1)

where the Christoffel symbols γac
b are computed with respect to the induced metric γab

and the Christoffel symbols Γµ
νλ with respect to the space-time metric gµν . Any space-

time vector vµ can be projected along the worldvolume directions using ua
µ such that va =

uaµv
µ. We further introduce a set of projectors ni

µ, i = 1, . . . , D−p−1 onto the transverse

space to the worldvolume defined by gµνni
µnj

ν = δij and ni
µua

µ = 0. Any space-time

vector can be projected along orthogonal directions such that vi = ni
µv

µ. The extrinsic

curvature by definition is transverse in its third index such that Kab
ρ = Kab

ini
ρ. Given the

normal projectors we can define the extrinsic twist potential via ωa
ij = −nµ

j∇an
µi, which

is anti-symmetric in the indices i, j. Given the extrinsic twist potential, we can define the

outer curvature associated with it through the relation [38]30

Ωab
ij = ∇aωb

ij −∇bωa
ij + ωa

ikωbk
j − ωb

ikωak
j . (A.2)

30Note that here we are using the opposite conventions compared to the ones used in [38]. That is, the

extrinsic curvature and extrinsic twist potential defined in [38] should be multiplied by a minus sign to

match the conventions used here.
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It is also useful to work with space-time indices and still keeping track of tangential and

perpendicular components to the worldvolume. For that matter, we introduce the first

fundamental tensor γµν such that γµν = uµau
ν
bγ

ab. Using γµν , any space-time tensor can

be projected along the worldvolume while still keeping space-time indices. Similarly, we

introduce a perpendicular projector such that ⊥µν= gµν −γµν , which satisfies γµν⊥µ
ρ = 0.

The worldvolume projector ua
µ and the transverse projector ni

µ are by definition parallel

and perpendicular respectively in their space-time index, i.e., ua
µ = ua

νγν
µ and ni

µ =

ni
ν⊥ν

µ. Note that both space-time projectors can be defined in terms of the projectors

uµa and nµ
i such that γµν = uµauν

a and ⊥µ
ν = nµ

inν
i.

Variations à la Capovilla-Guven. In [38], Capovilla-Guven introduced a covariant

derivative ∇̃a that preserves covariance under rotations of the normal vectors, such that

∇̃aV
ci = DaV

ci + ωa
i
jV

cj , (A.3)

where Da is the worldvolume covariant derivative compatible with γab. With the defini-

tion (A.3), one can easily act with it on the transverse indices i but at the expense of

introducing torsion. Note that the worldvolume covariant derivative Da can be replaced

by the covariant derivative ∇a introduced in (A.1) if one remembers that ∇a does not

act on the transverse indices i. In the work presented above we have avoided using this

terminology by noting that

∇̃aV
ai = ni

µ∇a

(

V cjnj
µ
)

= ∇aV
ci − V cjnj

µ∇an
i
µ = ∇aV

ci + ωa
i
kV

ck , (A.4)

where in the last equality we have used the definition of the extrinsic twist potential.

With the definition (A.3) the variation of the extrinsic curvature (2.18) can actually be

written as [38]

δ⊥Kab
i = ∇̃a∇̃bΦ

i −Ri
bajΦ

j −Kac
iKc

bjΦ
j . (A.5)

Similarly, for the extrinsic twist potential we have that [38]

δ⊥ωa
ij = −Kab

i∇̃bΦk +Kab
j∇̃bΦk +Rij

kaΦ
k . (A.6)

For variations along the worldvolume directions, the different fields transform with the

Lie derivative such that covariance under normal rotations is preserved. For example, the

tangential variation of the twist is

δ||ωa
ij = Φb∇̃bωa

ij + ωb
ij∇aΦ

b , (A.7)

which when using (A.4) leads to (2.29). An interesting application of this covariant deriva-

tive is in the rewriting of the spin conservation equation (3.24) which now takes the form

∇̃aj
aij = 0 . (A.8)

We have also considered the variation of the worldvolume Christoffel symbols γac
b as well

as of the worldvolume Riemann tensor Rabcd. These can be analyzed through the variation

of the Christoffel symbols,

δγab
c =

1

2
γcd (∇bδγad +∇aδγbd −∇dδγab) . (A.9)
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Using this, one has that

δRa
bcd = ∇cδγbd

a −∇dδγbc
a , δRab = ∇cδγab

c −∇bδγac
c , (A.10)

and finally the variation of the worldvolume Ricci scalar

δR = ∇a

(

γbcδγbc
a
)

−∇b (δγab
a) +Rabδγ

ab . (A.11)

We have also considered variations of the worldvolume derivative of the extrinsic curvature

for co-dimension-1 surfaces. This can be obtained using the chain rule,

δ∇aKbc = ∇aδKbc + δγab
dKdc + δγac

dKbd . (A.12)

The third fundamental tensor. In [61] Carter defined the third fundamental tensor

with space-time indices as

Ξκλµ
ν = γλ

ργµ
σ⊥τ

ν∇̄κKρσ
τ , (A.13)

where the connection ∇̄κ denotes the covariant derivative along the worldvolume written

with space-time indices. We have avoided this notation in the work above by using instead

the definition

∇̄νV
µ = γλν∇λV

µ . (A.14)

From the third fundamental tensor (A.13) we can obtain the Codazzi-Mainardi equation

simply by taking the appropriate anti-symmetrization [61]

2Ξ[κλ]µ
ν = γρκγ

σ
λγ

τ
µ⊥ν

αRρσ
α
τ . (A.15)

Contracting this with uλau
κ
bu

µ
cn

i
ν yields eq. (2.32).

Variations à la Carter. For the geodynamic-type models constructed by Carter [36, 37],

a different type of variational principle was used than the one used by Capovilla-Guven [38].

It is a Lagrangian variation in which the background metric gµν is displaced by an in-

finitesimal vector such that δLgµν = 2∇(µΦν). We now show that this type of variations

yields the same results as the ones presented in this work. In order to do so we require

the Lagrangian variations of the first fundamental tensor δLγ
µν = −2γσ

(µ∇̄ν)Φσ and of

the second fundamental tensor [37],

δLKµν
ρ = ⊥ρ

λ

(

∇̄(µ∇̄ν)Φ
λ − γσ(µγ

τ
ν)R

λ
στρΦ

ρ −Kσ
(µν)∇̄σΦ

λ
)

+
(

2⊥σ
(µKν)τ

ρ − gρτKµν
σ
) (

∇σΦ
τ + ∇̄τΦσ

)

.
(A.16)

Let us consider the simple case of the elastic contribution λ1(k) given in (2.40). The

contribution to the action is of the form

I [Xµ] =

∫

Wp+1

√−γλ1(k)K
ρKρ , (A.17)
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where γ here should be understood as the determinant of γµν and k = | − γµνk
µkν |1/2.

We define the stress-energy tensor Tµν and the dipole moment Dµν
ρ as before:

Tµν =
2√−γ

δL
δγµν

, Dµν
ρ =

1√−γ

δL
δKµν

ρ , (A.18)

where L =
√−γλ1(k)K

ρKρ. The Lagrangian variations of (A.17) are thus of the form

δLI [X
µ] =

∫

Wp+1

√−γ

(

1

2
TµνδLγµν + λ1(k)K

µKνδLgµν +Dµν
ρδLKµν

ρ

)

. (A.19)

The difference here in comparison with (2.30) is the appearance of the middle term above.

However, it is always cancelled by the last of the terms appearing from the contraction

Dµν
ρδLKµν

ρ. The end result of the variation for all corrections quadratic in the extrinsic

curvature is thus

δLI [X
µ] =

∫

Wp+1

√−γ
(

∇̄ν

[

Φλ

(

T νλ − ∇̄µDµνλ
)

+Dµνλ∇̄µΦλ

]

− Φλ

(

∇̄ν

(

T νλ − ∇̄µDµνλ
)

+DστρRρστ
λ
))

.

(A.20)

The advantage of this approach is that it yields in the end the equations of motion and

boundary conditions in the form (3.8) and makes it easy to identify the linear momentum

Pνλ. Careful inspection of this and comparison with (2.30) leads one to conclude that the

variations are the same. For the particular case of (A.17) we have

Tµν = λ1(k)K
ρKργ

µν − λ′
1(k)ku

µuνKρKρ − 4λ1(k)K
µνρKρ , Dµνρ = 2λ1(k)γ

µνKρ ,(A.21)

which when contracted with uaµu
b
ν yields the contributions τab1 and Dabi

1 stated in the

table given in section 2.4. We have mentioned that the middle term in (A.19) is always

cancelled by a contraction involving the last term. We briefly show how this is the case.

Take the case of the most general action quadratic in the extrinsic curvature

I [Xµ] =

∫

Wp+1

√−γ
1

2
YµνλρKµν

σKλρσ , (A.22)

where the Young modulus Yµνλρ only depends on k, ka and γµν . Note that Dµνρ =

YµνλσKλσ
ρ. Now introduce a dummie (meaningless in this case) tensor Bµν defined as

Bµν =
1√−γ

δL
δ ⊥µν

, (A.23)

where L = (1/2)
√−γ YµνλρKµν

σKλρσ. Then for an action of the type (A.22) this is simply

given by Bµν = (1/2)YσκλρKσκ
µKλρ

ν . Further note that the last term in the contraction

Dµν
ρδLKµν

ρ is always −DµνρKµν
σ∇σΦρ. Therefore, BµνδLgµν always cancels this term.
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Linear momentum from the action. As mentioned in section 3.3 it is possible to

obtain the conserved surface currents directly from (A.17) by requiring the action to be

invariant under space-time translations along Killing directions. To see this note that

for an infinitesimal shift along a Killing direction Φµ = β kµ for an arbitrary constant β.

Then (A.20) yields

δLI [X
µ] = β

∫

Wp+1

√−γ
(

∇̄ν

(

Pνλkλ +Dνµλ∇̄µkλ

)

− kλEλ(Xµ)
)

. (A.24)

Here we have used the definition of linear momentum applied to the case jaµν = 0 as given

in (3.15) with the identification (3.18). Furthermore, we have written the term inside the

parenthesis in the second line of (A.20) as Eλ(Xµ), which when equated to zero yields the

equations of motion (3.9)–(3.10) when jaµν = 0. For (A.24) to be invariant under these

translations when the equations of motion are satisfied Eλ(Xµ) = 0 we must have that

∇̄ν

(

Pνλkλ +Dνµλ∇̄µkλ

)

= 0 . (A.25)

Indeed, this is recognized as the conservation of the surface current introduced in (3.35) for

the case jaµν = 0. This is the reason why Pνλ is called the linear momentum. Moreover,

from (A.25), since P [νλ] = −∇̄µDµ[νλ], we have that

kλ

(

∇̄νPνλ +DνµρRλ
νµρ

)

= 0 . (A.26)

Therefore, along any Killing direction we obtain the equations of motion as written

in (3.8). Finally, we note that when Eλ(Xµ) = 0, integrating the first term in (A.24) into

a boundary term yields the definition of conserved surface charge (3.39). This type of

reasoning had been applied by Guven et al. in [63] for extremal branes in flat space. Here

we have generalized it for non-extremal branes in curved space.

B Boundary conditions for hydrodynamic modes

In this appendix we analyze the boundary conditions for the hydrodynamic corrections pre-

sented in (2.55) and (2.63). We begin with the hydrodynamic scalars given in (2.6). Due

to the variation of the Christoffel symbols (A.9) the hydrodynamic scalars contribute with

additional terms to the boundary equations derived in (2.31). We denote the extra contri-

bution by Bα in terms of δγab given in (2.3) and δγab
c given in (A.9), which should be added

to the last line of eq. (2.31). These contributions are summarized in the following table:

Scalar Bα

υ1(k)V1 −ηaυ1(k)
(

1
2
∇a

(

kubucδγbc
)

+ γabδγbc∇c
k
)

+ ηa
2

(

kubucδγcd∇aυ1(k) + υ1(k)γ
bcδγbc∇a

k
)

υ2(k)V2 −ηaυ2(k)
(

γacδγbc
b − γbcδγbc

a
)

− ηa
(

γacδγcd∇bυ2(k)− γbcδγbc∇aυ2(k)
)

υ3(k)V3
−ηa

(

1
2
∇a

(

υ3(k)k
b
k
c
)

δγbc −∇c
(

υ3(k)k
a
k
b
)

δγbc +
1
2
γbcδγbc∇b

(

υ3(k)k
a
k
b
))

+

ηaυ3(k)
(

k
b
k
cδγbc

a − k
a
k
bδγbc

c
)

The complexity of these contributions is useless. For the hydrodynamic corrections (2.6)

to fit the pole-dipole boundary conditions (3.11), one must require all the above terms to

vanish at the brane boundary.
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Boundary contributions due to the quadrupole moment. We now turn into the

case of the boundary contributions of the terms (2.63) due to the presence of the quadrupole

moment. Besides the boundary terms obtained from (2.30) there is a contribution to the

variation of the action (2.30) of the form:

δI =

∫

Wp+1

√
−γ∇a

(

Dabc
⊥ δKbc −∇bDbac

⊥ ∇cΦ
i − Φi∇b∇cDcba

⊥ − 2Dbac
K

d
cKbd

iΦi

− 2Dabc
⊥ K

d
cKbd

iΦi − 2Ddbc
⊥ K

a
cKbd

iΦi +Dbac
⊥ K

d
c∇(bΦd) + 2Dabc

⊥ K
d
c∇(bΦd)

− 2Ddbc
⊥ K

a
c∇(dΦb) +ΦdDabc

⊥ ∇dKbc + 2Dbac
⊥ Φd∇dKdc

)

.

(B.1)

Note that we used here the index i but one should remember that for co-dimension-1

surfaces there is only one transverse direction. Note also that the first term in (B.1)

introduces boundary terms proportional to the background Riemann tensor via (2.18).

This is a generic effect of quadrupole corrections to the equations of motion in the spirit

of section 3. Deriving the pole-quadrupole equations of motion is of intrinsic interest and

it will be published elsewhere.
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