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ABSTRACT: Hydrodynamics can be consistently formulated on surfaces of arbitrary co-
dimension in a background space-time, providing the effective theory describing long-
wavelength perturbations of black branes. When the co-dimension is non-zero, the sys-
tem acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying
an effective action approach, the most general form of the free energy quadratic in the
extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations
is constructed to second order in a derivative expansion. This construction generalizes
the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to
the case in which the fluid is rotating. It is found that stationary fluid brane configura-
tions are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response
coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover,
the elastic degrees of freedom present in the system are coupled to the hydrodynamic de-
grees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family
of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-
extremal brane effective actions can be accounted for by a multipole expansion of the
stress-energy tensor, therefore establishing a relation between the different formalisms of
Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective de-
scription of stationary fluid branes. Finally, it is shown that the Young modulus found in
the literature for black branes falls into the class predicted by this approach - a relation
which is then used to make a proposal for the second order effective action of stationary
blackfolds and to find the corrected horizon angular velocity of thin black rings.
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1 Introduction

Higher-dimensional gravity has been shown to be fruitful as a testing ground for theories of
hydrodynamics. In recent years many new properties, transport and response coefficients
of (charged) fluids [1-6] and superfluids [7—11] have been uncovered through the study of
long-wavelength fluctuations of black branes. These fluctuations can be along the worldvol-
ume [12-15] or boundary directions [1, 2] where the fluid lives yielding the usual dynamics of
viscous fluid flows, or transverse to it, originating instead genuine elastic behavior [5, 6, 16].

The blackfold approach [17-19], being the effective hydrodynamic theory that de-
scribes the long-wavelength perturbations of black branes, has taught us that the fluid
system dual to the gravitational object needs not to live on the boundary of the space-time
(fluid /gravity) but can also live on the horizon (membrane paradigm) or in an intermedi-
ate region [15, 20]. In this regime, black holes and black branes should be seen as fluid
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branes [19, 21]: fluids living on dynamical surfaces of arbitrary co-dimension embedded in
a background space-time.

The relation between the toy model of a fluid brane and gravitational physics can
be thought of in the following way. Classically, black holes share many properties with
other products of gravitational collapse, namely, they are characterized by a very dense
distribution of matter but they differ from other stellar objects due to the formation of an
event horizon. The crust of stars is composed of matter in a high pressure state, as the
matter distribution that characterizes the black hole, and hence relativistic elasticity can
be a good approximation for describing deformations of the star crust. It is then intuitively
understandable why deformations of the matter source of a black hole can give rise to elas-
tic behavior [5, 22-24]. On the other hand, it is also possible in some cases to perform
inhomogeneous fluctuations of the event horizon without deforming the source leading to
an effective viscous fluid behaviour [12-15]. These different possibilities are mapped onto
the fluid brane toy model as transverse deformations to the surface where the fluid lives
(elastic), or to fluctuations on the different thermodynamic quantities and fluid velocities
that characterize the overall fluid configuration (fluid) [19, 21]. It is then possible to think
of a black hole as having source degrees of freedom (elastic modes) and horizon degrees of
freedom (hydrodynamic modes) which in general interact with each other when the entire
system is subject to a perturbation. The natural question to ask is then: in which situa-
tions can the horizon be perturbed without perturbing the source and vice-versa? Focusing
on stationary black brane configurations, in this work we partly answer this question when
backreaction effects can be neglected.

Even though fluid branes have gained a role in gravitational physics, the physical prob-
lem of how a fluid living on a surface reacts to a deformation of the surface is a much older
one dating back to the first observations of the strange biconcave shape of a red blood cell
in the seventeenth century [25]. The models that described the shape of a cell, assuming
a constant pressure along the surface, are the same models that describe the shape of a
soap bubble, working under the principle of minimization of the surface area. However, in
the 60’s, Helfrich and Canham proposed what is now called the Helfrich-Canham bending
energy for fluid membranes [26, 27|, consisting of introducing an additional contribution
to the free energy of the cellular membrane of the form:

FIXH] = a/AdAKz, (1.1)

where K is the mean extrinsic curvature vector, dA is the area element induced on the
surface, A is the area of the surface, and « is the modulus of rigidity. The inclusion of this
term was enough to understand the biconcave shape of the red blood cell [25], a fact that
then led to the study of several properties of this fluid-elastic system [28-32]. The rigidity
term (1.1) has also found its role in particle physics when Polyakov [33], and independently
Kleinert [34], added it to the Dirac-Nambu-Goto action in order to obtain an improved
effective action for QCD. In this context, corrections of the type (1.1) are known as finite
thickness corrections to brane actions.



In this paper, we generalize the Helfrich-Canham bending energy to account for possi-
ble pressure differences along the surface as well as for the possibility of the fluid being in
stationary motion. Taking a brane-like stringy perspective, what we will be accomplishing
is a systematic derivative correction to extremal and non-extremal brane actions, including
all the possible correction terms quadratic in the extrinsic curvature, in the extrinsic twist
potential and of second order in derivatives along the surface and obtaining the equations
of motion for the resulting system. The first covariant formalism for obtaining the cor-
rect variations of surface tensors was developed by Carter in connection with his model
of geodynamic-type (or stiff) strings and branes [35-37]. A more intuitive method that
instead exploits the symmetries of the worldvolume surface was developed by Capovilla-
Guven [38] and applied to different physical systems including lipid vesicles [39-41]. On
the other hand, a general framework for deriving the equations of motion of finite thickness
probe branes based on a multipole expansion of the stress-energy tensor was developed by
Vasilic-Vojinovic [42, 43]. Carter pointed out in [36] that the dynamics of geodynamic-type
objects could be accounted for by adding dipole terms to the stress-energy tensor. Using
mainly the formalism developed by Capovilla-Guven [38] and Vasilic-Vojinovic [43], it is
shown that this is indeed the case.!

The upshot of the developments in hydrodynamics in connection with gravitational
physics mentioned in the beginning of this section is that many systematic methods for
constructing theories of fluid dynamics have been developed [46-52]. Inspired by partition
function methods [46-49] and the effective action approach [50, 51] we construct the free
energy for generic stationary fluid flows living on dynamical surfaces to second order in a
derivative expansion. We show that neutral fluids living in a surface of co-dimension greater
than one are characterized by 3 elastic response coefficients, 3 hydrodynamic response coef-
ficients and 1 spin response coefficient. Each of these response coefficients is associated with
a particular term which is added to the action and from our analysis we conclude that the 3
elastic terms are coupled to 4 of the hydrodynamic terms due to geometric constraints. Con-
trary to the case of space-filling stationary fluid flows which are described by only 3 hydro-
dynamic response coefficients [46], these fluids are described by a total of 7 independent re-
sponse coefficients in a curved background. Using the generic form of the stress-energy ten-
sor and dipole moment obtained from the action we match it with the Young modulus mea-
sured for black branes [5, 16] and hence propose a second order effective action for blackfolds
which is then used to predict the corrected horizon angular velocity of thin black rings. We
stress, however, that our construction is not the most general one to 2nd order in the deriva-
tive expansion. We will be ignoring terms that are constructed from the Levi-Civita symbol
and which are dimension-dependent. The reason for this will be explained in section 5.

This paper is organized as follows. In section 2 we lay down the general framework
for the variational calculus and the construction of the effective action in a derivative
expansion. We then show how to iteratively account for higher order derivative corrections

!Note that in the case of spinning corrections to the motion of point particles, it was already known that
the equations of motion were captured by a multipole expansion of the stress-energy tensor [44]. In the
context of curvature corrections to cosmic strings, this was also derived in [45]. Here, we have generalized
these results to arbitrary space-time dimension and for p-branes.



and obtain expressions that exhibit the coupling between the hydrodynamic and elastic
modes. Section 3 is quite technical but equally important. There we show how these
corrections can be understood as a multipole expansion of the stress-energy tensor and
proceed to construct conserved currents and charges. In section 4 we match our results
with the measurement of the Young modulus for black branes, firmly establishing what is
meant by an elastic expansion for black holes. In section 5 we comment on open issues
and future work. We also include appendix A where we describe in detail the notation
used in this paper and collect different results of variational calculus and of geometry of
embeddings. In appendix B we analyze the boundary conditions for hydrodynamic modes.

2 Effective action for (non)-extremal branes

In this section we construct the most general effective action and corresponding free energy
for a neutral stationary fluid brane quadratic in the extrinsic curvature and extrinsic twist
potential to second order in a derivative expansion. We consider a (p + 1)-dimensional
surface with worldvolume topology W,11 = R x B, embedded in a background space-
time of D = n + p + 3 dimensions with metric g,,(z*) and space-time coordinates z“.
The position of the surface is described by a set of mapping functions X*#(c), where the
set of coordinates o cover the embedded submanifold. The indices u, v, A... are space-
time indices, the indices a, b, c... denote directions along the worldvolume surface while
the indices 1, 7, k... denote transverse directions to the worldvolume. The worldvolume
inherits an induced metric of the form 74 = guubuy, where uf = 9,X*, and if the
worldvolume is bent one can assign to it an extrinsic curvature defined as K" = Vau;f ,
where the covariant derivative V, is defined in appendix A. Any space-time vector v* can
be decomposed into tangential and orthogonal components to the worldvolume surface
such that v = v%ul + vinf , where the set of tangential and orthogonal projectors satisfy
guuan? = 0. Given the set of orthogonal projectors one can define the extrinsic twist
potential w,¥ = —nJ Mvan"“, which is anti-symmetric in its two transverse indices, as
well as the outer curvature Q" associated with it (see appendix A). It is also useful to
introduce projectors onto the worldvolume and onto its transverse space while keeping
track of space-time indices. For that matter we introduce the first fundamental tensor v*
defined as v* = ~®ut,u”}, , which projects onto Wp+1, and the orthogonal projector LH#”
given by the expression L# = g" — ~* . Further, we assume the existence of a set of
commuting worldvolume Killing vector fields that we take to be of the generic form:

k*0y = 0r + Y _Q90¢,, 0 = (1,¢a,...) . (2.1)
a=1

Here the set of angular velocities Q(®) is constant. The existence of such worldvolume
Killing vector fields is a requirement for stationarity of the overall fluid configuration (see
for example [53]). We begin by reviewing the Oth order action and generalizing the analysis
of [21] while simultaneously highlighting some of the elastic properties of fluid branes. The
method for iteratively correcting the action then follows.



2.1 Oth order fluid-elastic system

To Oth order in a derivative expansion the surface is described by an induced metric v
and the set of commuting Killing vector fields (2.1). The only natural scalar invariant
that can be constructed from these two is the modulus of the Killing vector defined as

k=]|- 'yabkakbll/z. Therefore, the action must be a functional of k,?
I[XH) = / L(vV=7.k) = / A" ov/=y Xo(k). (2.2)
Wo+1 Wh1

In what follows, we will omit d?T'o from our integrals. Our goal is to make a small defor-
mation § X* of the worldvolume geometry along both tangential and orthogonal directions.
To this aim we decompose the deformation as § X# = ®H = P4l + @inf . Under arbitrary
small variations the metric changes by a Lie derivative such that

5ab = 2V (Pp) — 2K ' ®; . (2.3)

Further, we assume the set of angular velocities in (2.1) to be held constant during the
variation and hence the variations of the Killing vector fields 6k% are zero. Therefore, the
variation of the action (2.2) can be written only in terms of the variation of the induced
metric. This fact leads to a result of the form:

ST [XH] = V= (va (T“b<1>b> R v L. T“bKabi®i> : (2.4)

Wpt1
where we have defined the monopole source of stress-energy tensor in the usual way,
Tab _ 2 oL '
v d%Vab

Before we analyze the explicit form of (2.5) note that in order to obtain the equations of

(2.5)

motion from (2.4) one must require §1 [X#] = 0. The first term in (2.4) is a boundary term
and can be written in the form

V=hT"n,®y, (2.6)

OWp+1

where 7® is a unit normal vector to the brane boundary and h the determinant of
the induced metric on the boundary. Hence, a well posed variational principle requires
T “bna|awp .. = 0. The second term in (2.4) results in an identity which is trivially satisfied
as we will show below,

VoI =0. (2.7)
In total, the variational principle (2.4) yields the non-trivial equation of motion
TK,' =0. (2.8)

Eq. (2.7) expresses stress-energy tensor conservation and is responsible for the fluid be-
havior along worldvolume directions while eq. (2.8) contains the elastic degrees of freedom
which are manifested along transverse directions to the worldvolume. These equations will
be analyzed in greater detail as we progress in this section.

2Note that Ao(k) is also implicitly a function of the global temperature T. For explicit examples of
non-extremal brane actions see [19, 54-57].



The explicit form of the stress-energy tensor. To evaluate the stress-energy ten-
sor (2.5) we need the variation of k with respect to 74, this is simply
k k*

_ _>,a,b a__ =
o0k = U Vab U k' (2.9)

For an action of the type (2.2) the stress-energy tensor takes the following form:
T =T = Mo(k)y™ — Ay(k)ku®u” . (2.10)

Here A{(k) indicates a derivative with respect to k. This is easily recognized as the
stress-energy tensor of a perfect fluid and indeed leads us to identify the set of normalized
vectors u®u, = —1 as fluid velocities, while thermodynamics allows us to identify the
pressure P and energy density e such that

P=X(k), e+P=-N(kk. (2.11)

This means that to Oth order, the action (2.2) is the just the usual action for stationary
perfect fluids [58] but now living on a submanifold in the ambient space-time. Assuming
the Gibbs-Duhem relation ¢ + P = T's and knowing that for such systems the constant
global temperature T is related to the local temperature via 7' = k7 [53], using the
identification (2.11) one obtains an expression for the local entropy density

1
5= —T)\{](k)kz . (2.12)

Given these identifications, the set of egs. (2.7) are interpreted as the fluid equations on
the worldvolume W, 1. However, the stress-energy tensor (2.10) satisfies the conservation
equation (2.7) regardless of any thermodynamic interpretation. Indeed, using (2.10) in
eq. (2.7) results in

1
— VPo(k) + ﬁAg(k)VbH =0, (2.13)

which is trivially satisfied. In order to obtain the above, one needs to use the fact that the
expansion 6 = V,u® vanishes by virtue of the Killing equation V.k; = V|, k; and that
for any worldvolume scalar or tensor T, the Lie derivative along the Killing vector field
vanishes £ T = 0.

The elasticity of fluid (mem)-branes. Eq. (2.8) encodes the elastic degrees of free-
dom of the brane. In fact, note that it has a direct analog in terms of classical elasticity
theory: it is the equation of motion obtained by varying the free energy of a thin stretched
membrane when bending effects can be neglected [21, 59]. For very thin membranes, the
effect of bending is always subleading when compared to deformations caused by stretching
or compression [59]. To further see the connection with elastodynamics it is instructive
to imagine the following scenario. Suppose that to a given fluid configuration satisfying
eq. (2.8) one applies a small deformation of the embedding surface in an arbitrary orthogo-
nal direction ®. Prior to the deformation the metric 74,;, measured distances between fluid



elements on the surface, while after the deformation the actual value of 7., measures the
new distances on W, ;1. Therefore 74, describes the state of strain of the brane and one
can define the Lagrangian strain tensor Ug? as [21]

1
Uab =5 (’Yab - ’_Yab) . (214)

2
For infinitesimal displacements along ®°, the strain tensor changes by a Lie derivative and
hence

1 .
.fq)anb = dUab = _Qd')’ab = Kablq)i . (2.15)

Thus, we conclude that the extrinsic curvature tensor Kg;,' measures the strain induced
on the brane due to a deformation of the surface along orthogonal directions [5, 21].
Making the extra assumption of the existence of a background Killing vector field k*
whose pullback onto the worldvolume coincides with the worldvolume Killing vector field
k® allows us to write T'su, = —s0,7T. This, together with the form of the stress-energy
tensor (2.10) and the identification (2.11), allows us to rewrite eq. (2.8) when contracted
with the deformation vector ®' as

dP = —PdV, (2.16)

where we have defined the relative change in volume along an orthogonal direction as
dV = (1/2)y"d~yap. Eq. (2.16) allows for the definition of the modulus of hydrostatic
compression K that measures the brane response to variations in volume such that

1 oV 1
€= (ap)T TR (217

Further elastic properties can be highlighted by using the first law of thermodynamics for
the fluid de = Tds and defining the solid density p = € + P = —\{(k)k which along the
directions ®* expresses the first law of thermodynamics for an elastic membrane that has

been subject to hydrostatic compression dp = Tds—PdV [21]. To every fluid membrane one
can also assign an elasticity tensor that measures the deformation of the stress-energy ten-
sor (2.10) due to surface deformations. In order to see this precisely one performs a small de-
formation of the equations of motion (2.8) along the vector ®¢. To this aim, one requires the
deformation of the extrinsic curvature tensor along orthogonal directions (see appendix A),

61 K" =n'y Vo (LFVi(®InY;)) — Ripg;® — Koo K @7 (2.18)

where R, ), is the Riemann curvature tensor of the background geometry. Using this
transformation rule, an infinitesimal deformation of eq. (2.8) yields

EYUK 3 Ko 5 4+ T,V Vi (®Inh)) = TR 43,07 (2.19)

3This is the usual definition of Lagrangian strain [60] but now including the timelike direction as well.



where we have defined the elasticity tensor for fluid branes E%°@ through the Hookean
relation dT% = E%®4dU,,, which for systems of the type (2.2) takes the general form [21]

920 (K) 9270 (k)
[abed _ o k a(cd)b 0 cd _ 9 ) 2.9
</\0( e M ) Vab0Ved (2.20)

The structure of (2.20) is that of a material characterized by a varying modulus of compres-
sion. The case of Dirac-branes is obtained when Ag(k) is constant and the two last terms
vanish. The fact that the elasticity tensor is only probing compression and stretching is be-
cause we are working in the limit in which the fluid is confined to an infinitely thin surface as
it will become clear in section 3. We note that the linearized equation (2.19) has been previ-
ously obtained by Carter in [37], here we merely applied it to a fluid brane. It is interesting
to note that eq. (2.19) already encodes some of the structure of the equations of motion
when bending effects are taken into account. The reason for this is explained in section 3.

The free energy interpretation. The Oth order action (2.2) can be interpreted as
the free energy of the fluid-elastic system [19, 55]. After identifying the stress-energy
tensor (2.10) with that of a perfect fluid, then by defining the local Gibbs free energy
density G and using (2.11) one obtains

G=c—Ts= (k). (2.21)

Wick rotating the integral over the worldvolume of the density G and integrating over
the time circle of radius = 1/T we obtain the total free energy F' of the system (2.2).
This interpretation can also be realized at the level of the global charges. First note
that the first term in the variational principle (2.4) is a total divergence term. For the
action (2.2) to be invariant under an infinitesimal shift of worldvolume coordinates along
a worldvolume Killing vector field, one must have that

Va (T“bkb> =0, (2.22)

This is satisfied due to the Killing equation and the symmetry of T7%. The set of surface
currents 7%k, is conserved and with those it is possible to construct a set of conserved
surface charges (mass and angular momenta) of the form

M= | dVy,T"n.&, J@=- / Vi) Tnaxs” . (2.23)
By By

In writing these expressions we have assumed that the worldvolume timelike Killing vector
field £€%9, = 9,, whose norm is the redshift factor Ry, is hypersurface orthogonal with
respect to Wpyi1. Further, we have introduced the spatial measure dV{;,) on the worldvol-
ume, a unit normal vector n® = £*/ Ry orthogonal to spacelike slices of W, and defined
the rotational Killing vector fields in (2.1) as x(*8, = 9ya. In section 3 we will show that
this set of surface charges is indeed the set of global conserved charges associated with the
fluid brane. Using the definition of the local entropy density (2.12) it is straightforward
to construct the global entropy of the system from the entropy current J¢ = su®:

S=- / dVip) T - (2.24)
B

P



Having defined the charges (2.23) and the global entropy it is possible to verify that
F=M- Q(a)J(a) — TS, where BF = Ig and Ig = —1I is the Wick rotated (Euclidean)
action. Hence the variational principle dF = 0 with fixed Q2(® and global temperature T,
requires the first law of thermodynamics to be satisfied [19, 55]:

dM = QWdJ ) +TdS . (2.25)

2.2 General framework for higher order corrections

We will now show how some of the ideas of the previous section can be pushed to second
order in a derivative expansion. The general method, following [46, 51] , consists in
adding all possible scalars constructed out of derivatives of worldvolume quantities to
the action (2.2). We will split the type of corrections that can be supplemented to the
action in three parts. Hydrodynamic corrections are those which only involve derivatives
of fields that characterize the intrinsic geometry of the brane. These are, for example,
terms proportional to VK, V[akb], to the worldvolume Riemann tensor R,p.q or to the
tangential projection of the background Riemann tensor Rg..q. Elastic corrections, on
the other hand, are scalars proportional to the extrinsic curvature tensor K,;'. Note that
by (2.3) or (2.14), the extrinsic curvature tensor is a one-derivative term along transverse
directions to the worldvolume. Finally, spin corrections are corrections proportional to
the extrinsic twist potential w,* , which is also a one-derivative term. This means that we
will consider a generic action of the form

X = [ LWk Vs Kot (2.26)
Wp+l

Since the Killing vectors k are held constant during the variation, variations of (2.26)

can be analyzed solely through variations of the metric 7., the extrinsic curvature tensor

K" and the extrinsic twist potential w,”. For this purpose, we define the dipole moment

D%; and the spin current §%; of the fluid-elastic system as?

1 oL 1 6L
ab a
\/7 —v 0K abz J v Y &Ua” ( 7)

To study small deformations of the geometry (2.26) along both tangential and orthogonal
directions to the worldvolume it is required the knowledge of the variation of K, as well
as of w," along these directions. Using (2.18) for the transverse variations of Ka', we
have that for the tangential variations

8 Kap' = 01’ )V Koy + 2K,/ Vi) @, (2.28)
while for the extrinsic twist potential we have that (see appendix A)

8wa = 0’ I \ B Ve + w7V, @0 — 2K 7] VO (®Fn, ) + R, 08 (2.29)

4The reason for the interpretation of the quantities (2.27) as the dipole moment and spin current will
become clear in section 3.



where w,* = n\nfjw,. Using the transformation rules (2.18), (2.28) and (2.29), the
total variation of (2.26) takes the form
6[:/ M[va (T“b@, + D“Cichiéb—@ini“VbD“bH+Dabuqu>“+8““wb”<bb—28binbai<I>j)
Wpt1

+ P, (—VaTab F D,V K, — 2V, (D“C,L-K”j) — 80— wbp*vas“m) (230)
+ o, (—T“”Kab" 0, VeV, D™ £ DRy 20,V (S“PjKa”j) + Saij"akj) ] ,

where we have used the definition of the outer curvature Q4" (see appendix A). As in the
Oth order case (2.4), the variation yields a total divergence which can be integrated to a
boundary term. However note that any component of the form V,®* is not independent
on the brane boundary, indeed one can decompose it such that V,®* = nn*V,®* +
0V, ®*, where v,% are boundary coordinate vectors and the indices @, 3, ... label boundary
directions. The normal component to the brane boundary n*V,®* is independent but
0,7V, ®* is not. Hence, assuming that the variations ®* vanish on the boundary of the
brane boundary itself (if existing), a well defined variational principle requires

D namplow,s =0, S™nalow,,, =0, (2.31)
[Va (D“bin”mavbd) — Na (T“bub“ + DaCichiub“ — L”pVbDabp + 27’Lu‘j8bjiKbai):| |8Wp+1: 0.

Further, the second term in (2.30) yields a set of non-trivial identities that must vanish.
With the help of the Codazzi-Mainardi equation

Rlpa =n'p (VKo — VaKa’) | (2.32)
and the Ricci integrability condition [38, 61]
Rap? = Qup — Koo' Kb + Kp' Ko (2.33)
it can be brought to the form
VT —u,"V, VD 4 28% Koo K* = DRV i + SRV 415 — WPV, 8%; . (2.34)

In sections 2.4 and 2.5 we will give a few examples of how this equation is satisfied for the
actions we consider. Eq. (2.34) can be seen as the modified intrinsic dynamics of eq. (2.7).
The reader may wonder if there is another definition of the stress-energy tensor for which
eq. (2.34) would just express its conservation. Indeed in section 3 we will show that it is
possible to define the linear momentum which is always conserved in flat space. Finally,
the variational principle 61 [X#] = 0 yields the non-trivial equation of motion:

T Ko’ = 0, Va VD™ = 20,9, (S K™ ) + D™ R gy + S™ Rigg . (2.35)

This is of course the modified version of the equation of motion (2.8) due to the presence
of dipole D™ and spinning 8% effects and, in fact, it is the generalization to arbitrary
co-dimension and to curved backgrounds of the classical equation of motion of a deformed
thin membrane when bending effects and rotation in transverse directions are taken into
account. To see this precisely, let us focus on a flat background and consider the well

,10,



studied case of the Helfrich-Canham bending energy (1.1) for co-dimension-1 surfaces in
the absence of spinning effects, that is, §%; = 0. In this case, as we will show below, we
have D% = 207K’ where K' = v® K, is the mean extrinsic curvature vector. The
equation of motion (2.35) can then be rewritten as

—2aVIX 4+ PP, =0, (2.36)

with P = T 120K, K* and where V* is the square of the Laplacian, or the biharmonic
operator usually found in classical elasticity theory [59].° Therefore, the theory described
by egs. (2.31)—(2.35) is a general relativistic generalization of classical elastodynamics of
thin membranes.

It is also possible to construct surface currents and charges associated with the
systems (2.26), however, since there are subtleties that can only be resolved when relating
this approach to a multipole expansion of the stress-energy tensor, we will leave that for
section 3. On the other hand, the construction of the global entropy and entropy current
as in (2.24) to second order in the derivative expansion will be lacking in this work as
it has not been developed for the systems we consider. Such endeavor is possible to
accomplish and it will be presented in a future publication [62].

For now, we will study the different contributions that can arise at each order in
the derivative expansion. To each term involving one derivative we associate it with the
expansion parameter €. Two-derivative terms are of order O (62). For clarity of explana-
tion, we decompose the possible corrections to the intrinsic stress-energy tensor 7% into
hydrodynamic I1%, elastic 7% and spin ©% contributions such that

T = T() + 1 + 7 + 6 . (2.37)

The higher order corrections I1%, 7% ©% as well as the dipole moment D" and the spin
current §%; will be the sum of the contributions from the different scalars that can be
added to the action (2.26). Generically,

Hab _ Zﬂgb, 7_ab _ Z:Tgb7 @ab _ Z ng’ Dabi _ Zpgbi7 Saij _ ngij ) (238)

Note however that the hydrodynamic corrections do not contribute to the dipole moment
D% neither to the spin current S% by virtue of the definition (2.27).

2.3 1st order action

To 1st order in the derivative expansion the only possible terms that can be added are of
hydrodynamic nature. This would be terms of the form:

K'Vok, V.k®. (2.39)

However these terms vanish because k® is a Killing vector field. This is in agreement with
the analysis of [46, 51] for both stationary and non-dissipative fluids. Indeed, for a generic

®Note that in classical elasticity theory P’ is conserved while here, due to eq. (2.34) it is not. However,
the tensor P = Py H — ni‘VaD“bi is conserved in flat space and P K,," = P**K,"'. Note also that

for co-dimension-1 surfaces, the extrinsic twist w,* vanishes.
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dissipative fluid the entropy current to first order in derivatives is proportional to the
square of the expansion # = V,u® and to the square of the shear 0®.% These two quantities
vanish for stationary flows. One may also consider extrinsic curvature corrections to 1st
order in derivatives but due to the transverse index in Kabi, any scalar built of the extrinsic
curvature needs to be contracted with another copy of itself. Therefore, extrinsic curvature
corrections only enter to second order in the derivative expansion. The same argument
holds for terms proportional to the extrinsic twist potential.” This is in agreement with
the results obtained from gravity for the leading order corrections to thin black rings [17]
and blackfolds [16] for co-dimension surfaces higher than three for which a system of the
type (2.26) is supposed to be the correct description [5]. An exception to this argument
of absence of extrinsic corrections to first order is the case of co-dimension-1 surfaces
where we can simply omit the transverse index from K. These cases will be dealt with
in section 2.7. All in all, for surfaces of co-dimension greater than one we conclude that
there are no corrections to first order in the derivative expansion.

2.4 2nd order elastic corrections

To second order in the derivative expansion, focusing on the elastic corrections, we can
add a total of 5 different terms to the action (2.26) which are quadratic in the extrinsic
curvature. These terms are of the following form:

ME) KK, XK K" Kepi, As(k)kK Koo K%,
(2.40)
MKy Ky, s (k) kKK g Ko

The first term in (2.40) is the generalization of the Helfrich-Canham bending energy (1.1)
for surfaces of arbitrary co-dimension and for a non-trivial response coefficient (k). The
first two terms in (2.40) for the case in which both A;(k) and Aa(k) are constant build
up Carter’s model of stiff strings and branes [36] and have also been extensively studied
by Guven [38, 63]. The other three terms have not been considered previously in the
literature and they constitute the generalization of the Helfrich-Canham bending energy for
stationary fluid (mem)-branes. However, the last two terms in (2.40) are not independent
and can be removed by a change of basis and a field redefinition as it will be explained in
section 3.2. Nevertheless, we consider their contribution as it will be convenient for later
comparison with gravity results in section 4. We note that the reason why the second term
in (2.40) was not necessary to be added to the action of cellular membranes is that the
first two terms are coupled to each other and in certain conditions, such as in flat space,
they can be shown to be equivalent. We will explain this in detail in section 2.6 when

5The shear tensor is defined as 0% = pPcp¥d (V(Cud) - %'ch), where P is the projector along trans-

verse directions to the fluid flows and defined as P®® = v 4+ u%u®.

"If we considered terms constructed from the Levi-Civita symbol then it would be possible to add a term
of the form kaeijwaij . However, even though these are not considered in this paper, they are of physical
interest, as they may be useful in the description of spinning black holes (see section 5).
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we study the coupling between modes. Decomposing each scalar in (2.40) as Ay (k)Lq, we
summarize below the contributions of each term to 7% and D8

Scalar Tab pabi
A1 (K) Ly A (K) L1y — N (K)kLiutub — 4h (k) K K 21 (k)Y K
A(K)La | Aa(k)Lar®™ — No(k)kLou®ul — 4do (k) K K, 22 (k) KV
Xs(K)Ls | As(k)L37® — Ny(k)kLsu®u® — 223 (k) kKK Ky’ 23 (K)kk KD,
M(k)La | A(k)Lay®® = Ny(k)kLau®ub — 224 (KKK K Keg' | Aa(k)K*KP K" 4+ M\ (k)v*Pkk? K o'
s (k) Ls s (k) L7 — N (k)kLsu®ub 225 (k) k Kk kk? K
We see that 7% is the sum of a total of 5 contributions 7% = 22:1 720 and contains a

perfect fluid part (see (2.10)) and an elastic part. When 7% is added to the Oth order contri-
bution (2.10) we decompose it into the total perfect fluid part 7% and elastic part such that

Tab _ T(%b) + 7_(JLb _ Tab + E(acdeKdeiKb)Ci ’ (241)
where the elastic deformation to the worldvolume stress-energy tensor £%°? has the form
gabed — _9 (2A1(k)7ab¢d + 220 (K)Y 4% + A3 (k)7 KPke + >\4(k)fy“bkckd> . (2.42)

Rewriting the Oth order contribution (2.2) as A\g(k)Lo with £p = 1 and using the
identification (2.11), the total fluid part 7 can be written as

T =Py 4+ (£ + P)uu’, (2.43)
where
5 5
P=> AE®Lle, E+P==> MN,(KKL,. (2.44)
a=0 a=0

Indeed, the quantity defined above as the modified pressure P is nothing more than
the sum of all scalar contributions, that is, the Oth order scalar (2.2) plus the 2nd
order ones (2.40). The dipole moment D™ is also the sum of 5 different contributions
Dabi = 25 D% and can be put into the elegant form

a=1
Dabi — yabchcdi , (245)

where we have defined the Young modulus of the fluid brane as

A
yabcd —9 (Al'yab'}/Cd n A27a<c’7d)b + )\3k(a’yb)<ckd> + 74 (’Yabkckd +"/Cdkakb) + >\5kakbkckd) ] (246)

Here we have omitted the dependence of the response coefficients A\, on k. The Young mod-
ulus (2.46) is the physical quantity that encodes all the possible responses of stationary fluid
branes to bending deformations. Furthermore, it exhibits all the symmetries of the usual
elasticity tensor of a classical anisotropic crystal Yabed = Ylab)(ed) — yedab A we will see

8Note that elastic corrections do not contribute to the spin current S%;;.
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in section 4, the Young modulus measured from gravity for bent black branes is a particular
case of (2.46). Given the structures (2.45)—(2.46) and the identification (2.11) we present
two useful and equivalent rewritings of the action (2.26) including only elastic corrections:

1 , 1 .

IX"= V= (P(k) + 217@%1@#) = V= (P(k) + 2yabchabichl)(2.47)
Wp+1 Wo+1

In section 4, we will study an example of this action. However we note that this action

is exactly the type of action expected for the bending of thin membranes from classical

elasticity theory [59], here we have presented a relativistic generalization of it.

Vanishing of the intrinsic equation of motion. In section 2.2 we mentioned that the
intrinsic equation of motion (2.34) resulted in mere non-trivial identities for the actions we
consider. One can verify that this is indeed the case for all corrections presented in the table
above. Here we will just present two examples of how this is done. For the contribution
A1(k), when introducing 7{* and D§* into eq. (2.34) a part of the stress-energy tensor is
conserved due to (2.13), the remaining part is brought to the form

21 (k) K (vai - vaKabi) = 22 (k)Y K R gic . (2.48)

Using the Codazzi-Mainardi equation (2.32), the Lh.s. of the equation above can be seen
to be equivalent to the r.h.s.. In fact, for the terms Aj(k) and A2(k) one only needs to
use (2.13) and (2.32) to show the identity (2.34). We now take the case of the term A5 (k).
After using eqgs.(2.13) and (2.32) we are left with

A5 (K)KKK K g K e VK + A5 ()Y, (kckdkeKedichO =0. (2.49)

Now we need to remember that the Lie derivative along any worldvolume Killing vector
field of any worldvolume tensor must vanish, that is,

£re <kckdkeKedich,~> — XV, (kadkeKedichi) kKKK g K e VK = 0 . (2.50)

When eq. (2.50) is used, eq. (2.49) is trivially satisfied. This fact, together with the Killing
equation, is enough to verify the identity (2.34) for the terms A\3(k) and A4 (k).
2.5 2nd order spin corrections

Spin corrections to O (82) in the derivative expansion are the terms that can be added to
the action which are quadratic in the extrinsic twist potential. These do not contribute
to the dipole moment D!, Therefore, ignoring terms constructed from the Levi-Civita
symbol, we can add two different scalars to the action

wl(k)kakbwaijwbij. w2(k)waijwaij, (2.51)

Denoting each term by w,(k)W, we summarize below their contribution to the stress
energy tensor ©% and to the spin current S%J:
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Scalar @gb Sa

w1 (k)W w1 (kK)Woy® — o (k) kWoulub 201 (k) kkPwy

@ (kK)Ws | wa(k)Wiy® — @l (k) kW utu® — 2009 (k)w@w?; 2009 (k)w

The stress-energy tensor of these contributions contains a perfect fluid part that can be
incorporated in the total pressure defined in (2.44). Defining a spin deformation tensor of
the form

S = 20 (K)kK® + 2w, (k)v? (2.52)

the action (2.26) including only the Oth order contribution (2.2) and spin corrections can
be written in two useful ways:

1= [ (Page st )= [ v (P09 gt - 250

Wp41 W1

We will see however that the term wo (k) is not a desirable one in a physical theory.

Vanishing of the conservation equations. As in section 2.4 the vanishing of the con-
servation equation (2.34) can be shown by following the same steps as in the previous section
together with the definition of the outer curvature (see appendix A) and the Ricci integra-
bility condition (2.33). However, there is a subtlety in this demonstration. For the scalar
w1 (k)Wi, one can show that the last term in eq. (2.34) vanishes independently, that is,

ni ,n? \V,Si =0, (2.54)

a result that follows from the fact that £y (kbwbij ) = kanipnj AV, (kbwa"\) = 0. However,
even though the scalar wq(k)Ws satisfies (2.34), it does not satisfy (2.54) individually.
Eq. (2.54) expresses conservation of angular momenta in transverse directions to the
worldvolume, as we will see in section 3. Therefore the term wa(k)Ws is explicitly
violating this conservation.

2.6 2nd order hydrodynamic corrections and mode coupling

In this section we examine the possible 2nd order hydrodynamic corrections to the ac-
tion (2.26) and the stress-energy tensor 7% as well as the coupling between these modes and
the ones found in the previous sections. For all these corrections the dipole moment D%’
vanishes. There are 7 types of scalars that can be constructed from the intrinsic geometry:?

vi(K)VeVk, va)R, v3(k)kk" R, (2.55)
Vs (k) Vi ky VK, 05(k)VokVk, vg(k)R%.", vr(k)k" k"R .

“Remember that since we are dealing with stationary flows both the expansion 6 and shear ¢ are zero
and hence any term proportional to these vanishes. These are, however, non-zero for generic non-dissipative
flows [51]. Further, the reader may wonder why we have not considered couplings of the form R™;; or
contractions with R?4. The reason is that these terms are not well defined on the worldvolume and are
related to geometric quantities with support on the transverse space. See [64] for a setting in which these
terms play a role.
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Here we have introduced the Ricci tensor R4, and Ricci scalar R of the worldvolume
geometry. The terms vg(k) and vy(k) can be related to some of the other hydrodynamic
terms and to the elastic modes in (2.40) through the Gauss-Codazzi equation as we will
explain below. This of course expresses the extra difficulty of the problem compared to [46,
51] since not only couplings to the worldvolume geometry need to be considered, but also
couplings to the background geometry. Further, the terms vy (k), vs(k), va(k) and vs(k) are
not independent of each other and are related by on-shell equivalences. To see this note that

V=r03(K)kk"Rap = — V=r03(k) [Va, V] kK"
Yo+ Yo+t (2.56)
= [ Vus(k) (VekVk + KV, Vk - Vi ky VIR )
Wo+1
Moreover, the terms v1 (k) and vs(k) are directly related to each other, modulo a boundary

term, such that,

V=yu1(k)V, V% = — V=1 (k)V.kV?k + boundary term. (2.57)
Wp+1 Wp+1
Therefore, using eqs. (2.56)-(2.57) we can eliminate the terms vy(k) and vs(k) and only
consider the first three in (2.55).1 The scalars (2.55) yield boundary contributions that
were not included in the general analysis of (2.30). For this reason we have prepared
appendix B where these issues are clarified.

In order to perform orthogonal variations of (2.55) it is only necessary to know how
the worldvolume Christoffel symbols ~,,¢ vary with respect to the induced metric (see
appendix A). Denoting each term by v,(k)V,, we summarize below the contribution of
each of these 3 relevant hydrodynamic terms to the stress-energy tensor I1°:

Scalar et

v1(K)V1y? — vl (K)kViuu® — 4V, (v1 (k) Vk) — ku®u’ V.V (k) — 201 (k) V*Vk +

v1(k)V1 oy (@ (U1 (k)Vb)k)

va(k)Va Vo (K)Vay® — v (k)kVouub — 205 (k)R + 2V VP03 (k) — 27%°V . V°u2 (k)

v3(k) Vv — v (k)kVsu®u® — V.V (vs(k)k“k") +7*° V.V (vs(k)k°k?) —

PAVAYC (vg(k)kb>kc)

Looking at the table above, we see that again there are contributions of the perfect fluid
form which can be included in the definition of P and £ in (2.44), and other new contri-
butions which are second order in derivatives of the intrinsic variables. It is also possible
to show that all such contributions satisfy the identity (2.34). The only necessary ingre-
dients to show this are eq. (2.13), the Codazzi-Mainardi equation (2.32), the fact that the
worldvolume Einstein tensor is divergenceless V,G% = V, (R® — (1/2)y*R) = 0 and
stationarity of the overall configuration.

'OThis is exactly the same type of analysis as in [51] but now applied to a submanifold embedded in a
background space-time.

,16,



Coupling between elastic and hydrodynamic modes. Here we study the coupling
between the elastic modes (2.40) and the hydrodynamic modes (2.55). The most important
piece of knowledge is the Gauss-Codazzi equation [61],

Rabcd = Rabcd - KaciKbdi + KadiKbci . (258)

relating the intrinsic geometry to the extrinsic geometry. We begin by contracting (2.58)
with the induced metric 4%, this leads to

f)/bdRabcd = Rac - KaciKi + KabiKbci . (259)

If further contracted with k“k®, this equation expresses the coupling between the hy-
drodynamic terms vz(k),v7(k) and the two elastic contributions Az(k), As(k). Indeed we
can see why we can eliminate v7(k) in favor of the other three terms. Hence, if YR obed
is non-zero, only 2 of these 4 terms can be regarded as independent,'! while if R,. or
Y9 Rupeq is vanishing, only 1 of the 3 remaining terms can be regarded as independent.
However, if both the background and the worldvolume are flat, the two elastic terms left
are exactly equivalent to each other and hence both can be gauged away as explained in
section 3.2. If we now contract (2.59) with v%¢ we obtain

VY Rapeg = R — K'Ki + K Kap' . (2.60)

This equation, in turn, expresses the coupling between the hydrodynamic terms
v1(k), vg(k) and the two elastic constributions Aj(k), A2(k). Therefore, if the background
is curved, only 3 of these 4 terms can be regarded as independent and again, if R%,” or
‘R vanish, only 2 of the 3 remaining terms are independent. If both the background and
the worldvolume are flat only 1 of the 2 elastic contributions is independent. For the
fluid membranes studied in theoretical biology for which the Helfrich-Canham bending
energy (1.1) was crucial to understand, the term vy (k) = constant, even though entering
at the same order in derivatives, is not added to the action as it is a purely topological
invariant. Moreover, in flat space, and since the two elastic contributions A;(k) and
A2(k) are coupled through the relation (2.58), there was no need to consider Az(k) in
describing red blood cells. On the other hand, the hydrodynamic contribution v (k) is
independent and can be excited without exciting the remaining ones. Furthermore, the
spin modes (2.51) are decoupled from the hydrodynamic and elastic modes to order O (52).

Summarizing our results, for surfaces of co-dimension greater than one, if the back-
ground and the worldvolume are curved, the fluid-elastic system (2.26) admits a 7 pa-
rameter family of stationary fluid branes.'?> On the other hand, if either the background
or the worldvolume are flat, there exists a 5 parameter family of stationary fluid branes.
Finally, if both the background and the worldvolume are flat, there exists a 3 parameter

"Note that the elastic contribution proportional to A4(k) can be gauged away as it will be explained in
section 3.2.

12We are taking into account the contribution oo (k) but not ws(k) since the latter is pathological (see
section 2.5). We are also not taking into account the contributions A4 (k) and A5 (k) since it can be removed
by a change of basis, see section 3.2.
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family described by the response coefficients A (k), @i (k), vi(k). The presence of elastic
degrees freedom introduces further non-trivial response coefficients than those analyzed
in [46, 47, 51] for both stationary and non-dissipative space-filling fluid flows.

2.7 Fluid membranes and co-dimension-1 surfaces

As mentioned in section 2.3, in the case of co-dimension-1 surfaces there are non-trivial
elastic corrections to 1st order in the derivative expansion. Since the transverse space is
only 1-dimensional, the extrinsic curvature tensor can be written as K aLb = Kg. We omit
the transverse index and only use it if necessary. For this reason, there are two non-trivial
and independent elastic contributions to 1st order in derivatives

91(K)K, 99(k)k kP K. (2.61)

These terms contribute to 7% and Dt while the equations of motion (2.31)-(2.35)
remain the same but have only one component along the transverse space. The first
term in (2.61) had been previously considered in the literature [38] but it does not
play a role in real fluid membranes since the mean extrinsic curvature is required to
be kept constant due to experimental constraints, that is, the variation of (2.26) must
be supplemented with local constraints [39]. The second term in (2.61) has not been
previously considered in the literature and is accounting for the fact that the fluid may
be rotating. However, it can be removed by a change of basis as it will be explained in
section 3.2. Nevertheless, we consider its contribution. Denoting each scalar in (2.61) by
Y4 (k)C, and their contributions to 7% as 7%°, we summarize the results below:

als ~ab ab L
Scalar TS DY

D (K)Cy | 91(K)Crye — 9 (K)kCruub — 201 (K)K® | 9 (k)y

V2 (k)Co ¥2(k)Coy™ — 9 (k) kCouu® V9 (k)kk®

As one can see, there is a total contribution to the pressure and energy densities defined
in (2.44). Summing up the two different contributions to the dipole moment, one concludes
that for co-dimension-1 surfaces, it is necessary to add to the action composed of the
terms (2.40) and (2.55) a 1st order contribution of the form

T = [ v (0 kR ) K = [V DK (262)

Wr+1

Here, Dj"_b itself measures the most general response of a stationary fluid brane due to a
1st order bending. To second order there is also another set of contributions that can be
added to the action which mix the fluid and elastic behavior.'® These are

V3 (k)UK KV, Kpe, 94(K)K°V K%, 95(k)kV, K, (2.63)
Pe(k)k* K, Vipk, 97(k)v* k" R* 4 .

13The extrinsic twist potential does not play a role in co-dimension-1 surfaces since it vanishes.
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However, the term 15(k) vanishes since k* is a Killing vector field while the contributions
Y4(k) and ¥6(k) can be related to the term ¥3(k) by on-shell equivalences as in eq. (2.57).
Furthermore, the last contribution 9¥7(k) can be related to two other terms as we will
explain below. It is then only sufficient to consider the first contribution in (2.63). For
this we need new machinery. For simplicity, we examine an action of the form:

I[XH] = /W [’(\/ - 77abakaavaKbc) . (264)
p+1

To study terms proportional to V,Kj. it is necessary to define a new moment D‘ibc of
quadrupole nature:

abe 1 oL
L VLK

Using appendix A for the correct variations we find the modified intrinsic and extrinsic

(2.65)

dynamics of the fluid-elastic system:

VT + 3V,DV Kb, 4+ 2DV Y, Kb, = 2D R 3, K. + V, DRL " | (2.66)

TR, — <3vaDabC + 2van“C) KpgK4 + 2V, DK K9,
(2.67)
= 2D (Kaa VoK e 4 Kna Ve = Ky VaK":) = VoD Ry

The boundary conditions are summarized in appendix B. Inspecting eqgs. (2.66)—(2.67)
it is easy realized that it does not fall into the class described by the equations of
motion (2.34)—(2.35). Indeed, for this type of corrections to be properly accounted for,
it would be necessary to understand quadrupole corrections to brane actions in the spirit
of section 3. Below, we summarize the contributions to the stress-energy tensor and
corresponding quadrupole moment of the term ¥3(k):

Scalar Fab Dg’b‘i

«

93(K)Cs | 93(k)Csy™ — 9 (k)kCautub | 93(k)k kK

Therefore the only contribution to the quadrupole moment can be written as
D¢ = 953 (k)k*k’K® (2.68)

and encodes the most general response to corrections proportional to V,Kp. for co-
dimension-1 surfaces. Therefore, for co-dimension-1 surfaces, one needs to add to the
action (2.26), a 2nd order contribution of the form

Iy [XF] = / V=ADYV oKy - (2.69)
Wh+1

We end this section by noting that the terms J4(k), ¥5(k) and 7 (k) are coupled to each
other. To see this we contract (2.32) with 4%k’ in order to obtain:

YK RE e = KO (VoK — VoK) . (2.70)
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This is why we did not need to study the term ¥7(k) separately. Further note that
the term k’V,K vanishes since k® is a Killing vector field and hence if the background
Riemann tensor vanishes, so does the contribution of the term 9¥3(k) since it is related
by on-shell equivalences to the term ¥4(k). To summarize, the family of curved fluid
branes of co-dimension-1 embedded in a curved background is parametrized by a total of
8 independent response coefficients.

Two-dimensional fluid membranes. Here we perform a counting of the independent
parameters of two-dimensional stationary fluid membranes of co-dimension-1 in a flat back-
ground. This particular case is of general interest as it accounts for the response coefficients
of two-dimensional spatial surfaces of cellular membranes embedded in three-dimensional
Euclidean space. For two-dimensional surfaces, the induced Riemann curvature tensor is
characterized entirely by the worldvolume Ricci scalar such that

R
Rabed = 5 (YacYbd — YadVoe) (2.71)

which implies in particular that Ry, = (1/2)R~ap. This in turn implies that the hydrody-
namic term vs (k)k“kbRab is redundant and can be expressed in terms of the contribution
v2(k)R in (2.55). Furthermore, we have that for two-dimensional surfaces without bound-
aries the Gaussian energy for constant vq(k) yields

/AdAvg(k) R =8rag(l —g), (2.72)

where ¢ is the genus of the surface and va(k) = a¢ for constant ag [39]. In such cases the
term vy (k)R is purely topological and need not be considered in the effective action. This
is the reason why the contribution vy (k)R is not considered in the effective action of fluid
membranes [39] neither, for example, when considering finite thickness corrections to the
string action [33, 34]. In such situations, the effective action, due to the Gauss-Codazzi
equation (2.58), is only described by the response coefficients A;(k), vi(k), ¥i(k). For
non-trivial response coefficient va(k), the Gaussian energy (2.72) is not necessarily a
topological invariant and needs to be considered in the effective action. In this case,
the family of stationary fluid membranes is characterized by the response coefficients

Al(k)7 )‘Q(k)v >\3(k)7 Ul(k)a ﬂl(k)

3 Multipole expansion as derivative corrections

In this section we establish a relation between the action formalism of section 2.2 and a
multipole expansion of the stress-energy tensor for curved branes. This expansion, to pole-
dipole order, is sufficient to capture all the corrections studied in sections 2.4-2.6 but not
enough to capture the quadrupole corrections studied in section 2.7. Here, we focus on the
pole-dipole order and leave the extension to pole-quadrupole order for future work. The
relation between this expansion and the corrections of the previous sections is particularly
useful as it gives physical meaning to the corrections themselves and it allows to establish
a precise link between gravity and the effective description of fluid branes.
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3.1 Equations of motion

The multipole expansion consists in expanding the stress-energy tensor of a curved brane
in a Dirac-delta series, in the same spirit as in electromagnetism the electric current is
expanded in order to describe finite thickness dielectric effects [43]:
D/ .« af __a D/ .« af _a

T“”(x“):/wpf“aﬁ <B“”(U“)w v, (BW(U‘Z)W) +.. ) (3.1)
The stress-energy tensor (3.1) is symmetric, since it should be coupled to gravity, which
implies B* = BW) a5 well as B*? = B(H)P. The structure B is a monopole source of
stress-energy while the structure B*? is a dipole source and encodes the finite thickness
effects. Introducing higher order structures in the expansion (3.1) results in higher order
moments such as the quadrupole moment. Further, to each structure in the expansion we
associate an order parameter € such that B* = O (1) and B*"? = O (£). More impor-
tantly, note that the expansion parameter € is not the same as the expansion parameter ¢
introduced in section 2 with the purpose of keeping track of the derivative expansion. For
example, in the case of the hydrodynamic expansion for unbent black branes [12-15], one
can iteratively correct the metric to arbitrary order in e while still being at order O (1) in
€. However, if the deformations of black branes involve strains along transverse directions
to the worldvolume the corrections will be encoded in B**? [5, 6, 16], as well as in higher
order structures, inducing a multipole expansion in €. In particular, corrections propor-
tional to one copy of the extrinsic curvature are encoded in B**P. Note, however, that if
BMP contains a one-derivative term, then the worldvolume effective theory that it gives
rise to is of order O (52). This means, for example, that deformations of black branes can
acquire dipole moments B*P to order O () without affecting the effective theory to that
same order. This is due to the fact that the covariant derivative in (3.1) is acting on B*¥7.
This digression will become clearer as we progress in this section.

The equations of motion for an object characterized by a stress-energy tensor of the

form (3.1) can be obtained at the probe level, and in the absence of other external back-
ground fields, by solving the conservation equation

vV, T =0, (3.2)

using the methods described in [43]. To express these equations in a nice form it is
useful to decompose the structure B*? into tangential and orthogonal constituents to the
worldvolume B*¥P = 2u(“bBi)pb + u“au”bBiab with B(fy)a = Bﬁ[ab} = 0" and to introduce

the variables!®

Sra — BV + u[“bBi]ab, NHYa — u(“bBi)ba , m™ =B —u",u’\V.N".  (3.3)

The symbol L here means that the space-time indices of the tensor are transverse to the worldvolume.
For example, fy’\pBi“b =0.

5Here we have gauged away the parallel components u”, B*** since by the ‘extra symmetry 1’ [43] they
can be gauged away everywhere on the worldvolume. On the boundary, these components may be non-zero
but if we assume the absence of extra sources on the boundary they vanish. In any case, this extra structure
can be trivially incorporated into our description by redefining B — B = B — u®,u’ A VB¢ and
adding an extra term to the boundary conditions [43].
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In terms of these, the equations of motion can be written as [43]

LAY VoS =0, (3.4)
V (m“bua“ — 2ub\V,5HN 4 u“cucpub)\vaS’))‘“> = S’\pcR"C)\p. (3.5)

Eq. (3.4) expresses the conservation of transverse angular momenta. In the point particle
case, these equations reduce to the ones derived by Papapetrou for spinning point
particles [44]. Egs. (3.4)—(3.5) must be supplemented by a similar decomposition of B*
as BH = BjL_V + 2u(“bBi)b + utqu’y B® , where the first two sets of coefficients are related
to the dipole structure via the relations [43]

BYY = LI\ 1V VN B ="\ 1F,V, (Skpb + Nkpb) : (3.6)

These relations imply that the only free coefficients in the theory are B® and B*P.
Eq. (3.5) can be rewritten in a simpler form. In order to do so, we decompose the term
inside the parenthesis on the l.h.s. into tangential and orthogonal parts to the worldvolume

and define a linear momentum tensor of the form6

PrE = <mab - uapub)\VCSp)‘C> utqu”y + 2')/”pL“>\VCSp)‘C. (3.7)

The linear momentum (3.7) is not necessarily symmetric. Further, it is tangential in its
first index but not in its second, that is, 17, P”* = 0. Using this definition, the equation
of motion (3.5) can be recast a la Carter'™ [37]:

Y VAP = SMR (3.8)

where the term on the r.h.s. can be seen as a force F* = S’V’CR“C)\p acting on the
worldvolume due to the coupling to the background Riemann tensor. Moreover, note
that when the Riemann curvature tensor vanishes, the linear momentum P*” is conserved
along the surface. The set of egs. (3.8) can be split into two sets by projecting along the
worldvolume directions with u® u and orthogonally to the worldvolume with n u» leading to,

VP — PUK®,; = SMRV.,, (3.9)
PR’ + VaP® +w,' PV = SR, . (3.10)
Here we have used the definitions P%® = u“VubMP” Hoand PY = ubl,ni,ﬂ?” k. These

equations are written in the same fashion as in the work of Guven et al. [63], however,
we have generalized it for pole-dipole branes and for curved backgrounds. Now note that
in the case of absence of dipole effects SM¢ = P% = 0, eqgs. (3.9)-(3.10) reduce to those
obtained to Oth order in the expansion (2.7)-(2.8) upon the identification B = T(%b) . The
space-time stress-energy tensor that gives rise to the worldvolume theory (2.7)—(2.8) is the
one given in (3.1) with B**? = 0. This is what is meant by the fluid being confined to an
infinitely thin surface since the stress-energy tensor TH is localized there to order @ (1).

16The reason for attributing the name of ‘linear momentum’ to (3.7) is explained in appendix A.
17This sentence should be pronounced with French accent.
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Before we understand the relation between the multipole expansion and the action
variations of the previous section, it is important to provide the boundary conditions that
arise from solving eq. (3.2). In terms of the linear momentum (3.7) these can be written as

SHnam oW,y =0, LFALY .8 alow,,, =0, (3.11)
[QVa <S“"“nav§> - prbu} low,1 = 0,

where we have used the definition of the boundary vectors introduced in section 2.2.

3.2 Relation to the action principle

To connect the results of the previous section with those of section 2 it is necessary to
clarify the physical meaning of the different components of the structure B#*?. This has
been done in [5] and we review it here. If we focus on flat space-time and on uniform p-
branes extended along all 2°, . . ., 2P directions we can evaluate the total angular momentum
on the transverse plane labelled by the indices p, v as:

T = /EdD_lx (Toﬂx” _ TOqu> = 2/5 Vi, B}, (3.12)

where X is a spatial slice of the background space-time. This leads to the introduction of
a spin current j% such that j* = 2B1"". Further, we can evaluate the worldvolume
dipole moment of the brane as

Do — /E 4D g Vg P — /B AV, B (3.13)
P

leading to the introduction of a worldvolume dipole density d**° = Bﬁab. This last one, as
we will see below, can be interpreted as the bending moment of the brane. Given these
definitions we can rewrite the tensors S¥* and N** introduced in (3.3) as

SHra ljam/ o dab[uuu}

5 b, NHwa — dab(,uuu)b ) (314)

We will now focus on different aspects that relate the multipole expansion (3.1) with the
action (2.26).

The dipole moment. Here we consider the case where the transverse angular mo-
menta (3.12) vanishes, that is, j**¥ = 0. In this case, the linear momentum (3.7) can
be written as

P = (T“b - dcbiK“m-) ul g’y 4+ u’y LP\V,d® (3.15)

where we have defined the symmetric tensor Tab — pab 4 oqlacifr b) ... With this, the

equations of motion (3.9)—(3.10) can be written as'®

vaTab — _ub#vavcdacu + ddCinacia (316)

'8 These equations have been previously obtained in [5] but in a different form.
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T®K ' = —n' Vo Vyd® — dY R . (3.17)

Comparing this with eqs. (2.34), (2.35) when the spin current vanishes, that is S%; = 0,
we find that both are equivalent upon identifying

j-vab _ Tab, dabi _ _Dabi ’ (318)

which in turn implies B% = T% — 2d(¢¢' K*) ;. The boundary conditions (3.11) and (2.31)
can also be seen to be equivalent upon the same identification. With this we have shown
that all corrections to brane actions quadratic in the extrinsic curvature can be accounted
for by a multipole expansion to pole-dipole order of the stress-energy tensor. Moreover,
the conservation equation (3.4) reduces to the integrability condition

A" KM =0. (3.19)

This condition is automatically satisfied for the actions we consider due to the form of D
given in (2.45). Indeed, the form of (2.45) is what is expected for the bending moment of
thin membranes [5, 59], an interpretation which is now justified due to eq. (3.13). In fact,
when a rod is bent, a varying concentration of matter across the transverse directions
induces a bending moment which is proportional to the Lagrangian strain (2.14) [5, 59].
Further, note that this analogy with classical elasticity is direct when one deals with

co-dimension-1 surfaces for which the transverse index in the extrinsic curvature can be
omitted [59].

The spin current. Now we consider the case for which the worldvolume dipole mo-
ment vanishes d*”® = 0 but the transverse momenta is non-zero. In this case, the linear
momentum (3.7) takes the form

P = Buk qu’y 4+ u’y L, K (3.20)
In turn, the intrinsic equation of motion (3.9) reads

1 g
V.B® = —ijaijszab” : (3.21)

while the extrinsic equation (3.10) takes the form [5]
ab i __ 7 - g rab 1 -akj i
BKuy' = =09y (K + 55 Rk (3.22)

Comparison of this last equation with eq. (2.35) when dipole effects are absent D = (
leads us to identify

B =19 9 — 959 (3.23)

This identification is sufficient for the intrinsic dynamics (2.34) and boundary condi-
tions (2.31) to match those given by eq. (3.21) and eq. (3.11) when eq. (3.4) is imposed. The
conservation equation (3.4) reduces instead to the conservation equation of the spin current

1
T ALY V™ = 0. (3.24)

— 24 —



This is the reason why we have discarded the term ws(k) in section 2.5 as it does not
satisfy this equation. Given this identification we have shown that corrections quadratic

119 can be accounted for by a multipole expansion of the

in the extrinsic twist potentia
stress-energy tensor and that these are interpreted as the fluid-elastic system acquiring
motion in transverse directions to the worldvolume by means of eq. (3.12). Both the
integrability condition (3.19) and the spin conservation equation (3.24) may be derived as
constraint equations from the action (2.26) in the spirit of [63]. We leave this exercise for

when we analyze in detail spinning corrections to black holes [62].

The ‘extra symmetry 2’. The stress-energy tensor (3.1), truncated to order &, enjoys
of a perturbative symmetry coined the ‘extra symmetry 2’ by the authors of [43] which
results from the freedom of shifting the worldvolume surface by a small amount, that is,

XM(o%) = XM (o) = XM(0) + & (07, (3.25)

where £ is an infinitesimal shift vector of order €. The interpretation of this symmetry
can be understood if one remembers that the expansion (3.1) delocalizes the stress-energy
tensor by giving the surface a finite thickness. Since the thickness is finite, the worldvolume
can be placed anywhere inside the surface [43]. This symmetry acts on the structures B*”
and B#P ag?0

03 BM = —BMu®,V & — 2BMITY)\ 2P

(3.26)
§yBHP = —BHVEP

and leaves the stress-energy tensor (3.1) invariant to order . Along worldvolume
directions, this transformation coincides with worlvolume reparametrizations?! but it is
non-trivial along transverse directions. To see this directly in the equations of motion we
separate the transformation into parallel and orthogonal parts such that & = &int; 4ut &%
Then, according to (3.26) we have that along orthogonal directions

53 m® =— (ucﬂmab—i—u(aumb)c) Ve (Enk) , 05d=—m®& | 6459 =0 (%) (3.27)

Further note that due to the identifications (3.18) and (3.23) the stress-energy tensor
T transforms as 027% = om® — mela Kb &0 = m®& K, Since the transformation
of 7% is of higher order it suffices to look at the equation of motion (3.17). Using the
transformation rule (3.27) together with (2.18)%2 it is straightforward to check that the
equation of motion (3.17) is invariant under the ‘extra symmetry 2’. This can also be
seen at the level of the action (2.47). In this case, note that m® can be replaced by T(%g
due to the identification (3.18) and (2.41). Therefore the variation of the dipole moment

9This also holds when the corrections are proportional to only one copy of the extrinsic twist potential.

?%Tn order to obtain this transformation rule from (3.1) one should use (2.3) and the fact that 9, B**” = 0
since B*"” is a function of 0 and not of the space-time coordinates. Further, note that any scalar or tensor
which is a function of the space-time coordinates does not transform under a shift of the worldvolume
surface. See ref. [43].

21This is true except at the boundary when extra boundary sources are present [43].

*2When using eq. (2.18), ®* should be replaced by &°.
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can be written as 62Ldabi = —T(%b)éi. This means that, by virtue of the definition of the
dipole moment (2.27) and the identification (3.18), a term of the form T(%b)é'iKabi must be

added to the action. Now, from the form of the action (2.47) it is necessary to know how
v—7P(k) transforms. Using eq. (2.3) this is simply

by (V=7P(k)) = ~THéiKa' - (3.28)

Clearly, due to the transformation rule (3.28) together with the transformation of dy d®”
the action (2.26) is invariant under the ‘extra symmetry 2’. Now consider the case in which
the expansion parameter € is controlled by the radius of curvature of the worldvolume.
In this case we can write &/(c%) = k(o) K" for some arbitrary function k(c®), leading to
65 d® = —T(%%l%(a“)’yCchdi. This means that the Young modulus (2.46) picks up a gauge
dependent part of the form

yabed — f(5%) (T(aob) Aol 4 T(cgl) ,yab>

B} (3.29)

=k(c?) (2)\0 (k)fy“bfy“l — Af)(k)k(uaubWCd + ucud’yab)> )
where we have used the explicit form of T(%b) given in eq. (2.10). This indicates that
the elastic contributions A;(k) and As(k) given in (2.40) pick up gauge dependent terms.
Similarly, for surfaces of non-vanishing mean extrinsic curvature, this can be understood as
the pressure P (k) picking up a dependence quadratic in the extrinsic curvature such that,

P(k) = P(k) = P(k) = Ty k(0") Kap Kea; - (3.30)

Thus, a natural choice of gauge is one for which the pressure P only depends on k.23
It is worth noting that since the variation of j% is of higher order, the equation of
motion (3.22) is not invariant under the ‘extra symmetry 2’. This in fact means that the
truncation d® = 0 of the pole-dipole equations (3.4)—(3.5) is not gauge invariant. To
make it gauge invariant one should add an extra d® term of the form d® = —mabei,
Relating this with the action (2.53) which accounts for spin corrections, it means that
one should in fact add a term of the form (1/ Q)yadeKabi «¢i in case of non-vanishing
mean extrinsic curvature or a term —d® K, generically. However, we can always choose
a gauge for which P is only dependent on k, which is the gauge choice leading to (3.22),
or equivalently, choose a gauge for which d** = 0.

Alternative basis for elastic modes and field redefinition. In section 2.4 we
mentioned that the two last terms in (2.40) were not independent of the remaining terms
which could be seen by choosing a different basis and a field redefinition. To see this
precisely let us define the Oth order elastic equation of motion (2.8) as E(io) = T(%b)Kabi,

where T(%b) is given in (2.10). Now note that due to the form of T(%b) we can rewrite the

ZNote that the inclusion of the hydrodynamic contributions (2.55) does not spoil the invariance of the
action (2.26) under the ‘extra symmetry 2’. This is because since these scalars only contribute to the
monopole stress-energy tensor, their variation is of order O (£%).
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two last contributions in (2.40) as

MKk KK K = Aa(k) f(K) (KK - Ao—l(k)sgo)Ki) : s
| ) | | . 3.31
A5 (KKK kKK 3 Kogi = As (k) f2 (k) (KK — 205 (W) &l K + AgZ(k)S(ZO)é‘(O)i> :

where we have defined f(k) = (Ao(k)k)/Ny(k). We see that these two terms can be
expressed in the basis K'K;, Sgo)Ki, 5?0)8(0)1». However, note that adding any term to
the action proportional to 5(10)8(0)2- will result in a set of equations of motion proportional
to 6'(’0) and hence vanish on-shell for any configuration. This means in fact that the term
proportional to As(k) in (3.31) is redundant. Additional terms added to the action of
the form SEO)Ki do not in general lead to trivial equations of motion as one can see by
considering the action

IX"] = V=1 6(k)Eg) K (3.32)
Wp+t1

Evaluating the monopole stress-energy tensor and dipole moment we obtain
Tob — ()\6(k)7“b - Ag(k)kuaub) Einy K — 206(K)Elgy K™ — Ns(K) B4 K, (3.33)

as well as D = Aﬁ(k)fy“bg(io) + Xo(k)T, (%b)K ¢, In the expression for the monopole stress-
energy tensor (3.33) we have used the definition of the elasticity tensor introduced in (2.20).
Now note that when these quantities are introduced in the equation of motion (2.35) with
8% = 0 all the terms proportional to S(io) vanish on-shell and we are left with the linearized
equation (2.19) with & = A\¢(k)K". Eq. (2.19) is non-trivial and not proportional to (o)
even in flat space and neither when Ag(k) or A\g(k) are constant. This means that the first
term in (3.31) cannot be removed by a change of basis. Furthermore, the action (3.32)
explains why the structure of eq. (2.19) already takes into account effects due to bending.
However, any contribution of the form (3.32) can be removed by a redefinition of the pres-
sure through the transformation (3.30) where & = k(6%) K’ = X\¢(k) K. Indeed, this gives
an interpretation of the ‘extra symmetry 2’ as a field redefinition of order O (€) since in fact
this transformation is defined by the redefinition of X#(c®) via (3.25). Concluding, both

terms written in (3.31) are not physical, neither is the contribution 92 (k) given in (2.61).

3.3 Construction of conserved charges

In this section we show how to construct conserved currents and charges for systems obeying
the pole-dipole equations of motion (3.4)—(3.5). We begin by using the technique developed
by Carter for geodynamic-type branes [36]. This consists in finding a conserved surface
current P/, by definition purely tangential 1*,P; = 0, such that

Y LVAPL =0. (3.34)

The surface charges constructed from such current would then be conserved charges of the
system. We will now show that the same type of ansatz as the one used by Carter can be
extended to a large class of pole-dipole branes. We take the surface current to be of the form

PL = PPk, + SV .k, | (3.35)
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for an arbitrary space-time Killing vector field k* and with 1*,X"#? = 0. Here we have
used the definition of the linear momentum (3.7). We now introduce the ansatz (3.35)
into eq. (3.34) and use eq. (3.8), leading to

Ky (S¥6ue + 59 ) R, + (P 4+ V) Wk, = 0, (3.36)

where we have used the fact that for any Killing vector field V,V k, = Rpu,,AkA. Looking
at the term proportional to the Riemann tensor, it seems that the correct choice of X¥#* is

SRR = GHPCyY (3.37)

as long as PV# = —v 2¢il ig satisfied. We now focus on the class of pole-dipole branes
for which the integrability condition (3.19) is satisfied. In this case, a simple exercise
using (3.7) allows one to show that

plvnl — vy glvile LHNLY V8700 = v, Slrle (3.38)

where we have used eq. (3.4) to eliminate the second term on the r.h.s. above.?* Hence, the
choice (3.37) leads to a conserved surface current of the form (3.35). For the case derived
by Carter in [36], where j*** = 0, we have that ¥"#/ = —d"**. Furthermore, note that
the integrability condition (3.19) is satisfied for all the actions we considered in section 2.

Carter suggested in [36] that charges obtained from the relevant surface integral of
the current (3.35) are the conserved charges of the pole-dipole brane. The naive way to
implement this would be similar to the Oth order case (2.23), that is, a generic charge Qx
associated with a background Killing vector field is simply given by the integral of the
surface current (3.35) over spatial slices of the worldvolume

|Qk|::j/ dViyyPYn, . (3.39)
By

However, we can test if this is indeed the case, since we have the full space-time stress-
energy tensor (3.1). Since (3.1) is symmetric, any current of the form P} = T”“ku(:z;o‘) will
be conserved in the full space-time, that is,

VP =0. (3.40)

The conservation of the space-time currents (3.40) must have a counterpart in terms of
conserved currents of the worldvolume theory since the effective description of the dynamics
of curved branes to pole-dipole order is given in terms of a worldvolume theory. In order to
obtain the corresponding worldvolume conserved currents one solves (3.40) by contracting
it with an arbitrary scalar function f(z#) of compact support and integrating it over
space-time according to the method developed in [43]. This results in the worldvolume
currents [62]

A~

po = (B“bkb +ul 1, k\Ve (B + BV K, + B‘“’pkuuf,K“bp) . (341)

24Tt may be useful to write the Lh.s. of eq. (3.4) explicitly in terms of the variables introduced in (3.14).
This is simply the sum of eq. (3.24) with eq. (3.19).
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which satisfy the conservation equation Vapl‘{l = 0.

Under the assumptions that the timelike Killing vector field £* is hypersurface
orthogonal with respect to the space-time metric g,, and that £# is parallel to the
worldvolume timelike Killing vector field &%, i.e. ¥ = u*,£%, which is also assumed to be
hypersurface orthogonal with respect to the worldvolume metric, we can write the total

conserved charge as®®

Q| = / AV Pina , (3.42)
B,

where all quantities involved in (3.42) should be evaluated on the worldvolume surface
z® = X%(c®). Therefore, the difference between the charges (3.39) and (3.42) is given by

Qi — Qx| = 0. (3.43)

A few comments are now in place. From the above we see that the space-time currents
introduced in (3.40) correspond to the surface currents introduced in (3.34) and hence
the space-time charges agree with the surface charges computed using surface currents.
Furthermore, this allows us to identify Py = 151? Moreover, the currents (3.35) are
not invariant under the ‘extra symmetry 2’ transformation and in fact, due to the
transformation rule (3.26), transform as

Pi — Pt = Pt — Bkl V", . (3.44)

However, the charges computed using (3.39) are invariant under the same transformation
rule for any choice of k. In order to see this explicitly one should use (3.26) in (3.42)
together with (2.3). It is worth noting that as in (2.23), the choice of Killing vector field
k in eq. (3.42) results in either the total mass, angular momentum along worldvolume
directions or angular momentum along transverse directions to the worldvolume of the
fluid-elastic system. Moreover, in the limit where both dipole and spin effects are turned
off, the charges computed from eq. (3.42) agree with those computed from (2.23). As a
final comment, we note that the conserved surface currents (3.35) can be obtained directly
from (2.26) by requiring the action to be invariant under space-time translations along
Killing directions. We show how this is done for the case j*** = 0 in appendix A.

In order to see this explicitly one should use (3.26) in (3.42) together with (2.3).26 On
the other hand, the charges computed from the naive method (3.39) are not invariant under
the ‘extra symmetry 2’ in general, only in the case of flat space. It is worth noting that as
in (2.23), the choice of Killing vector field k in eq. (3.42) results in either the total mass,
angular momentum along worldvolume directions or angular momentum along transverse
directions to the worldvolume of the fluid-elastic system. Moreover, in the limit where

#5Note that the expression for the conserved charges eq. (3.42) differs from the one obtained in [5]. The
expression obtained in [5] is not invariant under the ‘extra symmetry 2’.

Tn fact, any scalar functional of the form T[f] = [ d”z/=gT"" fu.(z*), where f,.,(2®) is an arbitrary
tensor field of compact support, is invariant under the transformation (3.26) [43]. See appendix A to
understand how (3.42) is derived.
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both dipole and spin effects are turned off, the charges computed from eq. (3.42) agree
with those computed from (2.23). As a final comment, we note that the conserved surface
current (3.35) can be obtained directly from (2.26) by requiring the action to be invariant
under space-time translations along Killing directions. We show how this is done for the
case j% = 0 in appendix A.

4 Matching with gravity

In this section we apply some of the results of the previous sections to the bending of neutral
black branes in pure Einstein gravity. It is well known that the stress-energy tensor of black
p-branes takes the form of a perfect fluid [19] and if the brane is subject to a long-wavelength
perturbation then the stress-energy tensor (2.10) receives corrections at each order in the
derivative expansion. If the type of perturbation is along the worldvolume directions then
the corrections are generically of dissipative nature and do not fall into the class studied in
section 2. However, if the perturbations are along transverse directions and lead to station-
ary configurations then the system (2.26) could potentially describe the effective behavior of
the perturbed brane. Indeed, this is the case to Oth order (2.2) as demonstrated in [16, 17].
The interest in this type of stationary perturbations comes from the several applications of
the blackfold method [17-19] to the construction of higher-dimensional black hole solutions.
The method consists in taking the metric of a boosted black p-brane and wrapping it over
a submanifold W,41 of characteristic curvature R. The end product of such methodol-
ogy is the perturbative construction of higher-dimensional black holes for which their near
horizon geometry is that of a bent boosted black p-brane to a certain order € = r¢/R in
the perturbative expansion. Here rg is the thickness of the brane, which for Schwarzschild
branes coincides with the horizon radius. To be more precise, it is instructive to write the
metric of a boosted Schwarzschild black p-brane in D = n + p + 3 space-time dimensions

d 2 n a T()L(Ua) a a a b d’f’2 2 2
s0) = | Yab(X"(0)) + Tua(a Yup(c®) | do“do” + PG +rdQny + (4.1)

rn

Here we have promoted the horizon radius ry as well as the boost velocities u* and brane
worldvolume metric v, to slowly varying functions of o over the submanifold W,;.1. When
promoting the various fields to functions of the worldvolume coordinates, the metric (4.1)
is in general no longer a solution of Einstein equations and should be corrected by including
terms proportional to the derivatives of rg, u® and 7,. To Oth order in € the metric of the
black hole solution constructed from wrapping Schwarzschild p-branes is given by (4.1) and
since, as it will be explained below, its stress-energy tensor is of the perfect fluid form, the ef-
fective dynamics are described by a system of the form (2.2) with equations of motion (2.7)—
(2.8). In fact, this has been shown to be the case directly from Einstein equations [16, 17].
Here we are interested in perturbations which are first order in derivatives of the metric
Vab along transverse directions. In this case, to first order in €, a small perturbation A,
should be added to the metric (4.1). Generically, it can be put into the following form [16]

N n 2
ds?y = ( 1y — 2K ' cos 0 + 0 gy ) dodo® + dr — + r2dh? + r? sin® 0dO?
" " - " (1.2)

+ by (1, 0)dz*dz” + O (r* /R?) .
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Here we have used the label 7 to indicate that the perturbation is taken along a single
transverse direction to the worldvolume and also introduced 7,3, which is the flat metric
on the worldvolume. As explained in [16, 65], perturbations in each individual transverse
direction decouple from each other at this order. The important piece of knowledge about
the perturbation hy, is that it is a dipole type perturbation hy,(r,0) = cos QiLW(r) and
that all of its components are proportional to the extrinsic curvature K’ [16]. For the
metric (4.2) to be regular it must satisfy the equations of motion (2.7)—(2.8), which can
be shown through the usage of the method of matched asymptotic expansion [16, 17]. The
metric (4.2) is valid to order O(e) and promoting all fields to functions of ¢ as in (4.1)
allows for iteratively correcting the metric of black holes constructed from wrapping
Schwarzschild p-branes. However, as argued in section 2.3 and shown in [16, 17|, there are
no corrections to the asymptotic charges, angular velocities, entropy and temperature to
order O(e) from (4.2). However, as explained in the beginning of section 3.1, introducing
corrections proportional to the extrinsic curvature induces a multipole expansion of the
stress-energy tensor (3.1). Therefore, even though there are no corrections to the charges,
the metric acquires a bending moment [5, 6, 16] to this order, which we will analyze below.

There is an exception to the absence of corrections to the charges to this order, which
is the case n = 1, related to the presence of backreaction effects [16, 17]. As argued in [5],
there are two types of corrections that (4.1) can be subject to: backreaction corrections
and curvature corrections. Newtonian estimates [5] indicate that curvature corrections
become more important when n > 2. Curvature corrections (or elastic) are included in
the formalism of section 2 since the resulting equations of motion satisfy stress-energy
conservation (3.2), while backreaction effects are not. In the cases where backreaction
is subleading, the perturbation (4.2) is said to be a pure bending. Therefore, it is only
for the cases n > 2 that one should expect an effective description of the form (2.26).
The procedure of iteratively correcting the metric by introducing strains along transverse
directions to the worldvolume has only been completed to order O (¢) leading to the
metric (4.2) and, due to the current state of affairs, there is no data available to O (82)
in this long-wavelength perturbation. Nevertheless, it is possible to obtain information
about (2.26) from the metrics (4.1) and (4.2) as we will describe below.

4.1 Oth order metric: thermodynamic fluid variables

To Oth order the metric describing the fluid-elastic system is the one presented in (4.1).
The stress-energy tensor obtained from the ADM formalism or the Brown-York prescrip-
tion is of the perfect fluid form (2.10) where the pressure and energy density take the
following form [18]

_ Bory o _ S
160G Y7 167G

(n+ 1) (4.3)

The local fluid temperature 7 and local entropy density s can be obtained from (4.1) by
reading off the surface gravity and the horizon area respectively,

_n _ Qi1 n+1
 Amrg’ STy o

(4.4)
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The Gibbs-Duhem relation € + P = T s and the first law of thermodynamics de = Tds are
obeyed due to the form of (4.3)—(4.4). Due to the relation between global temperature
and local temperature T = k7 mentioned above eq. (2.12), one can find the relation
between the thickness rp and k such that (477T)ry = nk and hence the dependence of the
pressure P given in (4.3) on k,

Q n
_ St (o n
Pil) = 167G (47TT) K (45)

The dependence of P on k is in fact enough to predict the energy density and en-
tropy through eq. (2.10) and eq. (2.12) . Using the identification (2.11) one has that
Mo(k) = P(k), and hence that A\j(k) = nP(k)/k. Therefore, using (2.10) we find

T = P(k)y™ — nP(k)u“u’, (4.6)

which is the stress-energy tensor for the fluid (4.3)—(4.4) with equation of state
€ = —(n+ 1)P. To Oth order, we have full predictability of black hole masses, angular
momenta and entropy using (2.23) and (2.24) since we know all the local microscopic
properties of the fluid (4.3)-(4.4). This has been used to show the existence of several
new black hole solutions [55, 56, 66, 67].

4.2 1st order metric: Young modulus

As mentioned above, there are no corrections to the asymptotic charges and local thermo-
dynamic potentials to order O (¢) of the metric (4.2) when n > 1, however, the bending
moment D given in (2.45) is a O(g) correction since it is only proportional to one copy
of K", The bending moment can be measured from the metric (4.2) using the methods
of [5] and briefly, consists in finding the stress-energy tensor of the form (3.1) that sources
the metric (4.2). This was first done in [5] for neutral black strings bent into a circle and
later generalized for Schwarzschild black p-branes bent into an arbitrary shape in [16]. The
bending moment found in [16] is of the form (2.45) as expected from classical elasticity
theory with a Young modulus given by?’
In+4 , 0.4

1
abed _ 2 & _ale,d)b (a b)(c, d)
y P(k)ro(k)§(n)<n+2’y yHP 4 204Ny +n+2uuuu> )

+ kr2(k) P(k)£(n) (Q’Yab’VCd _n (uaubﬁycd i ucud,yab» 7

where k is a constant and the function £(n) takes the form

ntan(r/n) T (2L)*
ti/>p&%;‘ (4.8)

§(n) =

Note that the function &(n) evaluates to zero when n = 1 and diverges when n = 2, in
agreement with the expectation that elastic corrections are subleading when compared to
bakreaction corrections for the cases n = 1,2. One of the key results in this work is the

*"Note that in [16] the Young modulus Y**°? is related to Y***? via the relation Y**¢¢ = yabed,
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prediction of the structure of (4.7) from (2.46). Indeed comparison of (4.7) with (2.46)
using the results of section 3.2 leads to the identification

1"2 n 7“2 n
M0 = k() PRI E(), Aalk) = UG ORIy ag — - POITOROE)
(4.9)
_ kri(k)nP(k)&(n) _ 3n+4 Pk)rgk)&(n)
Nalk) = == C Al =g

A few remarks are now in place. Note that the elastic contributions A;(k) and A\4(k)
are gauge dependent. Inspecting the second line of (4.7), we see that it has the same
structure as the gauge dependent part of the Young modulus defined in (3.29). This
comparison allows us to identify k(c®) = —k72(k)&(n). Furthermore, it is not surprising
that the scalars associated with A\1(k) and A\4(k) are only gauge dependent. This is because
since the metric (4.2) is valid only to order O (g), it cannot probe the hydrodynamic
contributions (2.55) since these are second order corrections to T Therefore, since Raped
can be neglected to this order and since the measurement of (4.7) was done in flat space,
according to eq. (2.58) we have that, £1 = L9 and L3 = L£4. It is worth noting that

measuring (3.1) from the metric (4.2) does not uncover any of the corrections to 7%

or
1%’ given in section 2.4 and section 2.6 since these are of order O (52). In fact, besides the
measurement of D% from (4.2) one also obtains B as defined in (3.3) which takes the
same form as in (4.6). In other words, to order O (&), the perturbation (4.2) does not affect
the monopole contribution to the stress-energy tensor (3.1). This means, for example, that

one cannot see the full invariance of (3.1) under the ‘extra symmetry 2’ to order O ().

4.3 Elastic corrections to black rings

As mentioned towards the end of section 4, the procedure of iteratively correcting the
metric (4.1) in a derivative expansion has not been completed to order O (52). However,
the measurement of D is all that is necessary to predict the structure of 7% using the table
given in section 2.4. One may assume that if the deformation to the metric (4.1) is a pure
bending then the only excited modes are those presented in (2.40) and the hydrodynamic
contributions v (k) and v3(k).?® However, we can turn the hydrodynamic contributions
off by considering the simple embedding of a string bent into a ring, for which Rap.q = 0,
placed in a flat background. This means that the elastic contributions Aj(k) and A\4(k)
continue to only be gauge dependent. Further, due to the homogeneity and isotropy of
the ring solution we take k to be constant along the worldvolume, which means that all
the contributions from the hydrodynamic term vy (k) will vanish (see table in section 2.6).
Given these facts, what we would like to test is if 1st order data is enough to predict black
hole charges to 2nd order in the derivative expansion, at least for specific cases. For this
purpose one would require the knowledge of the thermodynamic quantities (4.3) and, in
particular, of the dependence of the pressure on k to order O (52). From here on we will

% There is no Gauss-Codazzi-type equation that relates any of the elastic contributions (2.40) to the
hydrodynamic contribution v1 (k) so if the deformation is pure bending this term is not, in principle, excited.
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assume that this functional dependence to order O (52) is the same as that given in (4.5).
The effective action for this configuration would then just be that given by (2.47) with the
identification (4.9). Using the definition of the modified pressure (2.44), this is simply

I[XM) = . V=P (k,Ka') (4.10)

We parametrize the flat background as
n+1

ds? = —di? + dr® + r2de? + de?7 (4.11)
i=1

and place the ring at r = R such that ¢ = 7 =t, ,0! = ¢ and 2’ = 0. The induced
metric is just vgdo®do® = —dr? + R?d¢>. The only non-vanishing component of the
extrinsic curvature is given by Ky," = —R. This implies, due to the form of the linear
momentum (3.15) that, P* = 0 and the equations of motion (3.10) reduce to

PPK i =0. (4.12)

Since that there is only one non-vanishing component of the extrinsic curvature, (4.12) is
actually just P?? = 0. Instead of computing all the components of the stress-energy tensor
involved in P?? using the table given in section 2.4, it is more practical to simply compute
the scalar P (k, Kabi) and vary (4.10). In order to do so, we choose a gauge for which the
leading order pressure P does not depend on the extrinsic curvature, which in turn implies
that we choose k = 0 in (4.7) (see section 3.2). Using (2.46) together with (4.9) we find

A2 (k)
R2

P(k,Ku') = (P(k) + + A3(k)Q? + A5(k)Q4R2> : (4.13)
Varying now the action (4.10) leads to the equation of motion (4.12). This can be solved
perturbatively in the manner © = Q) + 9(2)62 and T = T{g) + T(2)62, where 2 = r3/R?.
Here €2y and T|) for this configuration can be obtained from (2.2) together with (4.4)
and are given by the relations Q)R = 1/v/n + 1 and 4my/n + 1Ty = n2 [66]. Introducing
this decomposition in the equations of motion (4.12) leads to a solution to £2(9) of the form

(n—4)vn+1

) = 2n%(n+2) R

£(n)e?. (4.14)
Note that the end result (4.14) does not depend on the correction T{y). Given the
corrected rotation velocity €2 we can proceed and compute the total mass and angular
momentum using (3.39). For this we need the conserved surface current (3.35), which for
this particular case takes the form

PY =Pk, — &'V K, . (4.15)
Thus, the mass of the fluid-elastic system is given by

2(n+1)

M= [ dVy, P =2rRT™ =21 RP, ((n +2) -
By

£(n) 52> . (4.16)
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Where P ) is the modulus of P(k) given in (4.5), when Q = Q). The angular momentum
along the direction ¢ reads

. 1 wor 1 12
J:—/dV(p)(P Peaxt? + 5 ¢ gaarng’)) =21R*P oy Vn + 1 (1 + (”’;2)(—7”) £(n) 52> (4.17)
By n?(n+2)

As mentioned in section 2.2, an entropy current formalism has not been developed for the
system (2.26) so we do not have a first principle method to compute the total entropy
of the fluid-elastic system. However, this is not necessary in order to check if 1st order
data can account for black hole charges to 2nd order neither if the action (2.26) with the
identification (4.9) is the correct effective description of higher-dimensional black rings in
the blackfold regime. Since the action (4.10) can be interpreted as the free energy (see
section 2.1) we can obtain the product (7'S), using (7'S), = M — QJ — F. Furthermore,
since the charges M and J are supposed to be the ones associated with a stationary black
hole in asymptotically flat space time, they must satisfy the Smarr relation

(n+1)
(n+2)

A simple exercise tells us that (T'S), = (T'S), + O (¢*) for any value of n. Note that this
result is again independent of the correction T{y). Therefore, we conclude that 1st order

(TS)Q =

M—QJ. (4.18)

data in the case of black rings is enough to have full predictability of black hole charges
to 2nd order. We will discuss in the next section other possible cases for which 1st order
data is enough to predict charges to 2nd order.

5 Discussion

In this section we summarize the main results found in this work and discuss various open
problems. We begin by stating the key results. In section 2 we have found the most general
action quadratic in the extrinsic curvature as well as in the extrinsic twist potential and
in second order worldvolume derivatives. For co-dimension-1 surfaces it was required, to
the same order, to consider terms proportional to worldvolume derivatives of the extrinsic
curvature. It was shown that the equations of motion obtained from this type of actions
provide a relativistic generalization of classical elasticity theory of thin membranes when
bending effects as well as spin effects are taken into account (2.36). Since the well studied
case of fluid membranes is described by an action of the type (2.26), our work ended up
generalizing the Helfrich-Canham bending energy (1.1) to the case in which the fluid living
on the membrane is stationary and for non-trivial response coefficients. In such cases, for co-
dimension-1 surfaces (not necessarily two-dimensional), there exists 4 extra contributions
to second order than those considered previously in the literature described by the response
coefficients A3(k) , vi(k), vs(k), J3(k). Some of these response coefficients could potentially
be measured in a physical experiment involving fluids moving on cellular membranes.

In general, the results of section 2 indicate that the study of hydrodynamics of fluids
living on surfaces of arbitrary co-dimension is of increased complexity when compared
to the hydrodynamics of space-filling fluids. In fact, for neutral stationary fluids it was
found a set of 3 response coefficients [46, 47] while for non-dissipative fluids a total of
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5 transport coefficients [51]. Here instead, for surfaces of co-dimension greater than one

29 we have found a total of 7 independent response

and according to certain assumptions,
coeflicients, while for co-dimension-1 surfaces we found a total of 8 independent response
coefficients. In this counting we have ignored the spin contribution ws(k) as it does not
fit into the pole-dipole approximation of section 3, which suggests that it violates spin
conservation. We also ignored the elastic contributions A4(k), A\5(k) and J2(k) since they
can be removed by a change of basis and a field redefinition (see section 3.2). We have also
shown in section 2.6 how the elastic and hydrodynamic modes couple to each other using
the Gauss-Codazzi equation and in which conditions we can regard each of the different

contributions as independent.

The work presented in section 2 also indicates that all the techniques and methodologies
used to study hydrodynamics of space-filling fluids can be applied to the case of fluid branes
when the elastic modes (2.40) are taken into account. The requirement of stationarity can
be relaxed and the method used here can also be applied to non-dissipative fluids as in [51].
In this case, the material space introduced in [51], where the fluid variables are defined,
must be formulated with respect to the p spatial directions of the worldvolume W, ;1.

We have found in section 3 that all the corrections studied in section 2 can be accounted
for by the formalism of Vasilic-Vojinovic [43] where a multipole expansion of the stress-
energy tensor is carried out to pole-dipole order, except for the terms (2.63) which require
an extension of these ideas to pole-quadrupole order. Indeed, the formalism constructed
by these authors provides the most general equations of motion that take into account
finite thickness effects of curved branes, regardless of the existence of any underlying effec-
tive action. Having established this connection, we note that most of the finite thickness
corrections to brane effective actions considered in the literature [33, 34, 36-38, 45, 63]
fit into the formalism of section 3. In particular, we established a precise map between
extrinsic curvature corrections and the bending moment of the brane as well as extrinsic
twist corrections and the spin in transverse directions to the brane. It would be interesting
to understand if this map can be useful for the effective description of long strings [68].

In this work we have generalized extrinsic curvature corrections to brane effective
actions to the case of non-extremal branes and connected the formalism of Vasilic-
Vojinovic [43] with the formalism of Carter [37] and the formalism of Capovilla-Guven [38].
The establishment of this connection is of particular usefulness as it allows us to connect
effective theories of fluid branes with gravity. In section 4 we have shown that the Young
modulus measured from bending neutral black branes falls into the class predicted by the
effective action analysis of section 2 and used this fact to predict the corrected horizon
angular velocity for thin black rings. This gives further motivation for studying the elastic
expansion of higher-dimensional black holes via the blackfold approach since now, uncover-
ing the various response coefficients of stationary black branes simultaneously implies the
uncovering of the possible response coefficients and the structure of the free energy of real
fluid membranes. This fact can be put into a broader context: this is another instance where

29We remind the reader that in section 1 we stated that terms constructed with the Levi-Civita symbol
would be ignored.
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the study of gravitational physics can shed light into the physics of an apparent unrelated

system. Therefore, since thin black branes seem to behave like the membranes of living

cells, gravity can be used as a laboratory for uncovering properties of fluid membranes.
We now turn to several of the open problems encountered in this work:

The spin/elastic contributions we missed. As mentioned in section 1, we have
ignored terms constructed from the Levi-Civita symbol, in particular, we have ignored
dimension-specific corrections of the form

k“e;;wa%j, Eabianbij, Eabinabij, EabinaciKbcj . (51)
The second term above has been studied in the context of cosmic strings [37]. Further, the
last 3 contributions are coupled to each other due to the Ricci integrability condition (2.33).
It would be interesting to understand if this last set of terms can be accounted for by
the formalism of section 3 to pole-dipole order. The first of these terms is of particular
interest as it gives rise to the spin current measured from Myers-Perry branes [5]. Here,
we have introduced the Levi-Civita symbol on a transverse two-plane labelled by the
indices 7, j. To make this statement precise, note that for this case SS9 = k%9, TIf one
compares this with the result for Myers-Perry branes found in [5], this is exactly the type
of correction needed for describing black holes spinning in transverse directions to the
worldvolume. It would be interesting to study the wrapping of Myers-Perry branes from
this effective action perspective and to construct doubly-spinning black rings to 2nd order
in the derivative expansion. This problem will be addressed in a future publication [62].

The entropy current and charged fluid branes. In this work we have lacked a first
principle computation of the entropy for the fluid-elastic system (2.26). However, using the
methods of [46, 69] together with some inspiration from the formulation of viscoelasticity of
Fukuma-Sakatani [52, 70] it is possible to classify the several terms in the entropy current
as well as to obtain a first principle computation of the total entropy. A related problem
is to generalize the action (2.26) to the case where the fluid carries either a ¢ =0, ¢ = 1 or
q = p-brane charge as in the cases studied in [55, 56]. For ¢ = 0 and for p = g-brane charge
the action takes essentially the same form but for p # ¢ and ¢ > 0 new contributions need
to be added. This would allow to predict the structure of the piezoeletric moduli measured
for charged black branes [6]. This problem is related to the entropy current formulation
because in both cases it requires obtaining from the action a conserved current without
additional corrections to the action (2.26) itself. This issue is now under investigation and
it will be published elsewhere [62].

Constraints on the response coefficients. During the analysis of the mode coupling
in section 2.6 we only looked at relations that arise from geometric constraints, such as
the Gauss-Codazzi equation (2.58). However, there may be stability and thermodynamic
constraints imposed by elasticity theory or the entropy current analysis in the spirit of [71]
that further restrict the set of response coefficients obtained in section 2. Furthermore, it
would be interesting to understand the physical meaning of each of the elastic contributions
in (2.40) by obtaining, for example, the corrected speed of propagation of elastic waves or

— 37 —



the corrections to the elasticity tensor of fluid branes introduced in (2.20). The lack of
such knowledge is unsatisfactory and deserves further study.

Elastic corrections to black holes. In section 4 we applied the 2nd order effective
action to the case of black rings in asymptotically flat space and found that the black hole
charges were consistent with the free energy interpretation and the Smarr relation. This
is compelling evidence that the effective description of higher dimensional black holes in
the blackfold regime is given by an action of type (2.26) with the identification (4.9). It is
also important to refer that the predictions made in [5, 6] for the corrected horizon angular
velocity of (charged) black rings were not accurate enough as they did not take into account
the contributions to the monopole stress-energy tensor 7% given in the table of section 2.4.
We note that we have not obtained a complete prediction of all the corrected black hole
thermodynamic quantities. This is because we have not developed a first principle com-
putation of the total entropy of the system neither accounted for a proper definition of
the global temperature in terms of a local temperature. Once this is done, the formalism
presented here allows for the full predictability of black hole charges to order O (52) in
the derivative expansion. We note, however, that due to the lack of 2nd order data, at
the moment it is only possible to accurately obtain the corrected horizon angular velocity
for black holes made of bent strings such as the black rings of section 4 and the helical
rings and strings found in [66]. This is because for embeddings with non-vanishing Rapeq
2nd order information about the response coefficients of the hydrodynamic modes (2.55)
is required. In fact, a simple exercise tells us that applying the same prescription as for
the case of black rings in section 4 to the case of black odd-spheres [66] does not lead to
consistent results. The study of the bending of the black branes (4.1) to 2nd order would be
interesting since it would uncover these extra response coefficients. The bending of strings
to O (52) is an easier task since the hydrodynamic modes (2.55) will vanish but it would
still be a worthy endeavour as it would allow to confirm the corrections to the monopole
stress-energy tensor found in section 2.4 as well as the prediction (4.14).

We end this work by noting some interesting facts about fluid membranes. When
applying the considerations of section 2 to fluid membranes one does not have to be con-
cerned with backreaction effects and hence the effective description of the system is that
given by (2.26). If we take the simplest case of a membrane embedded in a flat background,
then there is a total of 5 response coefficients, 2 of which are related to stationary flows
and have not been considered previously in the literature. While some of these may be
subject to local constraints for real cell membranes, as the scalar associated with ¢ (k) is,
and ignoring viscous effects, according to the analysis of section 2, this is how fluids bend.
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A Notation, geometry and variations

In this section we write down in detail the notation used in this work and their relation to
the work of other authors. We consider surfaces of (p+ 1)-dimensional worldvolume W,
embedded in a background space-time endowed with metric g,,(2®). The coordinates
% a=0,...,D — 1 are space-time coordinates. To the worldvolume we assign a set of
coordinates ¢ a = 0,...,p, where p is the total number of spatial dimensions of the
worldvolume. The worldvolume W), is located at the space-time surface z# = X*(o%),
where X#(c) is a set of mapping functions describing the position of the surface in the
ambient space-time. Introducing the projector along worldvolume directions u,* = 9, X*
we can construct the induced metric on the worldvolume as v4, = guouaup”, as well as its
extrinsic curvature K ;° = V,up” symmetric in the indices a,b. The covariant derivative
along worldvolume directions V, = u”,V,, compatible with both the worldvolume metric
Yab and the space-time metric g,,,,, acts on an arbitrary tensor V< as

VoVt = 0oV 4 4y VI + T 0 VA (A1)

where the Christoffel symbols 7,. are computed with respect to the induced metric g
and the Christoffel symbols F’V‘)\ with respect to the space-time metric g,,. Any space-
time vector v* can be projected along the worldvolume directions using u,* such that v* =
u®,v*. We further introduce a set of projectors n"“, i1 =1,...,D—p—1 onto the transverse
space to the worldvolume defined by g,,ni*n;¥ = d;; and n',u” = 0. Any space-time
vector can be projected along orthogonal directions such that v* = niuv“. The extrinsic
curvature by definition is transverse in its third index such that K, = Kq'n;”. Given the
normal projectors we can define the extrinsic twist potential via w,” = —nuj Vant, which
is anti-symmetric in the indices 7, j. Given the extrinsic twist potential, we can define the
outer curvature associated with it through the relation [38]3°

Qabij = Vawbij — waaij + waikwbkj — wbikwakj. (A.Q)

3%Note that here we are using the opposite conventions compared to the ones used in [38]. That is, the
extrinsic curvature and extrinsic twist potential defined in [38] should be multiplied by a minus sign to
match the conventions used here.
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It is also useful to work with space-time indices and still keeping track of tangential and
perpendicular components to the worldvolume. For that matter, we introduce the first
fundamental tensor y*¥ such that v = u*,u”yy?. Using v*¥, any space-time tensor can
be projected along the worldvolume while still keeping space-time indices. Similarly, we
introduce a perpendicular projector such that L ,,= g, — Y, which satisfies v** 1,7 = 0.
The worldvolume projector u," and the transverse projector niu are by definition parallel
and perpendicular respectively in their space-time index, i.e., u,* = u,”y* and niﬂ =
nt, 1" u- Note that both space-time projectors can be defined in terms of the projectors
utq and n#; such that v, = uu,* and 1#, = ntin,t.

Variations a la Capovilla- Guven. In [38], Capovilla-Guven introduced a covariant
derivative V, that preserves covariance under rotations of the normal vectors, such that

VoV =DV +w,' VI (A.3)

where D, is the worldvolume covariant derivative compatible with 7,,. With the defini-
tion (A.3), one can easily act with it on the transverse indices ¢ but at the expense of
introducing torsion. Note that the worldvolume covariant derivative D, can be replaced
by the covariant derivative V, introduced in (A.1) if one remembers that V, does not
act on the transverse indices ¢. In the work presented above we have avoided using this
terminology by noting that

VoV =0, Vo (V") = VoV~ VInEVnt, = VoV + w  VF, (Ad)

where in the last equality we have used the definition of the extrinsic twist potential.
With the definition (A.3) the variation of the extrinsic curvature (2.18) can actually be
written as [38]

51 Kap' = VaVp®' — Ripgj® — Koo' Ko ®7 (A.5)
Similarly, for the extrinsic twist potential we have that [38]
01wa” = —Kap'V'* + Ko/ VPOF + R, 0" . (A.6)

For variations along the worldvolume directions, the different fields transform with the
Lie derivative such that covariance under normal rotations is preserved. For example, the
tangential variation of the twist is

5Hwaij = (I)b@bwaij + wbijvaéb , (A.7)

which when using (A.4) leads to (2.29). An interesting application of this covariant deriva-
tive is in the rewriting of the spin conservation equation (3.24) which now takes the form

Vaj® =0. (A.8)

We have also considered the variation of the worldvolume Christoffel symbols 7,." as well
as of the worldvolume Riemann tensor R4 These can be analyzed through the variation
of the Christoffel symbols,

1
Yap’ = 570‘1 (Vb0Yad + Vadypa — Vadyap) - (A.9)
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Using this, one has that
R %ed = VedVed” — Vadyne" s 6Rab = VedVap® — Vpdyac” (A.10)
and finally the variation of the worldvolume Ricci scalar
OR = Vi (10me") = V" (07") + R (A.11)

We have also considered variations of the worldvolume derivative of the extrinsic curvature
for co-dimension-1 surfaces. This can be obtained using the chain rule,

OV aKpe = Va0 Kpe 4+ 670 Kge + 07ac? Kpq - (A.12)

The third fundamental tensor. In [61] Carter defined the third fundamental tensor
with space-time indices as

EN)\NV = ’V/\p'}/,uUJ—TVv/@KpoT s (A13)

where the connection V,, denotes the covariant derivative along the worldvolume written
with space-time indices. We have avoided this notation in the work above by using instead
the definition

V,VH =2 WV \VH. (A.14)

From the third fundamental tensor (A.13) we can obtain the Codazzi-Mainardi equation
simply by taking the appropriate anti-symmetrization [61]

QE[K)\]MV = VPRWUAWTMJ—VQRMJO‘T . (A15)
Contracting this with u*,uyu”.n?, yields eq. (2.32).

Variations a la Carter. For the geodynamic-type models constructed by Carter [36, 37],
a different type of variational principle was used than the one used by Capovilla-Guven [38].
It is a Lagrangian variation in which the background metric g,, is displaced by an in-
finitesimal vector such that 0.9, = 2V(,®,). We now show that this type of variations
yields the same results as the ones presented in this work. In order to do so we require
the Lagrangian variations of the first fundamental tensor 6,7 = —27,#V*)®7 and of
the second fundamental tensor [37],

= = A o T A g V, A
6LKqu = Lp)\ (V(ny)q) - (M’Y II)R Uqu)P - K (/“’)VU(I. ) (A 16)
+ (2J_J(NKV)Tp - ngKHVU) (VU(I)T + v7—(1)0') :

Let us consider the simple case of the elastic contribution A;(k) given in (2.40). The
contribution to the action is of the form

1= [ VMK, (A.17)
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where 7 here should be understood as the determinant of +,, and k = | — ’yw,k“k”|1/ 2,

We define the stress-energy tensor T#” and the dipole moment D, as before:

2 oC 1 oL
= — Wy
= 57 D, = (A.18)

where £ = /=71 (k)K?K,. The Lagrangian variations of (A.17) are thus of the form

T

1
5.1 [XH) = / = (2T“”5L7W + M (K) KKV 81,0 + D“”,)(SLKW”> . (A.19)
w

p+1

The difference here in comparison with (2.30) is the appearance of the middle term above.
However, it is always cancelled by the last of the terms appearing from the contraction
D 61K ,,”. The end result of the variation for all corrections quadratic in the extrinsic
curvature is thus

SpI[XM] = = (vy [% (T”’\ _ WDW) + DI, By }
Wpt1 (A.20)
— P, (vy (T”A . WDW) i D”PR,WA)) .

The advantage of this approach is that it yields in the end the equations of motion and
boundary conditions in the form (3.8) and makes it easy to identify the linear momentum
PvA. Careful inspection of this and comparison with (2.30) leads one to conclude that the
variations are the same. For the particular case of (A.17) we have

TH = M\ (K)KPK A" — N (K)kulu” KO K, — A\ (K)KPPK, | DM = 2 (k)y" KA ,21)

which when contracted with u®,u’, yields the contributions 7 and D stated in the
table given in section 2.4. We have mentioned that the middle term in (A.19) is always
cancelled by a contraction involving the last term. We briefly show how this is the case.
Take the case of the most general action quadratic in the extrinsic curvature

1
I [X'u] = /W V= 5 ylLV)\PKMVO'K)\pO_ 3 (A22)

p+1

where the Young modulus Y***? only depends on k, k% and 4. Note that D*r =
YA KL P, Now introduce a dummie (meaningless in this case) tensor B* defined as

1 oL
BY = ——— A.23
V=790 L ( )
where £ = (1/2)\/—y V" K,,,° K) . Then for an action of the type (A.22) this is simply
given by BH = (1/2)Y°"*K,,»K,,”. Further note that the last term in the contraction
D 01 K,," is always —DH'PK,,,”V ,®,. Therefore, B*61,g,, always cancels this term.
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Linear momentum from the action. As mentioned in section 3.3 it is possible to
obtain the conserved surface currents directly from (A.17) by requiring the action to be
invariant under space-time translations along Killing directions. To see this note that
for an infinitesimal shift along a Killing direction ®# = gk* for an arbitrary constant £.
Then (A.20) yields

SLI[XM] =3 /W = (?V <P”AkA n D”“A?ukg - kASA(X“)) L (A24)

Here we have used the definition of linear momentum applied to the case j*** = 0 as given
in (3.15) with the identification (3.18). Furthermore, we have written the term inside the
parenthesis in the second line of (A.20) as E*(X*), which when equated to zero yields the
equations of motion (3.9)-(3.10) when j** = 0. For (A.24) to be invariant under these
translations when the equations of motion are satisfied £*(X*) = 0 we must have that

v, (P”Ak,\ + D”“A?Mkk) ~0. (A.25)

Indeed, this is recognized as the conservation of the surface current introduced in (3.35) for
the case % = 0. This is the reason why P is called the linear momentum. Moreover,
from (A.25), since PN = v, DHA we have that

k) (vyp"* + D”“’)R’\VW) ~0. (A.26)

Therefore, along any Killing direction we obtain the equations of motion as written
in (3.8). Finally, we note that when £*(X*) = 0, integrating the first term in (A.24) into
a boundary term yields the definition of conserved surface charge (3.39). This type of
reasoning had been applied by Guven et al. in [63] for extremal branes in flat space. Here
we have generalized it for non-extremal branes in curved space.

B Boundary conditions for hydrodynamic modes

In this appendix we analyze the boundary conditions for the hydrodynamic corrections pre-
sented in (2.55) and (2.63). We begin with the hydrodynamic scalars given in (2.6). Due
to the variation of the Christoffel symbols (A.9) the hydrodynamic scalars contribute with
additional terms to the boundary equations derived in (2.31). We denote the extra contri-
bution by B, in terms of -y, given in (2.3) and 07,5 given in (A.9), which should be added
to the last line of eq. (2.31). These contributions are summarized in the following table:

Scalar B.,

vi (k)1 —nav1 (k) (%V“ (kubuc&ybc) - ’y“bé'ybcvck) + L (kubuc&yedvam (k) + v1 (k)'ybcévbcvak)

v2(k)V2 —nav2(k) (Y*5Ybe” = 7" 50e”) = M0 (Y074 V v2(k) — "6 V02 (K))

vs(K)Vs —na (3V* (vs(k)k"k®) 695 — V° (vs(k)kK") 7be + 577670 Vs (v3(k)k k")) +
Navs(k) (K"K 0ype® — kK 075c°)

The complexity of these contributions is useless. For the hydrodynamic corrections (2.6)
to fit the pole-dipole boundary conditions (3.11), one must require all the above terms to
vanish at the brane boundary.
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Boundary contributions due to the quadrupole moment. We now turn into the
case of the boundary contributions of the terms (2.63) due to the presence of the quadrupole
moment. Besides the boundary terms obtained from (2.30) there is a contribution to the
variation of the action (2.30) of the form:
ol = / V= Va (DP0K e — VDYV — @', VD" - 2D" K Ko Py
Wpt1

— 9DV K Ky’ @ — 2DTK K’ @ + DY KV (@) + 2D KV (0 (B-1)
— 2D{° K"V 4@y + ODP VK + 2D1 0 VaKac)

Note that we used here the index i but one should remember that for co-dimension-1
surfaces there is only one transverse direction. Note also that the first term in (B.1)
introduces boundary terms proportional to the background Riemann tensor via (2.18).
This is a generic effect of quadrupole corrections to the equations of motion in the spirit
of section 3. Deriving the pole-quadrupole equations of motion is of intrinsic interest and
it will be published elsewhere.
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