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Abstract

Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-
link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET
channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair
cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR)
into hair cells from three-day-old Cdh23+/+ and Cdh23v2J/+ mice, but failed to detect GTTR uptake in Cdh23v2J/v2J hair cells.
Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N’,N’-tetraacetic acid
(BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23v2J/v2J and BAPTA-treated hair
cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained
reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair
cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and
pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can
spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG
toxicity.
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Introduction

Aminoglycosides (AG) are potent antimicrobials with devastat-

ing side effects of hearing loss. Numerous studies have shown that

AGs cause hearing loss by inducing sensory hair cell death through

activating reactive oxygen species, lipid peroxidation, and the cell

death signaling cascade [1,2,3]. Nonetheless, mechanisms of AG

uptake into the inner ear are incompletely understood, limiting

design of therapeutics aiming at preventing this form of iatrogenic

hearing loss. At the cellular level, functional mechanotransduction

(MET) channels are required for AG uptake and subsequent

toxicity as MET channel blockers prevented these events [4,5,6].

Factors increasing the open probability of MET channels enhance

drug uptake/toxicity, including hypocalcemia [4,7,8], and spatio-

temporal maturation of hair cells [6,9,10]. Conversely, decreasing

MET channel opening via hypercalcemia [7] and myosin7a

mutations [11] limits AG entry and subsequent sensory cell loss.

More recently, genetic knockout of transmembrane-channel like

proteins restricted uptake of the AG gentamicin [12]. However,

alternative entry pathways via endocytosis [13] and transient

receptor potential channels [14] have been described, raising the

possibility that blocking MET channel alone is not sufficient in

limiting AG toxicity.

As part of the MET machinery, tip-links span stereocilia in hair

cells [15] and regulate MET channel opening [16,17]. Tip-links

consist of Protocadherin 15 (Pcdh15) and Cadherin 23 (Cdh23)

[18,19,20,21,22], with their structural integrity being calcium

dependent [16,23]. Correlating with the loss of tip-links, hair cells

treated with calcium chelators have reduced or absent MET

channel activity [16,24,25,26,27]. Like hair cells subjected to

calcium chelation, hair cells deficient in Pcdh15 or Cdh23 show

fewer tip-link-like structures [17,20]. Although others have

reported tip-links in Cdh23 null mice [28], Pcdh15 and Cdh23

deficient hair cells demonstrate reduced MET channel activity

[17,20,29]. After recovering from calcium chelation, hair cells

spontaneously regain tip-links and mechanosensitivity in a Cdh23-

dependent manner [23,24].

The relationship between tip-link integrity and AG uptake in

sensory hair cells has not been thoroughly investigated. In this

study, we show that Cdh23 deficiency and calcium chelation
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disrupting tip-links abolished AG uptake and prevented subse-

quent sensory hair cell death. In addition, the AG uptake

mechanism returns within 24 hours of calcium chelation,

correlating with the time course of tip-link regeneration. Thus

we conclude that the tip-link complex is required for AG uptake

and toxicity and that this is the major pathway of uptake under

normal conditions that lead to hair cell degeneration.

Materials and Methods

Animals
Cdh23v2J transgenic mice in C57Bl/6 background (Stock

number 002552, Jackson Laboratory, Bar Harbor, ME) were

used with genotypes determined by sequencing. Wildtype mouse

(C57Bl/6) pups were obtained from Charles River laboratory

(Cambridge, MA). All procedures involving these animals were

approved by the Stanford University administrative panel on

laboratory animal care (Assurance number A3213-01, Protocol ID

18606).

Organotypic Cochlear Cultures
Cochleae were isolated and cultured as previously described

[6,30]. Briefly, cochleae were isolated under sterile conditions in

Hank’s Balanced Salt Solution (HBSS, Cellgro, Manassas, VA)

from postnatal (P) three-day-old mice. Stria vascularis and

modiolus were removed before organs were attached onto

10 mm glass coverslips pre-coated with CellTak (BD Bioscience,

San Jose, CA). Each organ was cultured in Dulbecco’s Modified

Eagle Medium (DMEM)/F12 (Invitrogen, Carlsbad, CA) culture

media containing 10% fetal bovine serum (FBS)(Omega Scientific,

Tarzana, CA) and ampicillin (50 mg/ml; Sigma, St. Louis, MO) in

4-well 35 mm tissue culture dishes (Greiner Bio-one, Monroe, NC)

for 1–3 days at 37uC in a 5% CO2 atmosphere [31,32]. Media was

refreshed every 24–48 hr.

After an overnight culture period, cochleae were exposed to

gentamicin (Gentamicin solution, Hospira, Lake Forrest, IL,) for

1 hr, after that they were washed and incubated in fresh culture

media for an additional 48 hr. In separate experiments, gentami-

cin-conjugated Texas Red (GTTR)(1 mM), which was synthesized

from gentamicin sulfate (Sigma) and succinimidyl esters of Texas

Red dye (Invitrogen) as previously described [33], was also added

for 1 hr after an overnight culture period. Separately, cochlear

organs that had been cultured overnight were bathed in FM1-43

(5 mM in HBSS615 sec)(Invitrogen) then imaged under an

Olympus SZX10 microscope (Olympus, Center Valley, PA) with

epifluorescent optics and FITC filters (488 nm excitation and

520 nm emission) [34].

For calcium chelation experiments, BAPTA (5 mM in DMEM/

F12, containing 1.05 mM calcium chloride (Invitrogen) with 10%

FBS and ampicillin) was added to cochleae as a steady stream

aiming at the organ, followed by incubation for 15 min at 37uC
with gentle stirring every 5 min. As previously shown this BAPTA

solution breaks .95% of the tip-links resulting in the loss of MET

current responses [16,23,35]. Subsequently, organs were incubat-

ed in BAPTA-free media for 10 min, 6 hr, or 24 hr before

gentamicin or GTTR treatment. We found that adding BAPTA-

containing media as a steady stream aiming at the organ generated

more consistent results than when it was added as droplets onto

the cochleae or steady stream directed away from the cochleae

(Figure S1). Therefore, the former method of application was used

for all remaining experiments.

Immunohistochemistry
Procedures have been previously described [30]. Briefly, at the

end of defined culture periods, tissues were fixed in 4%

paraformaldehyde (in phosphate-buffered saline (PBS), pH 7.4)

for 30 min, rinsed with PBS (3X), and immersed in blocking

solution (5% normal goat serum, 0.1% Triton X-100, 1% bovine

serum albumin, and 0.02% sodium azide in PBS, pH 7.4) for

60 min. Primary antibodies diluted in blocking solution were

applied overnight at 4uC. The next day, tissues were rinsed with

PBS (3X) and then exposed to fluorescent secondary antibodies

diluted in PBS with 0.1% Triton X-100, 1% bovine serum

albumin, and 0.02% sodium azide for 60–120 min. After washing

in PBS (3X), organs were mounted in fluorescent mounting media

(Dako, Carpinteria, CA) and analyzed. The following antibodies

were used: anti-myosin7a antibody (1:1000; Proteus Bioscience,

Ramona, CA); anti-gentamicin antibody (1:200; QED Bioscience,

San Diego, CA); and corresponding secondary antibodies (Alexa

Fluor 488 and 546; 1:500; Invitrogen).

Live Imaging of Gentamicin Uptake Using Two-Photon
Microscopy

We followed previously described procedures for live imaging

[6]. Briefly, acutely isolated cochleae were secured onto sterile

35610 mm tissue culture dishes (Greiner Bio-one). Organs were

cultured overnight, then washed 3X with L-15 before two-photon

imaging. GTTR (3 mM) was directly added to cochlear cultures.

An Olympus BX-61 microscope (Olympus) with a 100X, 1.0

numerical aperture water immersion objective (Olympus LUM-

Plan) was used to image the middle turn of the cochlea. A 520 nm

long-pass dichroic (Chroma Technology, Bellows Falls, VT) was

used to separate the fluorescence emission into two channels and

detected by photomultiplier tubes. Using Prairieview software at

1.4X digital magnification (Prairie Technologies, Middleton, WI),

we ran 60 min time series at 1 min intervals. A z-position between

the nuclei and apical surface of outer hair cells was selected.

Femtosecond pulses of 900 nm illumination from a tunable

Chameleon XR laser (Coherent Inc., Santa Clara, CA) were

scanned across the sample with an average power of 360.5 mW to

excite the Texas Red fluorophores. Red fluorescence originating

from GTTR was isolated using a custom made bandpass filter

(620/60, Chroma Technology). Prior to adding GTTR, we

scanned the sample at 740 nm and detected blue NADH intrinsic

fluorescence with a custom made bandpass filter (480/30) to

confirm the health of the sample [36]. Samples with low NADH

signals were discarded.

To quantify the fluorescence intensity, ten individual cells were

selected as regions of interest (ROIs) in each T-series. Using Image

J software (NIH), the pixels within the ROIs were averaged to

obtain a fluorescence intensity measure for each cell. The average

background intensity was negligible and therefore was not

subtracted from the total fluorescence. The fluorescence for the

ten cells was averaged to create a single average fluorescence per

T-series. The average of each T-series was normalized to the

maximum fluorescence and this normalized average and the

standard deviation was plotted as a function of time (OriginLab,

Northampton, MA) to determine the average increase in cellular

fluorescence over time after GTTR administration.

Image Analyses and Statistics
Tissues were imaged using a Zeiss Axiovert LSM 5 Pascal

confocal microscope. The cochlea was divided into apical, middle

and basal turns (Figure 1), which were separately analyzed. For

hair cell quantification, myosin7a-positive hair cells were counted

Tip-Links Regulate Aminoglycoside Entry
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per cochlear length using the cell counter in Image J software. For

the gentamicin dose-response curve and experiments on the

Cdh23v2J mice, hair cells from the middle turn of the cochleae were

counted per 400 mm. In experiments testing BAPTA treatment,

hair cells from all three turns of the cochleae were counted over a

225 mm length of the organ of Corti.

To quantify GTTR fluorescence in fixed tissues, images were

captured from each turn using a Zeiss LSM5 Confocal micro-

scope, with a 40X 1.3NA Plan Neofluor oil immersion objective

and identical microscope settings (546 nm laser excitation,

emission filter BP 560–615 nm, pinhole at 1 Airy unit, detector

gain at 763). The identical settings were used for experimental and

control groups from all trials. The cytoplasm of myosin7a-positive

hair cells between the level of the cuticular plate and nucleus was

selected as the ROI’s. As above, ROI’s were averaged using Image

J and intensities of GTTR fluorescence were normalized to the

brightest cell in each of the three culture durations. To assess the

time course of GTTR uptake, best fit curves were produced using

the formula Y = Ae(2x/t), from which the time constants (t1/2) were

derived. Normalized intensity histograms (10% bin widths) were

generated and fit with Gaussian functions to identify intensity

Figure 1. Gentamicin causes cochlear hair cell loss in a dose-dependent manner. A) Low magnification image of a postnatal 3-day-old (P3)
mouse cochlea immunolabeled for myosin7a, a specific marker for inner and outer hair cells. B) Cochleae were isolated from P3 mice and cultured
overnight. The following day, cultures were bathed in gentamicin (0–0.5 mM) for 1 hr at 37uC followed by a 48 hr recovery period in AG-free culture
media. C) Schematic of aminoglycoside (AG, red) entry into hair cells via mechanotransduction channels (MET, green) located at the apical end of
stereocilia, and proposed mechanism of MET channel closure preventing AG entry following tip-link (yellow) breakage. D–G) Representative images
of the middle turn of cochleae treated with varying doses of gentamicin and labeled with anti-myosin7a. (D) Control. (E) 0.1 mM gentamicin (F)
0.25 mM gentamicin (G) 0.5 mM gentamicin. H) Myosin7a-positive hair cells per 400 mm middle turn were counted and 0.23 mM gentamicin was
determined to cause a 50% hair cell loss, mostly among outer hair cells. Error bars = S.D., scale bars = 100 mm in A, 25 mm in D–G.
doi:10.1371/journal.pone.0054794.g001

Tip-Links Regulate Aminoglycoside Entry
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peaks and full width half maximums. Either single or double

Gaussian fits were used.

Image preparation for figures was performed using Photoshop

(Adobe Systems, San Jose, CA) software. Graph preparation and

data analyses were done using Microsoft Excel (Redmond, WA)

and Origin softwares. Two-tailed Student’s t-test (unpaired) was

used for statistical comparison and p,0.05 considered significant.

Results

Cadherin 23 Mutation Prevents AG Uptake and Hair Cell
Loss

We first established a dose-response relationship between the

AG gentamicin and hair cell survival using organotypic cultures of

cochleae from postnatal-three-day old (P3) mice (Figure 1A). This

in vitro system is an established model to study sensory hair cells

and AG toxicity [6]. After an overnight incubation period, organs

were bathed in gentamicin for 1 hr (0–0.5 mM), followed by a 48-

hr AG-free culture period allowing hair cell degeneration to

complete (Figure 1B) [6]. Myosin7a is an unconventional myosin

expressed in both outer and inner hair cells, and was used to mark

surviving hair cells. Increasing doses of gentamicin resulted in an

increased hair cell death as measured from the middle turn of

cochlear cultures, with 46% myosin7a-positive hair cells remaining

after treatment with 0.25 mM gentamicin (Figure 1D–H).

To study the time course of AG uptake, we conjugated

gentamicin with Texas Red as previously described [33] and

applied it to cultured cochlear organs. To test the hypothesis that

tip-links are required for AG uptake into hair cells, we studied the

Cdh23v2J mouse line, which has a point mutation resulting in

dysfunctional alternative splice forms and deficient tip-links

[17,37]. Time lapse imaging using two-photon microscopy

revealed rapid uptake of gentamicin-conjugated Texas Red

(GTTR) into wildtype and Cdh23v2J/+ sensory hair cells

(Figure 2A–B), with t1/2 being 8.760.2 and 7.460.2 min,

respectively (Figure 2D). By contrast, GTTR was not detected in

Cdh23v2J/v2J hair cells within the same timeframe (t1/

2 = 27086513 min)(Figure 2C–D).

Because AG entry is necessary for hair cell toxicity [6,38], we

investigated whether a reduction of AG uptake would prevent loss

of Cdh23v2J/v2J hair cells. Cochleae from Cdh23v2J homozygous

and heterozygous mice were treated with gentamicin and hair cell

survival was assessed and compared to those from wildtype

littermates. Hair cell counts from untreated, cultured cochleae

from the three genotypes were comparable: 177633 (n = 3),

18867 (n = 5), and 17967 (n = 3) hair cells per 400 mm cochlear

length in the middle turn of wildtype, Cdh23v2J/+, and Cdh23v2J/v2J

cochleae, respectively (Figure 3A–C). Exposure to gentamicin

(0.25 mM61 hr) led to significant hair cell loss in the wildtype

(34645 hair cells, n = 9, p,0.01) and Cdh23v2J/+ (47630 hair

cells, n = 19, p,0.001) cochleae two days later (Figure 3D–E, G),

whereas Cdh23-deficient hair cells were protected from degener-

ation induced by gentamicin (208619 hair cells, n = 6)(Figure 3F–

G). In comparison to gentamicin-treated wildtype and Cdh23v2J/+

cochleae, gentamicin-treated Cdh23v2J/c2J v2J cochleae exhibited

significantly higher hair cell survival (p,0.001 for both). Immu-

nofluorescent labeling for gentamicin detected drug uptake into

wildtype and Cdh23v2J/+ hair cells, but labeling was notably absent

in Cdh23v2J/v2J hair cells. Together these data suggest that Cdh23

is required for AG uptake and its subsequent toxicity in sensory

hair cells.

Tip-Links Regulate Aminoglycoside Entry
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Calcium Chelation Prevents AG Uptake and Hair Cell Loss
Prior work suggested that Cdh23 mediates stereocilia develop-

ment and so might confound the interpretation of the uptake

experiments in some manner not directly related to MET channel

gating [21,37,39]. To determine if an acute disruption of tip-link

proteins would also affect AG entry, we treated hair cells with the

calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N’,N’-tet-

raacetic acid (BAPTA). The tip-link structures are calcium

dependent and calcium chelation of hair cells leads to tip-link

loss [16,23]. Without prior calcium chelation, GTTR entered and

labeled hair cells in a basal-apical gradient, where the most

robustly labeled cells were found in the basal turn of the cochlea

(Figure 4B–D). We quantified this basal-apical gradient of GTTR

uptake by normalizing GTTR fluorescence intensities to the most

intensely labeled hair cell, typically a basal cell (Table 1).

Histogram plots show a best-fit Gaussian distribution of GTTR

fluorescence intensities among apical hair cells (peak and full width

half maximum (FWHM) = 5.7 and 16.5)(697 cells from 4 cochleae)

and a bimodal distribution among hair cells from the middle

(peaks and FWHM = 19.2 and 18.2 for the first peak and 40.0 and

35.3 for the second peak) and basal turns (peaks and

FWHM = 26.3 and 14.4 for the first peak and 45.6 and 52.3 for

the second peak)(747 and 691 cells from 4 cochleae,

respectively)(Figure 4H–J, Table 1). In tissues pre-treated with

BAPTA, GTTR uptake was remarkably reduced in hair cells of

the middle and basal turns (Figure 4E–G). Quantification of

GTTR fluorescence intensities in myosin7a-positive hair cells

showed that BAPTA treatment reduced GTTR uptake by 82.3%

(1 peak of 720 cells from 4 cochleae) in the middle turn and 58.2

and 75.9% (2 peaks of 676 cells from 4 cochleae) in basal turn

(Figure 4H–J). The uptake of FM1-43 dye, a fluorescent dye

known to permeate hair cell MET channels [5,34], was similarly

reduced in BAPTA-treated cochleae (Figure S2A–B).

We further tested whether calcium chelation conferred protec-

tion against AG toxicity by culturing cochleae with BAPTA and

then gentamicin (0.5 mM61hr), followed by a 48-hr AG-free,

normocalcemic recovery period. When administered alone,

gentamicin caused significant hair cell loss in the middle and

Figure 2. Two-photon time lapse imaging of GTTR uptake into
live Cdh23v2J transgenic mouse cochlear hair cells. P3 cochleae of
mouse litters from Cdh23v2J/+ breeding were isolated and cultured
overnight before treatment with GTTR (3 mM61 hr). A–C) GTTR rapidly
entered into outer hair cells of wildtype and Cdh23v2J/+ cochleae,
whereas GTTR did not enter hair cells of Cdh23v2J/v2J cochleae. Insets
depict magnified views of outer hair cells of cochleae of each genotype
after exposure to GTTR for 60 min. D) Quantification of fluorescence
intensity (AU = arbitrary units) shows that the rate of GTTR uptake
among outer hair cells from wildtype and heterozygous mice were
comparable, while those from homozygous mice had no detectable
drug uptake. Error bars = S.D., scale bar = 20 mm in A–C and 5 mm in
insets.
doi:10.1371/journal.pone.0054794.g002

Figure 3. Cadherin 23 deficiency protects hair cells from gentamicin toxicity. P3 cochleae of mouse litters from Cdh23v2J/+ breeding were
cultured in control (A–C) or gentamicin-containing (0.25 mM) media (D–F). Cultured tissues were immunolabeled for myosin7a (green) and
gentamicin (red). A–C) Untreated, cultured cochleae from wildtype, Cdh23v2J/+, and Cdh23v2J/v2J mice exhibited an organized array of hair cells and no
gentamicin labeling. D–E) Wildtype and Cdh23v2J/+ littermates showed extensive hair cell loss and robust anti-gentamicin labeling following
gentamicin treatment. F) Cdh23v2J/v2J cochleae exposed to gentamicin showed no hair cell loss or gentamicin labeling. G) Quantitative analyses show
that hair cells from Cdh23v2J/v2J homozygous mice were significantly protected from gentamicin. * = p,0.01, ** = p,0.001, error bars = S.D., scale
bar = 25 mm.
doi:10.1371/journal.pone.0054794.g003

Tip-Links Regulate Aminoglycoside Entry
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Figure 4. Disruption of tip-links with BAPTA diminishes GTTR uptake. A) P3 wildtype cochleae were cultured overnight, treated with BAPTA
(5 mM), then exposed to GTTR (1 mM61 hr). Control cultures were rinsed with BAPTA-free media and exposed to GTTR. All images were captured
using identical microscope settings. B–D) In control cochleae, GTTR uptake into hair cells followed a basal-apical gradient, where hair cells in the basal

Tip-Links Regulate Aminoglycoside Entry
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basal turns (Figure 5H–J, N). BAPTA treatment, which by itself

did not cause hair cell loss (Figure 5E–G, N), effectively prevented

hair cell degeneration following AG treatment (Figure 5K–N).

Immunofluorescent labeling for gentamicin was less prominent in

cochleae exposed to both BAPTA and gentamicin compared to

gentamicin alone (not shown). These data indicate that acute

dissociation of tip-links via calcium chelation reduced AG uptake

and toxicity in hair cells.

Aminoglycosides Enter and Damage Hair Cells
Recovering from Calcium Chelation

The tip-link complex regenerates under normocalcemic condi-

tions within 24 hours after disruption by calcium chelators

[23,24,25]. To determine whether the mechanisms mediating

AG uptake in hair cells recover from calcium chelation, we

exposed cochleae to GTTR at 6 or 24 hours after BAPTA

treatment. At 6 hours after BAPTA treatment, GTTR uptake was

detectable among hair cells in the middle and basal turns of the

cochlea, decreasing in a basal-apical gradient. As a group,

BAPTA-treated cochleae showed significantly lower fluorescence

intensities than those from untreated, time-matched controls

(Figures 6B–G, 7A–C, Table 1). When compared to the same

turns from untreated, time-matched controls, BAPTA-treated

organs demonstrated lower GTTR fluorescence intensities in the

middle (36.9%, single peak of 731 cells from 4 cochleae) and basal

turns (41.3 and 72.0%, 2 peaks of 649 cells from 4 cochlea)

(Figure 7D’–F’).

When GTTR was added 24 hours after BAPTA treatment,

robust drug uptake was noted and the basal-apical gradient was

maintained (Figure 6H–M). Quantification of fluorescence inten-

sities showed that GTTR uptake was comparable between

BAPTA-treated hair cells and those in parallel controls

(Figure 7D–F, Table 1). In comparison to fluorescence intensity

signals in the same turn in untreated, time-matched tissues, hair

cells from middle and basal turns of BAPTA-treated cochleae have

regained most of their ability to take up GTTR: 5.7% lower in the

middle turn (830 cells from 6 cochleae) and 6.1% in the base (673

cells from 6 cochleae)(Figure 7D’–F’).

To determine if this recovered ability for AG to enter hair cells

can lead to toxicity, we applied gentamicin (0.5 mM61 hr) to

cochleae 24 hours after BAPTA treatment and allowed an

additional 48-hour AG-free culture period (Figure 8A). With this

treatment paradigm, we found significant hair cell loss in organs

pre-treated with BAPTA followed by gentamicin to an extent

comparable to gentamicin treatment alone (Figure 8B–NO).

These lines of evidence suggest that sensory hair cells exposed to

calcium chelation regenerate the machinery necessary for AG

uptake and toxicity.

Discussion

Inner ear sensory hair cells are essential for normal auditory

function. Preventable insults including noise and AGs can cause

hair cell degeneration and permanent hearing loss [2,3]. Because

drug entry is necessary for toxicity, understanding AG entry has

important therapeutic implications. Here, we show that the tip-

link complex is required for AG entry and toxicity in cochlear hair

cells.

Independent lines of research have demonstrated that AGs

enter hair cells via the MET channels and that blocking this entry

route prevented toxicity [4,5,6]. Alternative uptake pathways such

as via endocytosis and transient receptor potential channels have

also been described in sensory hair cells [13,14,38]. Upon calcium

chelation, tip-link structures and MET channel currents are lost,

both of which spontaneously return within 24 hours [23,24,25].

Our observation that AG entry and toxicity were temporarily

suppressed after BAPTA treatment correlated with the reported

time course of initial decrease and subsequent return of MET

channel currents [24,25], thus supporting the model where AGs

enter hair cells via the MET channels and that patent MET

channels are required for AG toxicity (Figure 1C) [6].

Alagramam et al. examined mouse models deficient in the tip-

link protein Pcdh15, the proposed binding partner of Cdh23 and

found reduced uptake of gentamicin in Pcdh15av6J/av6J mutants and

no uptake in Pcdh15av3J/av3J mutants [17]. However, Pcdh15av6J/av6J

hair cells were susceptible to hair cell degeneration caused by

gentamicin, while Pcdh15av3J/av3J hair cells were protected.

Interestingly, this difference in AG uptake reduction correlated

with the degree of morphological integrity of tip-link-like

structures between the two mouse models [17]. In support of the

notion that tip-link integrity predicts AG uptake and toxicity in

hair cells, Cdh23v2J/v2J hair cells, like Pcdh15av3J/av3J hair cells, are

deficient in tip-links under scanning electron microscopy [17] and

are shown in the current study to fail to take up AG and thus

protected from its damage.

turn were the most robustly labeled. E-G) BAPTA pre-treatment reduced GTTR uptake into hair cells throughout the cochlea. H-J) The fluorescence
intensity of outer hair cells was quantified and normalized to the most intensely labeled cell among cultured organs at this time point. Histogram
plots showing the distribution of normalized GTTR fluorescence intensity indicate that BAPTA exposure significantly reduced GTTR uptake (also see
Table 1). A bimodal distribution was observed in the middle and basal turns. Scale bar = 25 mm in B–G and 5 mm in inset in D’.
doi:10.1371/journal.pone.0054794.g004

Table 1. Gentamicin-conjugated Texas Red uptake in hair cells after calcium chelation with BAPTA++.

Apex Middle Base

Time after BAPTA Control BAPTA Control BAPTA Control BAPTA

10 min: Peak(s)(FWHM)* 5.7(16.5) 6.1(8.7) 19.2(18.2), 40.0(35.3) 3.4(17.3), 26.3(14.4), 45.6(52.3) 11.0(11.6),
11.0(44.0),

6 hr: Peak(s)(FWHM) 7.0(9.2) 6.5(14.0), 12.2(8.6), 12.2(30.8) 7.7(14.7) 14.3(22.7), 59.6(50.8) 4.0(23.8),
35.0(30.2)

24 hr: Peak(s)(FWHM) 15.3(11.5), 15.3(45.5) 13.9(12.3), 27.3(11.4), 41.8(35.8) 39.4(33.9), 52.7(43.6), 127.3(35.3) 49.5(35.5)

+Normalized fluorescence intensity in outer hair cells from 4–6 cochleae.
*Full width half maximum.
doi:10.1371/journal.pone.0054794.t001
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Figure 5. BAPTA pre-treatment reduces gentamicin toxicity in hair cells. A) Cultured cochleae from P3 wildtype mice were treated with
BAPTA (5 mM) before gentamicin exposure (0.5 mM61 hr). After an additional 48 hr AG-free recovery period, tissues were fixed and immunolabeled
for myosin7a (green). B–G) Untreated cochlear cultures and cochlear organs treated with BAPTA only did not show hair cell loss. H–J) Gentamicin-
treated cultures showed degeneration and a disarrayed arrangement of hair cells. K–M) Pre-treatment with BAPTA led to improved hair cell survival in
comparison to treatment with gentamicin alone. N) Quantitative analysis of myosin7a-positive hair cell counts show significantly more hair cells in
BAPTA pre-treated organs than those exposed to gentamicin alone. Error bars = S.D., * = p,0.001, scale bar = 25 mm.
doi:10.1371/journal.pone.0054794.g005

Tip-Links Regulate Aminoglycoside Entry

PLOS ONE | www.plosone.org 8 January 2013 | Volume 8 | Issue 1 | e54794



Tip-Links Regulate Aminoglycoside Entry

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e54794



As a component of the tip-link complex in mature hair cells,

Cdh23 has also been implicated in stereocilia development

[21,37,39,40]. While one interpretation of the decreased AG

uptake and toxicity in Cdh23v2J/v2J hair cells is that they resulted

from dysfunctional tip-links, it is possible that other members of

the MET machinery, some of which have yet to be identified, were

misregulated during development as a result of Cdh23 deficiency.

In support of this possibility, electrophysiological measurements of

Figure 6. BAPTA-treated hair cells gradually regain ability to take up GTTR. A) Cochleae were cultured overnight, treated with BAPTA
(5 mM), incubated in normocalcemic media for another 6 or 24 hr, and then exposed to GTTR (1 mM61 hr). Control cochleae did not receive BAPTA
treatment and were cultured for the same durations. B–D) At the 6 hr recovery time point, GTTR uptake was noted among hair cells from control
tissues and followed a basal-apical gradient. E–G) GTTR uptake was diminished among BAPTA-treated organs. H–M) After another 24 hr in culture,
BAPTA-treated hair cells and those from untreated, time-matched controls shared a similar degree and pattern of GTTR uptake. Scale bar = 25 mm.
doi:10.1371/journal.pone.0054794.g006

Figure 7. Histogram plots of hair cell GTTR fluorescence. A–C) Six hours after BAPTA treatment, hair cells showed diminished GTTR uptake
(green) in comparison to untreated controls. Bimodal distributions were observed in both BAPTA-treated and untreated organs. D–F) Twenty-four
hours after BAPTA exposure, GTTR uptake in treated hair cells (green) was comparable to controls (red). D’–F’) GTTR uptake gradually increased with
longer durations after calcium chelation treatment. Percentages indicate fluorescence intensities from the BAPTA-treated group in comparison to
those from the same cochlear turn from untreated, time-matched controls. When one peak is present in the BAPTA group and two peaks in control,
the peak with a larger area under the curve was chosen for comparison.
doi:10.1371/journal.pone.0054794.g007
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Cdh23v2J/v2J hair cells found both reduced mechanosensitivity and

abnormal directional sensitivity [17]. Nonetheless, Cdh23 is

necessary for tip-link development and regeneration after calcium

chelation as protein fragments masking the putative binding

domains of Cdh23 effectively prevented these events [24].

One proposed explanation for the basal-apical gradient of AG

toxicity is that basal hair cells contain larger MET currents

facilitating AG entry [6,35]. In support of this hypothesis, the

patterns of GTTR uptake and hair cell loss both follow such a

gradient. Upon regeneration of tip-links, AG uptake and toxicity

return to hair cells and their extents again follow a basal-apical

gradient, suggesting that while the tip-link complex is required for

the re-establishment of MET currents along the cochlear turns, it

likely does not play a role in maintaining the tonotopic gradient of

MET current amplitudes, which remained preserved after

regeneration of tip-links. The precise mechanisms controlling the

cochlear tonotopy are yet to be determined [41].

In the neonatal cochlea, maturing hair cells acquire a step-wise

increase in MET channel currents [6,10]. This developmental

process likely mediates the increased AG uptake and toxicity

observed in more mature hair cells, a relationship also noted in the

zebrafish lateral line system [9]. Upon calcium chelation, AG

uptake and toxicity were temporarily suppressed and subsequently

returned in hair cells to an extent comparable to untreated, time-

matched cochleae (Figure 6H–M, 7D–F). Therefore, a temporary

break in tip-links is unlikely to impact the maturation process of

MET channel amplitude that normally occurs in vitro [10].

In birds, acoustic trauma induces loss of tip-links followed by a

partial return [42,43]. Although the time course of regeneration

in vitro closely parallels that of temporary threshold shifts, whether

tip-links similarly break and recover in mammals after noise is

unclear. It is long known that antecedent noise exposure

exacerbates the toxicity resulting from subsequent aminoglycoside

administration [44]. Recently, Li et al. demonstrated that prior

temporary threshold shifts caused by chronic noise exposure led to

enhanced AG accumulation in sensory hair cells [45]. This finding

may result from increased drug trafficking across the blood-

labyrinth barrier [45], thus raising AG concentration in the

endolymph compartment where hair cell stereocilia reside. Indeed,

increased entry of other cationic compounds comparable to AG

have been observed after noise exposure [46]. However, it is

important to note that the temporal relationship between noise

and AG treatments influences their combined effects on the

cochlea as concurrent exposure failed to potentiate AG uptake

[45] and only induced a modest increase in hair cell loss and

threshold shift [44]. In addition to the breakdown of blood-

labyrinth barrier and hair cell tip-links, it is probable that other

cellular changes occurring during temporary threshold shifts can

influence AG uptake and/or toxicity in hair cells, further

complicating the relationship between acoustic trauma and AG

ototoxicity. It would be of interest to evaluate whether an acute

and selective loss of tip-links causes temporary threshold shifts

preventing aminoglycoside uptake and toxicity in vivo.

In summary, our data show that tip-links, as components of the

mechanotransduction machinery, are required for AG uptake and

its subsequent toxicity in sensory hair cells. Because tip-links

readily regenerate, our study provides insights into a possible

therapeutic target to limit AG entry and toxicity in sensory hair

cells. However, such an approach will require better understand-

ing of AG entry mechanisms and its subsequent effects on other

cochlear cell types.

Supporting Information

Figure S1 Comparison of BAPTA application methods
on gentamicin-induced hair cell toxicity. The dripping

method involves adding droplets of BAPTA-containing media

directly on top of the cochlea, whereas BAPTA-containing media

was added as a steady stream aimed directly at the cochlea in the

squirting method. A) Both methods provided significantly

improved hair cell survival, although we observed higher

variability with the dripping method as indicated by larger

standard deviations in all three turns. B) Twenty-four hours after

BAPTA treatment, organs treated with either method showed

comparable degrees of hair cell loss to organs treated with

gentamicin alone. Error bars = S.D., * = p,0.01.

(TIFF)

Figure S2 BAPTA treatment reduces FM1-43 dye uptake
into hair cells. Shown are representative images of middle turns

of cochleae (n $3) treated with FM1-43 (5 mM615 sec)(A) or pre-

treated with BAPTA before FM1-43 administration (B). Live

tissues were imaged using identical microscope settings. Robust

labeling of hair cells by FM1-43 was notably reduced after BAPTA

treatment. GER = greater epithelial ridge. Scale bar = 25 mm.

(TIFF)
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