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1 Introduction

Given the remarkable confirmation of microscopic Standard Model and QCD physics

through the Large Hadron Collider program, it appears well-motivated to work out how the

same interactions behaved in the macroscopic thermal environment of the Early Universe.

Whereas there are good tools available for doing this for thermodynamic quantities such

as the overall equation of state, much less is known about real-time rates, such as particle

production rates or the equilibration rates related to the most weakly interacting degrees

of freedom. Indeed, in most cases only phenomenological estimates or leading-order (LO)

weak-coupling expressions are available. Given the known infrared problems of thermal

field theory, which imply that next-to-leading order (NLO) corrections may be surprisingly

large, further work is needed in order to get an impression on the numerical accuracy of

the results currently available.

In relativistic thermal field theory, the structure of the weak-coupling expansion de-

pends sensitively on the physical scales of the problem. Focussing on the simplest situa-

tion, in which there is only one zero-temperature mass scale, denoted by the invariant mass

squared K2 > 0, there are different “regimes” depending on the ratio K2/(πT )2.1 In the

1To be precise, because of the absence of Lorentz invariance within a heat bath the magnitudes of

k± ≡ (k0 ± k)/2 need to be separately compared with πT , and the number of regimes may proliferate.
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Figure 1. An example of how during the cosmological evolution, different kinematic regimes are

crossed in the thermal production of a particle species with a fixed invariant mass K2 ≡ M2. A

generic weak gauge coupling is denoted by g [α ≡ g2/(4π)], and kav is defined by eq. (8.3). If a fixed

invariant energy (E
µ−

+E
µ+)2 − (k

µ−
+ k

µ+)2 ≃ 1GeV2 of a dilepton pair is considered, a similar

evolution takes place during a heavy ion collision, however the temperature range is rather narrow.

so-called non-relativistic regime, K2 ≫ (πT )2, results can be represented in the form of

an Operator Product Expansion [1], and thermal corrections are in general small (power-

suppressed). In contrast, in the so-called ultrarelativistic regime, K2 ≪ (πT )2, the naive

loop expansion breaks down, and extensive resummations (incorporating for instance the

physics of the Landau-Pomeranchuk-Migdal effect) are needed for determining even the

LO result. The current technology for this has been developed in the context of the photon

production rate from a QCD plasma [2–4]2 and subsequently reformulated and applied to

the right-handed neutrino production rate from a Standard Model plasma [8–10]. (Very re-

cently the photon production rate has been determined up to NLO [11], which here means

O(α1/2) rather than the usual O(α), where α ≡ g2/(4π).)

The focus of the present paper is the so-called relativistic regime, K2 ∼ (πT )2. Such

results may permit for an interpolation between the non-relativistic and ultrarelativistic

cases, thereby perhaps yielding phenomenologically broadly applicable expressions (the

cosmological evolution is illustrated in figure 1). At NLO, which in the relativistic regime

means O(α), no infrared divergences are expected to be encountered in the full result,

and there is no need for resummations either. However, because of the loss of Lorentz

symmetry within a thermal bath, the analysis is technically cumbersome. This is the case

particularly if a non-zero momentum k ≡ |k| 6= 0 is considered, in which case even LO

expressions are non-trivial [12]. Nevertheless, as will be demonstrated, NLO results can be

worked out with some effort.

2Similar resummations are needed for dilepton production in the soft regime K2 ≪ (πT )2 [5–7].
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Examples of concrete applications that we have in mind are the right-handed neutrino

production rate in the Early Universe, motivated by leptogenesis or dark matter computa-

tions [13, 14], and the dilepton production rate in hot QCD, motivated by heavy ion collision

experiments. For the former, the NLO level has already been reached in the non-relativistic

regime [15, 16]. For the latter, the NLO level was reached long ago at vanishing momentum

in the relativistic regime [17–19]. More recently, the case of a vanishing momentum in the

relativistic regime has been studied more generally [20], expressing results in terms of a

finite number of universal “master” structures; in particle language the cases considered

were the (off-shell) thermal axion and dilaton [20] or graviton [21] production rates. (The

physical relevance of these computations is related to lattice determinations of the corre-

sponding “transport coefficients”, which are the rate of anomalous chirality violation and

the bulk and shear viscosities. Indeed, because of the necessity of analytic continuation

from Euclidean signature, ultraviolet features need to subtracted from non-perturbative

data before an extrapolation to k0 → 0 becomes possible even in principle [22–24].)

The purpose of the present paper is to evaluate the spectral function corresponding

to the most complicated 2-loop master topology (figure 2) at non-zero momentum in the

relativistic regime. This topology has merited extensive investigations under other circum-

stances. Indeed, at zero temperature in 3 space-time dimensions even the massive case

can be solved [25], whereas in the physical 4-dimensional case the result has an extremely

rich structure [26] which, despite a vast body of work, still remains under further investi-

gation today (see, e.g., ref. [27] and references therein). In the massless limit, however, the

result vanishes at zero temperature. Nevertheless the spectral function (cut) is non-zero

and possesses a rich structure at finite temperature. Previous thermal analyses exist at

zero momentum [20] as well as at zero energy but non-zero momentum [28], the latter case

corresponding to the space-like domain relevant for the physics of plasma screening.

Recently, a separate line of study of thermal particle production in the relativistic

regime has been initiated whose goals appear to partly overlap with those of the present

paper [29]. The authors give a 4-dimensional integral representation for the gauge boson

contribution to the right-handed neutrino production rate, but no numerical evaluation

is shown. Given the technical complexity of the problem, it appears welcome that two

independent and methodologically different computations are being pursued, permitting in

the end to crosscheck the validity of both results.

The plan of this paper is the following. We start by recalling how NLO results for two

physical observables can be expressed in terms of a finite number of simple master sum-

integrals (section 2). After carrying out Matsubara sums, the cut of the most complicated

master can furthermore be decomposed into processes representing real and virtual correc-

tions (section 3). The real corrections are analyzed in section 4, showing that through a

suitable choice of variables they can be given a 2-dimensional integral representation (soft

and collinear divergences are regulated by an auxiliary mass parameter at this stage); the

same task is accomplished for the virtual corrections in section 5. Both real and virtual

corrections are divergent if the auxiliary mass parameter is sent to zero; in section 6 it is

shown that the sum remains finite. Finally a form suitable for practical evaluation is given

in section 7, whereas numerical comparisons with known limiting values comprise section 8.

A brief summary and outlook is offered in section 9.

– 3 –
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2 Physical observables

To underline the significance of the master spectral function considered, we start by recall-

ing two separate physics contexts in which it plays a role.

To leading order in αem ≡ e2/(4π), the production rate of µ−µ+ pairs from a hot QCD

medium can be expressed as [30–32]

dNµ−µ+

d4Xd4K =
∑

qq′

−2e4QqQq′ θ(K2 − 4m2
µ)

3(2π)5K2

(

1 +
2m2

µ

K2

)(

1−
4m2

µ

K2

)
1
2

nB(k0)ρqq′(K) , (2.1)

where Qq is the electric charge of quark of flavour q in units of e, nB is the Bose distribu-

tion, and

ρqq′(K) ≡
∫

X
eiK·X

〈

1

2

[

Ĵ µ
q (X ), Ĵq′µ(0)

]

〉

T

(2.2)

is the spectral function corresponding to the vector current. (The metric convention K·X =

k0x0 − k · x is assumed.) The spectral function can in turn be expressed as the cut of the

corresponding Euclidean correlator,

ρqq′(K) = Im
[

ΠEqq′(K)
]

kn→−i[k0+i0+]
. (2.3)

Here K = (kn,k) denotes a Matsubara four-momentum, with K2 = k2n + k2, k ≡ |k|.
The Euclidean correlator can be computed with standard path integral techniques. Af-

ter carrying out the Dirac algebra and making use of substitutions of integration variables,

it can be expressed as a sum of a finite number of “master” structures. Up to 2-loop level,

the expression reads

ΠEqq′(K) = 2(D − 2)Ncδqq′
∑

∫

{P}

[

K2

P 2(P −K)2
− 2

P 2

]

(2.4)

+ 4(D − 2)g2NcCFδqq′

{

∑

∫

{P}Q

[

D − 2

Q2P 4
− 2

Q2P 2(P −K)2
− (D − 2)K2

Q2P 4(P −K)2

]

+
∑

∫

{PQ}

[

−D − 2

Q2P 4
+

D − 4

Q2P 2(Q− P )2
+

2

Q2P 2(P −K)2
+

(D − 2)K2

Q2P 4(P −K)2

− D − 4

Q2(Q− P )2(P −K)2
+

1
2 (D − 7)K2

P 2(P −K)2Q2(Q−K)2

+
2(D − 2)K ·Q− (D − 6)K2

Q2P 2(Q− P )2(P −K)2
− K4

Q2P 2(Q− P )2(Q−K)2(P −K)2

]}

.

Here D is the dimensionality of space-time, and CF ≡ (N2
c − 1)/(2Nc). According to

standard conventions, Σ
∫

{P} denotes a sum-integral with fermionic Matsubara momenta,

and Σ
∫

P one with bosonic Matsubara momenta. (The generalization of eq. (2.4) to a finite

quark mass can be found in ref. [33].)

The different terms of eq. (2.4) can be referred to as master sum-integrals; their cuts,

defined in accordance with eq. (2.3), are the corresponding master spectral functions. In

– 4 –
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σ0,K σ0,K

σ2,Q

σ
5
,Q

−
P

σ4,P−K

σ1,P

σ3,Q−K

Figure 2. The master Feynman diagram considered, defined by eq. (2.5). The integration measure

corresponds to a Matsubara sum-integral, and the spectral function is the discontinuity (imaginary

part) of the result once the external Matsubara frequency is analytically continued as kn → −i[k0+

i0+]. Dashed lines represent massless propagators; the wiggly line is regulated through a small mass

parameter, λ, for intermediate stages of the computation. The internal and external lines could be

either fermions or bosons [denoted by σ
µ
= −1 and +1, respectively, with µ ∈ {0, . . . , 5}], however

fermion number conservation is assumed at each vertex.

particular, the most complicated master sum-integral (the only one with 5 different prop-

agators) is defined from now on as

Ij(K)≡ lim
λ→0

∑

∫

PQ

K4

Q2P 2[(Q− P )2 + λ2](Q−K)2(P −K)2
, (2.5)

and is illustrated graphically in figure 2. Note that a mass regulator λ has been introduced

for intermediate stages of the computation. The subscript (. . .)j corresponds to the labelling

of the various masters in ref. [16]. The statistics of P,Q are meant to be interpreted openly,

and are labelled by the indices σ0 . . . σ5 as shown in figure 2.

The indices σ0 . . . σ5 take the value +1 for bosons and −1 for fermions. Assuming

fermion number conservation at each vertex, only three of the indices are independent; we

can choose σ1, σ4, σ5 to play this role. Then

σ0 = σ1σ4 ; σ2 = σ1σ5 ; σ3 = σ4σ5 . (2.6)

The case appearing in eq. (2.4) corresponds to (σ1σ4σ5) =(−−+), and a numerical eval-

uation for the corresponding spectral function, defined in eq. (3.1), is shown in figure 8

below [along the curve in the (k, k0)-plane shown in figure 1].

A completely different physics application, leading to the same master spectral func-

tions but with (partly) different statistics, is that of right-handed neutrino production in

the Early Universe. Again, a gauge-invariant Euclidean correlator can be defined,

ΠE(K) ≡ Tr

{

i /K

[
∫ 1/T

0
dτ

∫

x

eiK·X
〈

(φ̃†aLℓ)(X) (ℓ̄ aRφ̃)(0)
〉

T

]}

, (2.7)

where X ≡ (τ,x); ℓ is a lepton doublet; φ̃ is a Higgs doublet; and aL, aR are chiral

projectors. The production rate now reads

dNν
R
(K)

d4Xd3k
=

2|hν |2
(2π)3k0

nF(k0)ρ(K) , (2.8)

– 5 –
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where nF is the Fermi distribution; hν a bare neutrino Yukawa coupling; and k0 =√
k2+M2, with M denoting the right-handed neutrino mass. The spectral function ρ

is obtained from the cut of the Euclidean correlator ΠE just like in eq. (2.3).

The 2-loop expression for ΠE can be written in a form analogous to eq. (2.4) [16]:

ΠE(K) =−∑

∫

P

[

2

P 2
+

2K2

P 2(P −K)2

]

+
∑

∫

{P}

2

P 2

+ 12λh

∑

∫

PQ

[

1

Q2P 4
− 1

Q2P 2(P −K)2
+

K2

Q2P 4(P −K)2

]

+ 2Nc|ht|2
∑

∫

P{Q}

[

− 2

Q2P 4
+

1

Q2P 2(Q−P )2
+

2

Q2P 2(P−K)2
− 2K2

Q2P 4(P−K)2

− 1

Q2(Q− P )2(P −K)2
+

K2

Q2P 2(Q− P )2(P −K)2

]

+
g21 + 3g22

2

{

∑

∫

PQ

[

D − 1

Q2P 4
− 2

Q2P 2(Q−P )2
− 1

Q2P 2(P−K)2
+

(D − 1)K2

Q2P 4(P−K)2

+
2K2

P 2(P −K)2Q2(Q−K)2
− 4K2

Q2P 2(Q− P )2(P −K)2

+
2K4

Q2P 2(Q− P )2(Q−K)2(P −K)2

]

+
∑

∫

{P}Q

[

−D − 2

Q2P 4
+

(D − 2)K2

Q2P 4(P −K)2
+

2(D − 2)K ·Q− 4K2

Q2P 2(Q− P )2(P −K)2

]

+
∑

∫

P{Q}

[

2

Q2P 2(Q− P )2
− D − 2

Q2P 2(P −K)2

]

+
∑

∫

{PQ}

[

D − 2

Q2P 4
− (D − 2)K2

Q2P 4(P −K)2

]}

. (2.9)

Here λh is the Higgs self-coupling, ht is the top Yukawa coupling, and g1, g2 are the

hypercharge and weak gauge coupling, respectively.

The master sum-integrals appearing in eq. (2.9) are identical to those in eq. (2.4),

apart from their statistics. Noting that K is now fermionic, the most complicated case,

eq. (2.5), appears with the indices (σ1σ4σ5) = (+−+). A numerical evaluation is presented

in figure 8 along the curve in the (k, k0)-plane shown in figure 1.

The two examples discussed should serve as illustrations of concrete applications of

the spectral function related to eq. (2.5), but do not exhaust the cases considered in the

literature. In particular, physical observables leading to the case (σ1σ4σ5) = (+++) have

been analyzed in some detail for k = 0 in the relativistic regime in refs. [20, 21], and for

k 6= 0 in the non-relativistic regime in refs. [34–36].

As a final remark we mention that above the physical observable was a Lorentz scalar,

and subsequently the master structures are scalars as well. In the right-handed neutrino

case it may be of interest to ultimately compute the whole self-energy matrix. In this case

– 6 –
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tensor sum-integrals appear apart from scalar ones; the corresponding results have been

worked out in the non-relativistic regime in ref. [37]. A general discussion concerning the

thermal tensor basis can be found in ref. [38].

3 Splitup into real and virtual corrections

Given eq. (2.5), the corresponding spectral function can be defined as

ρI
j
≡ Im{Ij}kn→−i[k0+i0+] . (3.1)

It is well established at 1-loop level that the cut yields a structure reminiscent of a Boltz-

mann equation, with scattering amplitudes squared multiplied by appropriate phase space

distributions [39]. A similar result applies at 2-loop level, but is somewhat complicated

by the fact that now virtual particles also appear. In any case, making use of standard

techniques, explained in some detail for instance in appendix A of ref. [40], and shifting

four-momenta, the following result can be obtained:

2ρI
j
(K)

K4
=

∫

p,q,r

(2π)4δ(4)(−K + P +Q+R)

8ǫpǫqEr

×P
{

[1 + nσ4
(ǫp)][1 + nσ2

(ǫq)][1 + nσ5
(Er)]− nσ4

(ǫp)nσ2
(ǫq)nσ5

(Er)

(K − P)2(K −Q)2

}

(r1)

+

∫

p,q,r

(2π)4δ(4)(−K − P +Q+R)

8ǫpǫqEr

×P
{

nσ4
(ǫp)[1 + nσ2

(ǫq)][1 + nσ5
(Er)]− [1 + nσ4

(ǫp)]nσ2
(ǫq)nσ5

(Er)

(K + P)2(K −Q)2

}

(r2)

+

∫

p,q,r

(2π)4δ(4)(−K + P −Q+R)

8ǫpǫqEr

×P
{

[1 + nσ4
(ǫp)]nσ2

(ǫq)[1 + nσ5
(Er)]− nσ4

(ǫp)[1 + nσ2
(ǫq)]nσ5

(Er)

(K − P)2(K +Q)2

}

(r3)

+

∫

p,q,r

(2π)4δ(4)(−K + P +Q−R)

8ǫpǫqEr

×P
{

[1 + nσ4
(ǫp)][1 + nσ2

(ǫq)]nσ5
(Er)− nσ4

(ǫp)nσ2
(ǫq)[1 + nσ5

(Er)]

(K − P)2(K −Q)2

}

(r4)

+

∫

p

2πδ(−k0 + ǫpk + ǫp)

4ǫpǫpk

[

1 + nσ4
(ǫpk) + nσ1

(ǫp)
]

×
∫

q

P

{ 1
2 + nσ2

(ǫq)

2ǫq

1

[(Q−P)2 − λ2](Q−K)2

∣

∣

∣

∣

q0=±ǫq

(v1)

+
1
2 + nσ3

(ǫqk)

2ǫqk

1

[(Q−P)2 − λ2]Q2

∣

∣

∣

∣

q0=k0±ǫ
qk

(v2)

+
1
2 + nσ5

(Eqp)

2Eqp

1

Q2(Q−K)2

∣

∣

∣

∣

q0=p0±Eqp

}

p0=ǫp, k0=ǫp+ǫ
pk

(v3)

– 7 –
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+

∫

p

2πδ(−k0 − ǫpk + ǫp)

4ǫpǫpk

[

nσ4
(ǫpk)− nσ1

(ǫp)
]

×
∫

q

P

{ 1
2 + nσ2

(ǫq)

2ǫq

1

[(Q−P)2 − λ2](Q−K)2

∣

∣

∣

∣

q0=±ǫq

+
1
2 + nσ3

(ǫqk)

2ǫqk

1

[(Q−P)2 − λ2]Q2

∣

∣

∣

∣

q0=k0±ǫ
qk

+
1
2 + nσ5

(Eqp)

2Eqp

1

Q2(Q−K)2

∣

∣

∣

∣

q0=p0±Eqp

}

p0=ǫp, k0=ǫp−ǫ
pk

+(k0 → −k0) + (σ2 ↔ σ1, σ4 ↔ σ3) . (3.2)

Here P refers to principal value integration which renders changes of integration variables

unproblematic; and

K ≡ (k0,k) , P ≡ (ǫp,p) , Q ≡ (ǫq,q) , R ≡ (Er, r) , (3.3)

ǫp ≡ |p| , ǫpk ≡ |p− k| , Er ≡
√

r2 + λ2 , Eqp ≡
√

(q− p)2 + λ2 . (3.4)

Furthermore the phase space distributions are defined as

nσ(ǫ) ≡
σ

eǫ/T − σ
, σ = ±1 ;

n+(ǫ) = nB(ǫ) ≡ 1

eǫ/T − 1
, n−(ǫ) = −nF(ǫ) ≡ −1

eǫ/T + 1
. (3.5)

The notation (. . .)|q0=±ǫq implies that terms with both signs be summed together. The

channels labelled by (r1)–(r4) are referred to as real corrections; (v1)–(v3) as virtual cor-

rections. The corresponding physical processes are illustrated in figure 3.

The last line of eq. (3.2) adds terms with k0 → −k0, which can be shown to render the

spectral function antisymmetric in this exchange. In the following we restrict to k0 > 0,

and in this case only the terms (r1)–(r4) and (v1)–(v3) contribute. (The unlabelled virtual

corrections below (v3) in eq. (3.2) only contribute in the space-like domain.)

4 Real corrections

Many numerical evaluations of phase space integrals like (r1)–(r4) can be found in the

literature, but we are not aware of a previous representation as a 2-dimensional integral.

As is now demonstrated, a fairly explicit expression can be obtained even for λ 6= 0.

4.1 Integration variables

As is common in particle kinematics, a fruitful approach is to represent a complicated

phase space as a convolution of simpler ones [41]. Taking case (r1) from eq. (3.2) as an

– 8 –
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(r1)
σ0,K

σ0,K

σ2 Q

σ5 R

σ4 P

σ 1
,K
−P

σ 3
,K
−Q

σ0,K
σ0,K

σ1 Q

σ5 R

σ3 P

σ
4 ,K−Q

σ
2 ,K−P

(r2)

σ0,Kσ0,K

σ4,Pσ4,P
σ5 R

σ2 Q
σ3 K−Q

σ1,K+P

σ0,K σ0,K

σ3,P σ3,P
σ5 R

σ1 Q
σ4 K−Q

σ2,K+P

(r3)

σ0,K σ0,K

σ2,Q σ2,Q
σ5 R

σ4 P
σ1 K−P

σ3,K+Q

σ0,Kσ0,K

σ1,Qσ1,Q
σ5 R

σ3 P
σ2 K−P

σ4,K+Q

(r4)

σ0,K

σ0,Kσ5,R

σ5,R

σ2 Q

σ4 P

σ1 K−P σ3 K−Q

σ0,K

σ0,K σ5,R

σ5,R

σ1 Q

σ3 P

σ2 K−Pσ4 K−Q

(v1-v3)
σ0,K σ0,K

σ4,K−P

σ1 P σ
5
,P

−
Q

σ2,Q

σ3,K−Q

σ0,Kσ0,K

σ3,K−P

σ2 P

σ
5
,P

−
Q

σ1,Q

σ4,K−Q

Figure 3. Graphical illustrations of the cut of figure 2, given explicitly in eq. (3.2). Only the

decay channels are shown, but as the phase space distributions in eq. (3.2) indicate, the inverse

processes are included as well. The processes (r2), (r3), (r4) represent interference terms between

(u, s), (t, s) and (t, u) channels. For the virtual corrections the labelling (v1)–(v3) refers to cases in

which different internal lines of the closed loop have a thermal weight.

example, we may rewrite it as

ρr1 ≡
∫

p,q,r

(2π)4δ(−k0 + ǫp + ǫq + Er)δ
(3)(−k+ p+ q+ r)

8ǫpǫqEr

Φr1(ǫp|ǫq|Er|·)

=

∫

p,q

2πδ(−k0 + ǫpk + ǫq + Eqp)

8ǫpkǫqEqp

Φr1(ǫpk|ǫq|Eqp|·)

=

∫ ∞

−∞
dp0

∫

p,q

2πδ(−k0 + ǫpk + p0)δ(−p0 + ǫq + Eqp)

8ǫpkǫqEqp

Φr1(k0 − p0|ǫq|p0 − ǫq|·) , (4.1)
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where in the first step we substituted p → k− p and integrated over r; and in the second

step introduced a variable p0 implementing the convolution. The function Φr1 contains

phase space distributions as well as propagators; the symbol “·” stands for variables not

shown explicitly.

The key observation now is that the first three arguments of Φr1, which appear in the

phase space distributions, do not contain the variable p. Therefore, it is advantageous to

take p0 and q as the outer integration variables; and p as well as one azimuthal angle that

is not fixed by the δ-constraints as the inner ones. The inner integrations contain no phase

space distributions and, as we will see, can be carried out explicitly. They also turn out to

capture collinear phase space singularities in a manageable form.

The only challenge with this strategy is that it is tedious to work out the limits of

the p-integration in the plane (p0, q). Nevertheless, with some work, this challenge is

surmountable. Employing the labelling shown in figure 4, the ranges for the case (r1) are

[k± ≡ (k0 ± k)/2]:

(a) : p ∈
(

q −
√

(q − p0)2 − λ2, q +
√

(q − p0)2 − λ2
)

, (4.2)

(b) : p ∈
(

q −
√

(q − p0)2 − λ2, 2k+ − p0

)

, (4.3)

(b) : p ∈
(

2k− − p0, q +
√

(q − p0)2 − λ2
)

, (4.4)

(c) : p ∈
(

2k− − p0, 2k+ − p0

)

, (4.5)

(c̃) : p ∈
(

p0 − 2k−, q +
√

(q − p0)2 − λ2
)

, (4.6)

(d) : p ∈
(

−q +
√

(q − p0)2 − λ2, 2k+ − p0

)

, (4.7)

(e) : p ∈
(

p0 − 2k−, 2k+ − p0

)

, (4.8)

(e) : p ∈
(

−q +
√

(q − p0)2 − λ2, q +
√

(q − p0)2 − λ2
)

. (4.9)

As it turns out, the situations k0 < 2k +
√
k2 + λ2 and k0 > 2k +

√
k2 + λ2 need to be

handled separately, and this leads to the two cases (c) and (c̃).

With the ranges at hand, the integrals over the angles

cosχ ≡ p · k
pk

, cos θ ≡ p · q
pq

(4.10)

can be carried out in eq. (4.1), thereby removing the two δ-functions. We are left with

ρr1 =
1

(4π)3k

∫

Ωr1

dp0 dq

∫ pmax(p0,q)

pmin(p0,q)
dp

〈

Φr1(k0 − p0|q|p0 − q|·)
〉

. (4.11)

Here 〈. . .〉 refers to an azimuthal average, and Ωr1 is composed of the domains (a)–(e)

of figure 4.

It is a nice crosscheck to set Φr1 → 1 and carry out the remaining integrals. In the

absence of phase space distributions, the integral is Lorentz-invariant and can alternatively
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k- k
+

k-

k
+

k + λ < k0 < 2k + √(k
2
 + λ2

)

q

a

b

c~

d

e

b
e

g h

i

g_

h

i

j k

k
l f

f
p0

k- k
+

k-

k
+

k0 > 2k + √(k
2
+λ2

)
q

a
b

c
d

e

b

e

g
h

i

g_

h
i

j
k

k l f

f p0

Figure 4. Integration ranges in the (p0, q)-plane for real corrections (for λ = k0/20). The delimiting

curves are q = k+ − λ2/[4(p0 − k+)], q = k
−
− λ2/[4(p0 − k

−
)], q = p0 − k

−
− λ2/(4k

−
), q =

p0 − k+ − λ2/(4k+), as well as q = p0 ± λ. The various channels, separated by the dotted lines and

the gap, are in the middle (r1); at p0 > k0 (r2); at q < 0 (r3); and at q > p0 (r4).

be performed in a suitable frame to find a simple result:

ρr1|Φr1→1 =

∫

p,q,r

(2π)4δ(4)δ(−K + P +Q+R)

8ǫpǫqEr

=
1

(4π)3

[K2

4
− λ4

4K2
+
λ2

2
ln

λ2

K2

]

. (4.12)

This can be reproduced from eq. (4.11), both for k0 < 2k +
√
k2 + λ2 and k0 > 2k +√

k2 + λ2. However, in the thermal case Lorentz symmetry is not particularly helpful

because the plasma defines a special frame, and we need to make use of eqs. (4.2)–(4.9).

The other channels can be handled similarly. For the case (r2), the shift p → p− k

and a subsequent integration over r yields

ρr2 ≡
∫

p,q,r

(2π)4δ(−k0 − ǫp + ǫq + Er)δ
(3)(−k− p+ q+ r)

8ǫpǫqEr

Φr2(ǫp|ǫq|Er|·)

=

∫ ∞

−∞
dp0

∫

p,q

2πδ(−k0 − ǫpk + p0)δ(p0 − ǫq − Eqp)

8ǫpkǫqEqp

Φr2(p0 − k0|ǫq|p0 − ǫq|·)

=
1

(4π)3k

∫

Ωr2

dp0 dq

∫ pmax(p0,q)

pmin(p0,q)
dp

〈

Φr2(p0 − k0|q|p0 − q|·)
〉

. (4.13)

The domain is displayed in figure 4, with the ranges

(f) : p ∈
(

2k+ − p0, p0 − 2k−
)

, (4.14)

(g) : p ∈
(

q −
√

(q − p0)2 − λ2, p0 − 2k−
)

, (4.15)

(h) : p ∈
(

p0 − 2k+, p0 − 2k−
)

, (4.16)

(i) : p ∈
(

−q +
√

(q − p0)2 − λ2, p0 − 2k−
)

. (4.17)
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For the case (r3), the shifts p → k− p, q → −q and a subsequent integration over r yield

ρr3 ≡
∫

p,q,r

(2π)4δ(−k0 + ǫp − ǫq + Er)δ
(3)(−k+ p− q+ r)

8ǫpǫqEr

Φr3(ǫp|ǫq|Er|·)

=

∫ ∞

−∞
dp0

∫

p,q

2πδ(−k0 + ǫpk + p0)δ(p0 + ǫq − Eqp)

8ǫpkǫqEqp

Φr3(k0 − p0|ǫq|p0 + ǫq|·)

=
1

(4π)3k

∫

Ωr3

dp0 dq

∫ pmax(p0,q)

pmin(p0,q)
dp

〈

Φr3(k0 − p0| − q|p0 − q|·)
〉

. (4.18)

In the 2nd step we substituted formally ǫq → −q, which permits us to represent the domain

as displayed in figure 4, with the ranges

(f) : p ∈
(

q +
√

(q − p0)2 − λ2,−q +
√

(q − p0)2 − λ2
)

, (4.19)

(g) : p ∈
(

2k− − p0,−q +
√

(q − p0)2 − λ2
)

, (4.20)

(h) : p ∈
(

2k− − p0, 2k+ − p0

)

, (4.21)

(i) : p ∈
(

q +
√

(q − p0)2 − λ2, 2k+ − p0

)

. (4.22)

Finally, for the case (r4), the shift p → k− p and a subsequent integration over r yields

ρr4 ≡
∫

p,q,r

(2π)4δ(−k0 + ǫp + ǫq − Er)δ
(3)(−k+ p+ q− r)

8ǫpǫqEr

Φr4(ǫp|ǫq|Er|·)

=

∫ ∞

−∞
dp0

∫

p,q

2πδ(−k0 + ǫpk + p0)δ(p0 − ǫq + Eqp)

8ǫpkǫqEqp

Φr4(k0 − p0|ǫq|ǫq − p0|·)

=
1

(4π)3k

∫

Ωr4

dp0 dq

∫ pmax(p0,q)

pmin(p0,q)
dp

〈

Φr4(k0 − p0|q|q − p0|·)
〉

. (4.23)

The domain is displayed in figure 4, with the ranges

(j) : p ∈
(

2k− − p0, 2k+ − p0

)

, (4.24)

(k) : p ∈
(

q −
√

(q − p0)2 − λ2, 2k+ − p0

)

, (4.25)

(k) : p ∈
(

2k− − p0, q +
√

(q − p0)2 − λ2
)

, (4.26)

(l) : p ∈
(

q −
√

(q − p0)2 − λ2, q +
√

(q − p0)2 − λ2
)

. (4.27)

4.2 Crossing symmetry

At zero temperature, the four channels (r1)–(r4) of figure 3 are related by a cross-

ing symmetry, and it is interesting to see how the presence of phase space distribu-

tions in eq. (3.2) changes the situation. Inserting the arguments of Φ as displayed in
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eqs. (4.11), (4.13), (4.18), (4.23) into expressions obtained from eq. (3.2), we find

〈

Φr1(k0 − p0|q|p0 − q|·)
〉

= −
〈

Φr2(p0 − k0|q|p0 − q|·)
〉

= −
〈

Φr3(k0 − p0| − q|p0 − q|·)
〉

= −
〈

Φr4(k0 − p0|q|q − p0|·)
〉

= n−1
σ0

(k0)nσ4
(k0 − p0)nσ2

(q)nσ5
(p0 − q)

×P
{ K4

2(p20 − p2)

〈

1

(k0 − q)2 − ǫ2qk

〉

(k0−p0|q|p0−q|·)

}

, (4.28)

where on the last line the arguments (. . . | . . . | . . . |·) refer to ǫpk, ǫq, and Eqp, respec-

tively, and we made use of the fact that the dependence on ǫpk and Eqp is quadratic [cf.

eqs. (4.35), (4.36), (4.38) below] and that the sign of q inside ǫqk plays no role. To arrive

at eq. (4.28) the conservation of fermion number [cf. eq. (2.6)], leading to σ2σ5 = σ1 etc,

as well as an identity following from eq. (3.5),

σeǫ/Tnσ(ǫ) = −nσ(−ǫ) , (4.29)

were assumed. The universal form in eq. (4.28) implies that the azimuthal average 〈. . .〉
and the subsequent integration over p only need to be carried out for one single function.

4.3 Inner integrations

We now consider the integrations still to be performed, i.e.

I(p0, q) ≡
∫ pmax(p0,q)

p
min

(p0,q)
dpP

{ K4

2(p20 − p2)

〈

1

(k0 − q)2 − ǫ2qk

〉

(k0−p0|q|p0−q|·)

}

. (4.30)

Let us start with the azimuthal average. Parametrizing3

p = p (0, 0, 1) , (4.31)

k = k (sinχ, 0, cosχ) , (4.32)

q = q (sin θ cosϕ, sin θ sinϕ, cos θ) , (4.33)

the integral over ϕ is readily carried out:

∫ π

−π

dϕ

2π
P

(

1

α+ β cosϕ

)

= Re

(

sign(α)
√

α2 − β2

)

, (4.34)

where

α = (k0 − q)2 − k2 − q2 + 2kq cosχ cos θ , β = 2kq sinχ sin θ . (4.35)

3Note that this parametrization can be used both for positive and negative q.
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Furthermore, according to eq. (4.10), the angles can be written as

cosχ =
p2 + k2 − ǫ2pk

2pk
= 1 +

(p− p0 + 2k−)(p+ p0 − 2k+)

2pk
(4.36)

= −1 +
(p− p0 + 2k+)(p+ p0 − 2k−)

2pk
, (4.37)

cos θ =
p2 + q2 + λ2 − E2

qp

2qp
= 1 +

(p− q)2 − [(q − p0)
2 − λ2]

2pq
(4.38)

= −1 +
(p+ q)2 − [(q − p0)

2 − λ2]

2pq
, (4.39)

where ǫpk, Eqp were inserted from the arguments shown in eq. (4.30). It can seen that

at the boundaries of the p-integration, cf. eqs. (4.2)–(4.9), (4.14)–(4.17), (4.19)–(4.22),

(4.24)–(4.27), one of the cosines evaluates to ±1, and correspondingly one of the sines

vanishes. Therefore, at the boundaries the function β given in eq. (4.35) vanishes; this

observation will turn out to be useful in a moment.

Inspecting the expressions it is now possible to realize that, in general, the dependence

of α2 − β2 appearing in eq. (4.34) on p is of the form

α2 − β2 = a p2 + b+
c

p2
. (4.40)

Here a = (k0 − q)2 and the other coefficients are more complicated. Remarkably, this

functional form implies that the integral defined in eq. (4.30) can be carried out:4

I(p0, q) =
K4

4

∫ pmax

p
min

2p dp

p20 − p2
Re

{

sign(α)
√

ap4 + bp2 + c

}

=
K4 sign(α)

4
√

ap40 + bp20 + c

{

ln

∣

∣

∣

∣

p20 − p2min

p20 − p2max

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

(
√

ap40 + bp20 + c+
√

ap4max + bp2max + c)2 − a(p20 − p2max)
2

(
√

ap40 + bp20 + c+
√

ap4min + bp2min + c)2 − a(p20 − p2min)
2

∣

∣

∣

∣

}

. (4.41)

Furthermore, both square roots can be simplified: the prefactor contains the function

F(p0, q) ≡
√

ap40 + bp20 + c

=
√

(q − p0)2K4 − λ2[K2 + 4qp0 − 2k0(q + p0)]K2 + λ4k2 , (4.42)

whereas, as already mentioned in connection with eqs. (4.36)–(4.39), the function β vanishes

for p = pmin and p = pmax. Therefore, according to eq. (4.40),

√

ap4max + bp2max + c = pmax|α(pmax)| , (4.43)

and correspondingly for pmin, where α is the function from eq. (4.35).

4The function α can be positive or negative but not change its sign within the ranges considered.
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To summarize, all spectral functions corresponding to real corrections have 2-

dimensional integral representations:

ρr1 =
πK4n−1

σ0
(k0)

(4π)4k

∫

Ωr1

dp0 dq nσ4
(k0 − p0)nσ2

(q)nσ5
(p0 − q) (4.44)

× sign(α)

F(p0, q)

{

ln

∣

∣

∣

∣

p20 − p2min

p20 − p2max

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

[F(p0, q) + |pmaxα|]2 − (q − k0)
2(p20 − p2max)

2

[F(p0, q) + |pminα|]2 − (q − k0)2(p20 − p2min)
2

∣

∣

∣

∣

}

,

and correspondingly for ρr2, ρr3 and ρr4. It can be recalled from eq. (4.28) that the other

channels come with an overall minus sign, and we also find that sign(α) = −1 for the

channels (r2) and (r4). The integration range Ωr1 +Ωr2 +Ωr3 +Ωr4 is as given in figure 4.

Although well suited for numerical handling, the integral representation in eq. (4.44)

remains fairly complicated in practice as long as λ 6= 0. For λ → 0, the expression simplifies

but is also logarithmically divergent. However, when we sum the result together with

virtual corrections, to which we now turn, the divergences cancel; the resulting expressions

are presented in section 6.

5 Virtual corrections

For k0 > k > 0, the virtual corrections are contained within the terms denoted by (v1)–

(v3) in eq. (3.2), as well as in their reflections (σ2 ↔ σ1, σ4 ↔ σ3). Each of the terms

is factorized into two structures. In the first one the angular integration is immediately

doable, and thereby we can simplify the radial integration measure into
∫

p

2πδ(−k0 + ǫp + ǫpk)

4ǫpǫpk

[

1+nσ4
(ǫpk)+nσ1

(ǫp)
]

=
n−1
σ0

(k0)

8πk

∫ k+

k−

dp nσ4
(k0−p)nσ1

(p) . (5.1)

As far as the q-integrals are concerned, their angular parts can be carried out with the

help of a Feynman parameter, s ∈ (0, 1).5 Considering first the case (v1), we note that

s[(Q−P)2 − λ2] + (1− s)(Q−K)2 = m2
s + 2q · es , (5.2)

where m2
s = (1− s)K2 − sλ2 − 2q0[sp+ (1− s)k0] and es ≡ sp+ (1− s)k. Denoting by z

the angle between q and es, we trivially get
∫ +1

−1

dz

2

1

(m2
s + 2qesz)2

=
1

m4
s − 4q2e2s

. (5.3)

Furthermore, by making use of the constraint k0 = p+ ǫpk implied by eq. (5.1), the length

of es is given by e2s = [sp+ (1− s)k0]
2 − (1− s)K2. The denominator in eq. (5.3) is thus a

2nd order polynomial in s, and the integral over s is also doable:
∫ 1

0

ds

µs2 − 2νs+ ρ
=

1

2
√

ν2 − µρ
ln

ν − ρ−
√

ν2 − µρ

ν − ρ+
√

ν2 − µρ
. (5.4)

5The vacuum part, which is represented by the factors 1
2

in eq. (3.2), could be integrated explicitly by

making use of Lorentz invariance (the result is shown in eq. (5.10) below), however for us it is convenient

to handle it together with the thermal contributions. For a number of other master spectral functions the

vacuum part is divergent at large |q|, but it turns out that even in those cases it is convenient to handle it

together with the thermal contributions for moderate |q|<∼ k0; only the asymptotics at |q| ≫ k0 needs to

be handled separately with a proper ultraviolet regularization.
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As a final step, the terms with q0 = ±ǫq can formally be combined by making use of

1

2
+ nσ2

(−q) = −
[

1

2
+ nσ2

(q)

]

. (5.5)

Thereby the term (v1) can be cast in the form

ρv1 =
πK4n−1

σ0
(k0)

(4π)4k

∫ k+

k−

dp nσ4
(k0 − p)nσ1

(p)

∫ ∞

−∞
dq

[

1

2
+ nσ2

(q)

]

× 1

F(p, q)
ln

∣

∣

∣

∣

2K2q(q − p)− λ2(K2 − 2k0q) + 2qF(p, q)

2K2q(q − p)− λ2(K2 − 2k0q)− 2qF(p, q)

∣

∣

∣

∣

, (5.6)

where F is the same function as appeared in the real corrections, given by eq. (4.42). The

argument of the square root in F is always positive, so that the integrand is well-defined;6

however, the vacuum part of the q-integral in eq. (5.6) is divergent on its own, and the

integral should only be carried out for the sum of the three terms (v1)–(v3).

The second structure (v2) can be reduced to the first one by substituting variables as

p → k− p, q → k− q in eq. (3.2). Effectively, this corresponds to an interchange σ4 ↔ σ1
in eq. (5.6). However, we can subsequently also substitute p → k0 − p, q → k0 − q, and

given that F(p, q) of eq. (4.42) is invariant in this transformation, the result reads

ρv2 =
πK4n−1

σ0
(k0)

(4π)4k

∫ k+

k−

dp nσ4
(k0 − p)nσ1

(p)

∫ ∞

−∞
dq

[

1

2
+ nσ3

(k0 − q)

]

(5.7)

× 1

F(p, q)
ln

∣

∣

∣

∣

2K2(q − k0)(q − p)− λ2[K2 + 2k0(q − k0)] + 2(k0 − q)F(p, q)

2K2(q − k0)(q − p)− λ2[K2 + 2k0(q − k0)]− 2(k0 − q)F(p, q)

∣

∣

∣

∣

.

For the third term (v3), we can substitute q → p− q in eq. (3.2). Eq. (5.2) gets

replaced with

s(P −Q−K)2 + (1− s)(P −Q)2 = m2
s + 2q · es , (5.8)

where now m2
s = λ2 − 2q0(p − sk0), es ≡ p − sk, and q0 = ±Eq. The subsequent steps

go as before, noting that e2s = p2 + s(K2 − 2pk0) + s2k2. Afterwards, it is convenient to

again return to the “original” variables; this can be implemented by first taking Eq as an

integration variable instead of q, and then introducing a “new” q as Eq = |p − q|. In this

way the result can be cast in a form reminiscent of eqs. (5.6), (5.7):

ρv3 =
πK4n−1

σ0
(k0)

(4π)4k

∫ k+

k−

dp nσ4
(k0 − p)nσ1

(p)

[
∫ p−λ

−∞
+

∫ ∞

p+λ

]

dq
∣

∣

∣

1

2
+ nσ5

(p− q)
∣

∣

∣
(5.9)

× 1

F(p, q)
ln

∣

∣

∣

∣

K2(q − p)2 − λ2[K2 + 2qp− k0(q + p)]− λ4

2 −
√

(q − p)2 − λ2F(p, q)

K2(q − p)2 − λ2[K2 + 2qp− k0(q + p)]− λ4

2 +
√

(q − p)2 − λ2F(p, q)

∣

∣

∣

∣

.

The expressions in eqs. (5.6), (5.7), (5.9) contain no expansion with respect to λ. We

have crosschecked numerically in the small-λ regime that picking up the vacuum factors

6It may be noted, however, that the integrand has a non-trivial structure at small q, with the argument of

the logarithm having a zero at q = −λ2/(4p). This (integrable) singularity cancels against a corresponding

one from real corrections, related to structure near the boundaries between the regimes (r1) and (r3) in

figure 4, cf. footnote 7.
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(the “1
2 ”s if the n’s are expressed with positive arguments), their sum is integrable and

reproduces within the achieved resolution a known Lorentz-invariant integral:
∫

Q
P

{

1

[(Q− P )2 + λ2]Q2(Q−K)2

}

P 2=0,K2=−K2,K·P=−K2

2

=
1

(4π)2K2

[

π2

6
− 1

2
ln2

(

λ2

K2 + λ2

)

− Li2

(

λ2

K2 + λ2

)]

. (5.10)

6 Cancellation of divergences

The results in sections 4 and 5 are both divergent if we attempt to send λ → 0 (cf. eq. (5.10)

for the vacuum part). Their sum, however, remains finite as we now demonstrate.

The expressions obtained have two kinds of “singularities”. In terms of figure 4, with

variables suitably renamed for virtual corrections, the integrands have a non-trivial struc-

ture around the boundaries separating the different channels, i.e. q = p0, q = 0, and p0 = k0.

In addition, away from the boundaries, the integrands in general diverge as λ → 0.

The strategy we adopt is to stay away from the boundaries, for instance by setting a

band of width δ around them, and to take the limit λ → 0 within the domains.7 We then

verify the cancellation of the corresponding divergences within the domains, and that the

resulting integrand remains integrable even after ultimately setting δ → 0.

Turning first to the real corrections, eq. (4.44), we simplify the notation from now on

by renaming

p0 → p . (6.1)

Then the following expressions are obtained for the integrand of eq. (4.44) inside the

domains of figure 4:

sign(α)

F(p, q)

{

. . .

}

λ→0→ (a) = −(l) :
1

(p− q)K2
ln

∣

∣

∣

∣

K4(p− q)4

λ4pq(p− k0)(q − k0)

∣

∣

∣

∣

, (6.2)

(b) :
1

(p− q)K2
ln

∣

∣

∣

∣

K2(p− q)2(q − k+)

λ2q(q − k0)(p− k+)

∣

∣

∣

∣

, (6.3)

(b) :
1

(p− q)K2
ln

∣

∣

∣

∣

K2(p− q)2(p− k−)
λ2p(p− k0)(q − k−)

∣

∣

∣

∣

, (6.4)

(c) = (h) = (h) = (j) :
1

(p− q)K2
ln

∣

∣

∣

∣

(p− k−)(q − k+)

(p− k+)(q − k−)

∣

∣

∣

∣

, (6.5)

(c̃) :
1

(p− q)K2
ln

∣

∣

∣

∣

K4(p− q)4

λ4p(q − k0)(p− k−)(q − k+)

∣

∣

∣

∣

, (6.6)

7Actually this requires a somewhat more careful justification, given that according to eq. (4.28) there

is a phase space distribution at each boundary which would diverge if it were bosonic. It turns out that

if the integrand of eq. (4.44) is evaluated within the domains adjacent to the boundaries and we make

the substitution in eq. (6.1), then it cancels exactly against an integrand in one of the virtual corrections,

namely that containing the same potentially divergent phase space distribution. In other words, the 2nd

row of eq. (4.44) evaluated within the domains (a) and (l) of figure 4 cancels against the 2nd row of eq. (5.9);

within (e) and (f) against that of eq. (5.7) once the latter is reflected in p ↔ q; and within (e) and (f)

against that of eq. (5.6). Approximate forms of these cancellations can be seen by contrasting eqs. (6.2)

and (6.15); (6.8) and (6.14) [with p ↔ q]; as well as (6.9) and (6.13).
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(d) :
1

(p− q)K2
ln

∣

∣

∣

∣

q(p− k0)

(p− k+)(q − k−)

∣

∣

∣

∣

, (6.7)

(e) = −(f) :
1

(p− q)K2
ln

∣

∣

∣

∣

K2(p− q)2(p− k0)

λ2(q − k0)(p− k−)(p− k+)

∣

∣

∣

∣

, (6.8)

(e) = −(f) :
1

(p− q)K2
ln

∣

∣

∣

∣

K2(p− q)2q

λ2p(q − k−)(q − k+)

∣

∣

∣

∣

, (6.9)

−(g) = −(g) :
1

(p− q)K2
ln

∣

∣

∣

∣

q(p− k0)

(p− k−)(q − k+)

∣

∣

∣

∣

, (6.10)

−(i) = −(k) :
1

(p− q)K2
ln

∣

∣

∣

∣

K2(p− q)2(q − k−)
λ2q(q − k0)(p− k−)

∣

∣

∣

∣

, (6.11)

−(i) = −(k) :
1

(p− q)K2
ln

∣

∣

∣

∣

K2(p− q)2(p− k+)

λ2p(p− k0)(q − k+)

∣

∣

∣

∣

. (6.12)

These are multiplied by phase space distributions as indicated by eq. (4.28), and in addition

the symmetrization (σ2 ↔ σ1, σ4 ↔ σ3) from the last line of eq. (3.2) needs to be included.

Similar expressions are obtained for the virtual corrections, eqs. (5.6), (5.7), (5.9):

1

F(p, q)
ln

∣

∣

∣

∣

. . .

∣

∣

∣

∣

λ→0→ (v1) :
1

(p− q)K2
ln

∣

∣

∣

∣

λ2p(q − k−)(q − k+)

K2q(p− q)2

∣

∣

∣

∣

, (6.13)

(v2) :
−1

(p− q)K2
ln

∣

∣

∣

∣

λ2(p− k0)(q − k−)(q − k+)

K2(q − k0)(p− q)2

∣

∣

∣

∣

, (6.14)

(v3) :
1

|p− q|K2
ln

∣

∣

∣

∣

λ4pq(p− k0)(q − k0)

K4(p− q)4

∣

∣

∣

∣

. (6.15)

Again the symmetrization (σ2 ↔ σ1, σ4 ↔ σ3) needs to be included.

In order to combine eqs. (6.13)–(6.15) with the real corrections, it is beneficial to

rename integration variables. By making use of

nσ(−ǫ) = −1− nσ(ǫ) , nσ(ǫ)nτ (δ − ǫ) = nστ (δ)
[

1 + nσ(ǫ) + nτ (δ − ǫ)
]

, (6.16)

and recalling the identities σ2σ5 = σ1, σ3σ5 = σ4, following from eq. (2.6), we can write

1

2
+ nσ2

(q) = n−1
σ1

(p)nσ2
(q)nσ5

(p− q)− 1

2
− nσ5

(p− q) , (6.17)

1

2
+ nσ3

(k0 − q) = n−1
σ4

(k0 − p)nσ3
(k0 − q)nσ5

(q − p) +
1

2
+ nσ5

(p− q) . (6.18)

Furthermore, in the first term on the right-hand side of eq. (6.18), in which nσ3
(k0 − q)

appears, we exchange variables as p ↔ q. In the terms from (σ2 ↔ σ1, σ4 ↔ σ3), we can

also do this in the terms involving 1
2 + nσ5

(p− q) for more symmetry.

The effect of these rewritings is that logarithms of λ disappear from terms involving
1
2 +nσ5

(p−q) [essentially its coefficient is given by −(6.13) + (6.14) + (6.15)]. Logarithms

of λ do not cancel from the coefficients of the first terms of eqs. (6.17), (6.18) but, combining

with the other phase space distributions from eqs. (5.6), (5.7), are seen to come with the

same “weight functions” as in the real corrections. To be explicit, the virtual corrections

[ρv ≡ ρv1 + ρv2 + ρv3 + (σ2 ↔ σ1, σ4 ↔ σ3)] can be represented within the domains shown
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Figure 5. Integration ranges in the (p, q)-plane for virtual corrections. The delimiting curves are

p = k
−
, p = k+, q = k

−
, and q = k+. Narrow bands have been cut off around the lines q = p, q = 0

and p = k0.

in figure 5 as

(4π)4k ρv(K)

πK4n−1
σ0 (k0)

=

∫

Ωm

dp dq

{

[

nσ4
(k0 − p)nσ2

(q) + nσ3
(k0 − p)nσ1

(q)
]

nσ5
(p− q)

× 1

(p− q)K2
ln

∣

∣

∣

∣

λ2p(q − k−)(q − k+)

K2q(p− q)2

∣

∣

∣

∣

+nσ4
(k0 − p)nσ1

(p)
[1

2
+ nσ5

(p− q)
]

× 2

(p− q)K2
ln

∣

∣

∣

∣

q(q − k0)

(q − k−)(q − k+)

∣

∣

∣

∣

}

+

∫

Ωn

dp dq

{

[

nσ4
(k0 − p)nσ2

(q) + nσ3
(k0 − p)nσ1

(q)
]

nσ5
(p− q)

× 1

(p− q)K2
ln

∣

∣

∣

∣

λ2(q − k0)(p− k−)(p− k+)

K2(p− k0)(p− q)2

∣

∣

∣

∣

+nσ3
(k0 − q)nσ2

(q)
[1

2
+ nσ5

(p− q)
]

× 2

(p− q)K2
ln

∣

∣

∣

∣

p(p− k0)

(p− k−)(p− k+)

∣

∣

∣

∣

}

. (6.19)

Combining eq. (6.19) with eqs. (6.2)–(6.12), the latter multiplied by phase space dis-

tributions according to eq. (4.28), and adding for the real corrections terms from the sym-

metrization (σ2 ↔ σ1, σ4 ↔ σ3), all logarithms of λ are now seen to cancel. The resulting

integrand is sufficiently well-behaved around the boundaries to be integrable [cf. eq. (7.9)

and section 8].
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Figure 6. Integration ranges in the (p, q)-plane for the final answer, eq. (7.9). The delimiting

curves are p = k
−
, p = k+, q = p, q = p+ k

−
, q = p+ k+, q = k0 − p, as well as q = k+.

7 Final result

In order to collect together a final result, we remove redundant symmetries from the ex-

pression. It is suggested already by eq. (4.42) that the two substitutions

p ↔ k0 − q ; p ↔ q , (7.1)

corresponding to reflections across the axes q = k0−p and q = p, respectively, may be help-

ful in this respect. Indeed, the first of these symmetries is manifest in the real corrections,

and can consequently be seen to transform the “coefficient functions”, eqs. (6.2)–(6.12),

into each other. The phase space distributions are in general not invariant but now become

symmetrized with respect to their indices (concretely, a symmetry in (σ1 ↔ σ4, σ2 ↔ σ3)

which was so far hidden becomes explicit).

A symmetry in p ↔ q is not “inherent” to the expressions. It is useful to make

this reflection, however, because it explicitly regulates principal value integrations across

p− q = 0. After these reflections, the integration range is as shown in figure 6.

To present a final result, we undertake one more rewriting of the phase space distribu-

tions. By making use of eqs. (5.5), (6.16), the structures appearing in the real corrections

are expressed as

nσ4
(k0−p)nσ2

(q)nσ5
(p−q) = nσ4

(k0−p)nσ1
(p)

{[

1

2
+nσ2

(q)

]

−
[

1

2
+nσ5

(q−p)

]}

, (7.2)

where nσ5
has been taken with a positive argument. We then introduce the “weight
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functions”

ω1 ≡ nσ4
(k0 − p)nσ1

(p)

[

1

2
+ nσ5

(q − p)

]

+ (σ1,σ4,σ5) + (σ2,σ3,σ5) + (σ3,σ2,σ5) , (7.3)

ω2 ≡ nσ4
(k0 − q)nσ1

(q)

[

1

2
+ nσ5

(q − p)

]

+ (σ1,σ4,σ5) + (σ2,σ3,σ5) + (σ3,σ2,σ5) , (7.4)

ω3 ≡ nσ4
(k0 − p)nσ1

(p)

[

1

2
+ nσ2

(q)

]

+ (σ1,σ4,σ3) + (σ2,σ3,σ4) + (σ3,σ2,σ1) , (7.5)

ω4 ≡ nσ4
(k0 − q)nσ1

(q)

[

1

2
+ nσ2

(p)

]

+ (σ1,σ4,σ3) + (σ2,σ3,σ4) + (σ3,σ2,σ1) . (7.6)

To characterize the “coefficient functions” it is convenient to define the ratios

χ− ≡ q − k−
q − k0

, χ+ ≡ q − k+
q − k0

, χ0 ≡ q

q − k0
, (7.7)

π− ≡ p− k−
p− k0

, π+ ≡ p− k+
p− k0

, π0 ≡ p

p− k0
. (7.8)

Then the full result becomes

(4π)4k ρI
j
(K)

πK2n−1
σ0 (k0)

=

∫

Ω
l+a

dp dq

q − p

{

(ω1 − ω2) ln

∣

∣

∣

∣

π−π+
χ−χ+

∣

∣

∣

∣

+ ω3 ln

∣

∣

∣

∣

χ2
0

χ−χ+π−π+

∣

∣

∣

∣

+ ω4 ln

∣

∣

∣

∣

χ−χ+π−π+
π2
0

∣

∣

∣

∣

}

+

∫

Ω
k+b

dp dq

q − p

{

ω1 ln

∣

∣

∣

∣

χ0π+
χ−χ

2
+

∣

∣

∣

∣

+ (ω2 + ω4) ln

∣

∣

∣

∣

χ−π+
π0

∣

∣

∣

∣

+ ω3 ln

∣

∣

∣

∣

χ0

χ−π+

∣

∣

∣

∣

}

+

∫

Ω
j+c

dp dq

q − p

{

(ω1 + ω2 − ω3 + ω4) ln

∣

∣

∣

∣

χ−π+
χ+π−

∣

∣

∣

∣

}

+

∫

Ω
l+c̃

dp dq

q − p

{

ω1 ln

∣

∣

∣

∣

π−π+
χ−χ+

∣

∣

∣

∣

+ ω2 ln

∣

∣

∣

∣

π0χ+

π−π
2
+

∣

∣

∣

∣

+ ω3 ln

∣

∣

∣

∣

χ2
0

χ−χ+π−π+

∣

∣

∣

∣

+ ω4 ln

∣

∣

∣

∣

χ+π−
π0

∣

∣

∣

∣

}

+

∫

Ω
j+d

dp dq

q − p

{

(ω1 − ω3) ln

∣

∣

∣

∣

χ−π+
χ+π−

∣

∣

∣

∣

+ (ω2 + ω4) ln

∣

∣

∣

∣

π0
χ+π−

∣

∣

∣

∣

}

+

∫

Ω
k+e+f

dp dq

q − p

{

ω1 ln

∣

∣

∣

∣

χ0π+
χ−χ

2
+

∣

∣

∣

∣

+ ω3 ln

∣

∣

∣

∣

χ0

χ−π+

∣

∣

∣

∣

}

+

∫

Ωg

dp dq

q − p

{

(ω2 + ω4) ln

∣

∣

∣

∣

π0
χ−π+

∣

∣

∣

∣

}

+

∫

Ω
h

dp dq

q − p

{

(ω2 + ω4) ln

∣

∣

∣

∣

χ+π−
χ−π+

∣

∣

∣

∣

}

+

∫

Ω
k+i

dp dq

q − p

{

ω1 ln

∣

∣

∣

∣

χ0π+
χ−χ

2
+

∣

∣

∣

∣

+ (ω2 + ω4) ln

∣

∣

∣

∣

χ+π−
π0

∣

∣

∣

∣

+ ω3 ln

∣

∣

∣

∣

χ0

χ−π+

∣

∣

∣

∣

}

+

∫

Ω
j

dp dq

q − p

{

(ω1 − ω3) ln

∣

∣

∣

∣

χ−π+
χ+π−

∣

∣

∣

∣

}

, (7.9)

where the Ω’s denote different domains as labelled in figure 6. Note that only one among

the ranges Ωj+c and Ωl+c̃ gets realized at a time.
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Figure 7. Left: a comparison of the spectral function at non-zero momentum (k/T = 0.1, 0.3, 1,

3, 4, 6, 8 as indicated in the figure) with the zero-momentum limit from eq. (A.57) of ref. [20], for

(σ1σ4σ5) = (+++). For the case (σ1σ4σ5) = (+−+) only the non-zero momenta are shown. In

both cases we have restricted to k0 ≥ k + 0.001T . Right: a magnification of the case (σ1σ4σ5) =

(+++).

8 Numerical evaluation

The expression in eq. (7.9) is finite and can be evaluated numerically. In figure 7 the

outcome is compared with its limiting value at k = 0, determined for the case (σ1σ4σ5) =

(+++) in ref. [20]. The results are seen to agree for k0 ≫ k; in fact, even when this in-

equality is not satisfied, the zero-momentum limit yields a surprisingly good approximation

of the full result.

It is important to realize that the spectral function ρI
j
is in general non-trivial in the

vicinity of the light cone, cf. figure 7, rather than vanishing as ∼ K2 as one could expect

from dimensional reasons at zero temperature. This fact leads ultimately to the breakdown

of the loop expansion for K2<∼(gT )2 [2-loop diagrams may give a larger contribution than

1-loop ones despite the overall suppression by g2], and leads to the need to resum a set of

diagrams for obtaining the correct result in the ultrarelativistic regime.

Another comparison can be made with the non-relativistic asymptotics, determined in

ref. [16]. The leading term, proportional to K2, corresponds to the zero-temperature limit

and vanishes for the spectral function in question. The two first non-zero terms read

ρI
j
= − 1

16π

∫

p

{
∑4

i=1 nσi
+ 2nσ5

p
+ p

[

22

3

4
∑

i=1

nσi
+ 4nσ5

]

k20 + k2/3

K4

}

+O
(

T 6

K4

)

, (8.1)

where
∫

p

nB

p
=

T 2

12
,

∫

p

nF

p
=

T 2

24
,

∫

p
p nB =

π2T 4

30
,

∫

p
p nF =

7π2T 4

240
. (8.2)
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Figure 8. Left: spectral functions for various statistics (σ1σ4σ5), as a function of M2 ≡ K2, with

k ≡ kav determined from eq. (8.3). The results are compared with two orders of OPE asymptotics

from eq. (8.1). Right: the ratio [exact - LOOPE]/NLOOPE, showing that numerical results agree

with the asymptotic ones from eq. (8.1) for M >∼ 30T .

In figure 8 the two orders shown in eq. (8.1) are referred to as “LOOPE” and “NLOOPE”,

respectively. In order to carry out the comparison in a somewhat realistic setting, we

introduce a phenomenological average momentum through

k2av(M) ≡
∫∞
0 dk k4 exp

(

−
√
k2+M2

T

)

∫∞
0 dk k2 exp

(

−
√
k2+M2

T

) =
3MTK3

(

M
T

)

K2

(

M
T

) . (8.3)

This should be understood just as a rough guideline; for instance we have employed a

Boltzmann weight so that the same value can be used for any statistics. In any case,

as can clearly be seen in figure 8(right), the correct limits are reached for all statistics

considered, if only quite deep in the non-relativistic regime.

9 Summary and outlook

The purpose of this paper has been to suggest a general strategy for determining 2-loop

thermal spectral functions at non-zero energy and momentum in the rest frame of

a heat bath. As has been demonstrated with the example of the most complicated

“master” structure, the result can be reduced to a convergent 2-dimensional integral,

eq. (7.9), within a domain shown in figure 6. For other master spectral functions, the

domain remains the same but the “coefficient functions” change; in addition, due to less

symmetry, the “weight functions” split up into a larger set of independent ones (the weight

functions are defined as polynomials of the phase space distributions incorporating all the

temperature dependence).8

8It should be mentioned that for some of the simpler masters it is not necessary to make use of the full

formalism introduced in the present paper, however if other tricks fail one can always resort to it.
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The specific master spectral function studied, defined by eqs. (2.5), (3.1), is peculiar

in that it vanishes in the zero-temperature limit (this comes about through a complete

cancellation of real and virtual corrections, and is reproduced by our numerical results).

Therefore it is natural to express it as ρI
j
= T 2φ(k+/T, k−/T ), where k± ≡ (k0±k)/2 and φ

is a dimensionless function. The function φ has a finite limiting value in the non-relativistic

limit k+, k− ≫ πT , but a non-trivial structure in the relativistic regime k+, k− ∼ πT , cf.

figure 7. (In the regime k− ≪ πT the naive loop expansion of thermal field theory breaks

down and needs to be resummed through effective field theory techniques.)

Several extensions of the current investigation can be envisaged. The most obvious

challenges are to work out similar results for the other master structures appearing in

eqs. (2.4), (2.9) and then to compile results for the physical observables discussed in sec-

tion 2. It might also be interesting to extend the results to a situation where some of

the propagators are massive; this would be relevant for the cosmological applications re-

viewed in ref. [14]. (As has been demonstrated with a particular non-zero mass here, it

may be possible to reduce the result to a 2-dimensional integral even in the presence of

masses.) Perhaps it would be nice to understand analytically the behaviour in the regime

K2 ≪ (πT )2. In addition the question could be posed whether, possibly with the price

of introducing one further integration variable, the final result in eq. (7.9) could be cast

in a more compact and transparent form. Last but not least, the computation presented

involved a fair amount of error-prone hand work, so that an independent crosscheck, per-

haps involving other integration variables and/or another intermediate infrared regulator,

would be more than welcome.
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