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Abstract 

Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain 

research. Standard acquisition sequences to obtain one-dimensional spectra suffer from 

substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned 

editing sequences or two-dimensional acquisition schemes are applied to extend the information 

content. Tuning specific acquisition parameters allows to make the sequences more efficient or 

more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields 

for optimization of experiments and are now shown to be very useful as design criteria for 

localized MRS sequence optimization. The principle is illustrated for one- and two dimensional 

MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo 

time spacings and equal acquisition times per echo time can be abolished. Particular emphasis 

is placed on optimizing experiments for quantification of GABA and glutamate. The basic 

principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of 

generalized two-dimensional separation brain spectra obtained from healthy subjects and 

expanded by bootstrapping for better definition of the quantification uncertainties. 
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1. Introduction 

In vivo magnetic resonance spectroscopy (MRS1) allows for the in vivo and in situ quantitation of 

tissue metabolite contents. Different MRS techniques are available and the best suited 

technique in a particular situation depends on the target metabolites, the organ studied, the 

(patho-)physiological circumstances, as well as the experimental situation (in particular the B0 

field strength available). Given that metabolite signals in a proton MR spectrum usually have 

considerable overlap that makes the quantification difficult, generally, one of three different 

approaches is taken: 1) use of a single non-specific one-dimensional spectrum (e.g. a localized 

short echo time (TE) spectrum) followed by linear combination model fitting based on prior 

knowledge about the constituent metabolites and spectral parameters (Provencher, 1993; 

Ratiney et al., 2005; Slotboom et al., 1998; Wilson et al., 2011), or 2) use of a dedicated (so-

called editing) one-dimensional experiment optimized for exclusive or selective sensitivity for a 

single metabolite of interest, usually followed by simple model peak fitting or signal integration 

(Allen et al., 1997), or 3) use of a standard localized two-dimensional MR spectrum followed by 

peak integration (Thomas et al., 1996; Thomas et al., 2001) or prior knowledge fitting (Chong et 

al., 2011; Gonenc et al., 2010; Kiefer et al., 1998; Kreis et al., 2005; Schulte and Boesiger, 

2006; Thomas et al., 2008; van Ormondt et al., 1990; Vanhamme et al., 1999). In cases 1 and 

3, the choice of experimental parameters like TE and repetition time (TR) is most often based 

on general considerations about maximum signal for given relaxation times, insensitivity to 

changes in relaxation times or arguments about minimization of macromolecular baseline 

contributions, while in case 2 the signal yield of wanted and unwanted metabolites and their 

relative overlap is modeled based on quantum mechanical simulations or solution 

measurements.  

                                                
1
 Abbreviations used:  

2DJ: 2D-J separation Cr: creatine 
CRBs: Cramér-Rao minimum variance bounds FiTAID: Fitting Tool for Arrays of Interrelated Datasets 

FT: Fourier transformation GABA: -aminobutyric acid 
Gln: glutamine Glu: glutamate 
GSH: glutathione GW: Gaussian width 
HES: half echo sampling MES: maximum echo sampling 
MRS: magnetic resonance spectroscopy NAA: N-acetylaspartate 
PRESS: Point RESolved Spectroscopy TE: echo time 
TR: repetition time 
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An alternative route to arrive at optimal parameters for a particular experimental setting is to 

calculate the expected lower bound of the achievable precision for a range of potential 

experimental situations and select the experiment with best precision for the targeted 

metabolites. The so-called Cramér-Rao minimum variance bounds (CRBs) (Cavassila et al., 

2001) are an ideal measure for such an approach. CRBs provide a lower bound for the variance 

of fitted parameters and thus can be used as a measure for the maximum precision attainable 

by a specific experiment if the model for the data is complete and correct. In addition, they can 

be estimated without actually acquiring spectra, but purely based on a parameterized model 

function and the expected signal-to-noise ratio (SNR). This method of experiment optimization 

has been used in different fields (Anastasiou and Hall, 2004; Brihuega-Moreno et al., 2003; 

Ober et al., 2002) but only preliminary results of its use for in vivo MRS have been reported 

(Bolliger et al., 2012; Chong et al., 2007; Snyder and Lange, 2012).  

 

To demonstrate the principle, we investigated the optimization of localized one- and two-

dimensional spin echo experiments of human brain. The one-dimensional case corresponds to 

the clinically most frequently used localization sequence, PRESS (Point RESolved 

Spectroscopy (Bottomley, 1984)), with the echo time as an optimizable parameter and with a 

linear combination model of basis sets as evaluation tool. Simultaneous evaluation of multiple 

spectra with differing echo times corresponds to 2D J-separation spectroscopy (2DJ MRS or J-

PRESS) (Aue et al., 1976; Kreis and Boesch, 1994; Thomas et al., 1996; Thomas et al., 2003), 

where a series of PRESS scans is acquired with TE incremented by a fixed step size, thus 

obtaining a two-dimensional dataset, which is usually Fourier transformed in both dimensions 

before evaluation. 2DJ-MRS has been recommended (Roussel et al., 2010; Schulte et al., 2006) 

for simultaneous quantification of brain metabolites, and it has been claimed previously (Gonenc 

et al., 2010) that in particular the quantification of coupled metabolites is improved with 2DJ 

compared to 1D experiments. The benefit of acquiring multiple echo data in single shots and 

Monte Carlo parameter optimization in view of a compromise between spectral resolution and 

added information from multiple echoes was described in Ref. (Kiefer et al., 1998). 

Here, 2DJ experiments are considered where no Fourier transformation (FT) is applied in the 

second dimension and which can be evaluated with a linear combination model with prior 

knowledge relations like in the 1D case using FiTAID (Fitting Tool for Arrays of Interrelated 

Datasets) (Chong et al., 2011). This provides the freedom to combine scans of arbitrary echo 
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times (i.e. not equally-spaced timings) and arbitrary number of scans per TE. This so-called 

generalized 2DJ experiment was thus optimized with CRBs criteria for optimal precision for a 

targeted set of metabolites. 

Acquiring a series of PRESS scans with varying TEs has two main advantages over single short 

TE experiments: First, it allows for the fitting of transverse relaxation times and second, J-

coupled spins undergo J-evolution, which leads to specific spectral patterns as function of TE 

(or cross-peaks in 2D spectra after double FT) and therefore better discrimination between 

metabolites. Short TE scans have the advantage of a higher signal-to-noise ratio, but this 

comes at the expense of large underlying macromolecular signals. Due to their short transverse 

relaxation time compared to metabolites, it is possible to eliminate macromolecular signals by 

using long enough TE while maintaining metabolite signals – though they are evidently reduced 

by relaxation and phase dispersion through J-evolution, as well. Therefore, sampling short as 

well as long echo times in one experiment may possibly improve the discrimination of 

macromolecules and metabolites. 

Here, we propose the principle of using CRBs for MRS experiment design and illustrate it by 

determining whether short TE spectra, conventional, or generalized 2DJ scans are the best for 

the quantitation of specific brain metabolites.  Additionally, the question was addressed  which 

TE to use in 1D MRS and which maximum TE and TE spacing are best suited in conventional 

2DJ scans for the quantitation of the metabolites of interest. Exemplary interest was placed on 

-aminobutyric acid (GABA), glutamate (Glu), glutamine (Gln) and glutathione (GSH). Model 

simulations were used to identify general characteristics, while in vivo spectra were recorded to 

demonstrate the general validity of this design approach. In order to document small 

improvements in quantification precision in vivo, a large number of repeated measurements in 

human subjects is needed. However, the scan time that can be tolerated by individual subjects 

is limited. Therefore the number of repeated measurements was extended artificially by 

bootstrapping (Efron, 1979), which has turned out to be a very useful technique to estimate 

probability distributions and has previously been used in in vivo MRS in order to estimate errors 

of fitting parameters (Bolan et al., 2004) based on resampled subsets of individually stored 

single MRS acquisitions.  
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2. Material and Methods 

2.1. Estimation of CRBs 

CRBs provide a lower bound of the standard deviation   for the parameters  of a model 

function  fitted to experimental data by minimizing , provided that the parameter estimator is 

unbiased and the SNR is above a certain threshold (Vallisneri, 2008). For the estimator to be 

unbiased and thus for the CRBs to yield valid bounds for the physical variables described by the 

fitting parameters, the model has to be correct and the minimization procedure has to provide 

the global minimum. Besides, the model has to be fully parameterized. The CRBs are obtained 

using the Fisher information matrix , by extracting the roots of the corresponding diagonal 

elements of its inverse: 

 [Eq. 1] 

As described in Ref.(Cavassila et al., 2001),  can be calculated by taking the real part of a 

complex-valued matrix product: 

 , [Eq.2] 

where  denotes Hermitian conjugation. The columns of the matrix  are partial derivatives of 

the discretized model function  (where  denotes the data point index of the measured data, 

possibly a multi-dimensional index) with respect to the fitted parameters 

 ,  [Eq. 3] 
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where  is the standard deviation of the noise at the respective data point. Here, we assume 

equal standard deviations at all data points, i.e. = , thus the CRBs depend linearly on . 

In order to obtain the matrix 2 , the partial derivatives should be evaluated at the true 

parameter values. In practice, however, these values are unknown and  is estimated with fitted 

parameter values.  

In addition, the information matrix is invariant under FT of the data since the FT preserves the 

inner product. Therefore, CRBs can be calculated in either time or frequency domain. This 

applies to both, the directly measured dimension and the indirect (second) dimension. 

In the context of trying to understand which particular subsets of 2DJ data are most relevant for 

generalized 2DJ experiments, it is worthwhile to note that the inverse of the diagonal elements 

of the Fisher matrix provide a lower bound to the respective CRB, since for any positive definite 

matrix it can be shown that . (The proof is presented in the inline supplement 

P.1.) 

Furthermore, in the case of a complete model, decreasing the number of data points by 

selecting a limited data range in any dimension cannot decrease the CRBs. (inline supplement 

P.2 contains the proof for the equivalent statement that extending the data range from a 

selected region leads to decreased or at least invariant CRBs).  

2.2. Specific model function 

While the principle of using CRBs criteria to optimize experimental parameters is valid for 

arbitrary experiments and independent of the formulation of the signal model (as long as it is 

                                                

2
 Typically, in a valid model, the rows of  are linearly independent and hence the corresponding Fisher 

information matrix is positive definite and the inverse exists. However, under certain circumstances it is 

possible that the Fisher matrix becomes singular (or nearly singular, i.e. ill-conditioned), in which case  

in equation [1] can be replaced by the Moore-Penrose pseudoinverse  of  (Vallisneri, 2008). This is 

usually a sign that prior knowledge should be applied to the parameters that cause the singularity.  
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complete and correct), a localized 2DJ experiment and the model function as previously defined 

in Ref. (Chong et al., 2011) was used to illustrate the claim. In short, the model describes a two-

dimensional parameterized function consisting of a linear composition of simulated two-

dimensional basis sets  where  is an index usually referring to the different two 

dimensional basis spectra of the included metabolites and the superscript  symbolizes the 

fact that the basis spectra refer to numeric patterns. Often the basis sets are linked by prior 

knowledge constraints in both dimensions. For half echo sampling (HES), they can be explicitly 

summarized as: 

 

 [Eq. 4] 

where the area ( ) 3, phase ( ), transversal relaxation time ( ), and the Gaussian width 

( ) are fitting parameters for the individual basis functions. Introducing prior knowledge 

reduces the number of free parameters. In the specific models used below, the Gaussian widths 

were identical for all metabolites (representing field inhomogeneities affecting all metabolites 

equally), and the T2s of all coupled spins were linked to a common T2 parameter, resulting in 

only 5 different T2s in the model. 

For data acquired with maximum echo sampling (MES) (Kiefer et al., 1998; Macura and Brown, 

1983; Schulte et al., 2006), the model has to be adjusted. More precisely, for a time domain 

signal for which data sampling was started  before the echo maximum, the model is adjusted 

as follows: 

                                                
3
 We refer to A, the time domain signal amplitude, as (frequency domain) area parameter, rather than 

amplitude, while the word amplitude is used for the frequency domain peak amplitude. 



9 

 

 

 [Eq. 5] 

Note that HES corresponds to MES with an echo delay  of 0 ms:   

.  [Eq. 6] 

Basis spectra  for 18 metabolites were simulated for 3T in GAVA (Soher et 

al., 2007), using chemical shifts and J-couplings from Refs. (Govindaraju et al., 2000) and 

(Tchong Len et al., 2004). Of major importance in the current context is the modeling of the 

macromolecular baseline (MMBL). In order for the concept of CRBs use for experiment 

optimization to be valid, the MMBL must be included in a parameterized form (or reliably and 

accurately be eliminated in preprocessing) (Cudalbu et al., 2012). As in Ref. (Chong et al., 

2011), an experimentally measured MMBL was included, parameterized as equally spaced 

Voigt lines with sets of common line widths and T2s. 

Calculation of CRBs and general data processing was performed in matlab version 7.4.0 

R2007a (Mathworks, Natick, Massachusetts, U.S.A.). The data was fitted as a 2D-array without 

FT along the second dimension. 

2.3. Optimization of experimental parameters 

Optimal experiments were designed by calculation of expected CRBs for a large set of 

conventional and generalized 2DJ experiments based on the model function described in 2.2 

and specified below. The optimizations were performed for typical in vivo conditions of human 

brain. In particular, the following parameter values were used: 

a) linewidth parameters chosen to correspond to typical values as obtained from fitting 2DJ 

datasets recorded from a volume in occipital human gray matter (Gaussian line width of 4 Hz 

and natural linewidths ( ) for metabolites ranging from 1.0 to 2.5 Hz) 
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b) area parameter values selected to correspond to typical metabolite concentrations, and 

c) the MMBL described as three partially linked subparts as in Ref. (Chong et al., 2011). 

For all PRESS experiments considered here, the time interval between the 90° pulse and the 

first 180° pulse was kept fixed at 6 ms, and for MES the signal acquisition started 5 ms after the 

second 180° pulse, such that . Thus, for these settings HES coincides with 

MES  at TE=22 ms.  

2.3.1. 1D MRS and conventional 2DJ scans 

In order to determine the longest echo time to be included and to find optimal TE spacings, 

CRBs were estimated for all possible 1D and 2DJ experiments with a lower limit for TE of 

22 ms, TE step sizes of 0 or multiples of 2 ms, and an upper limit for TE of 322 ms. HES, as 

well as MES, was considered. For a meaningful comparison, experiments with equal acquisition 

time have to be evaluated, thus, the standard deviation of the noise for the estimation of the 

CRBs was scaled by , where  is the number of TE steps. 

2.3.2. Generalized 2DJ scans 

Based on the longest TE found to be relevant in paragraph 2.3.1, minimal CRBs were searched 

in a set of generalized 2DJ experiments. This search covered all generalized 2DJ experiments 

with 8 scans and TEs in an interval between 22 ms and 202 ms, with values included with a 

step size of 12 ms, also allowing multiple scans with identical TE.  

Experiments yielding minimal CRBs for GABA, Glu, Gln and GSH were identified as well as an 

experiment dedicated to GABA and Glu quantification, where the experiment with minimal CRB 

for Glu was selected from all experiments with GABA CRBs that were at most 1% larger than 

the GABA optimum. 

2.4. Factors influencing optima in experiment design  

Optima of generalized experiments were obtained for a number of different situations to 

evaluate dependences between these factors and the CRB optima. The following five factors 

were investigated by searching for optima in specific experiment or model situations: 
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1. MES: half vs. maximum echo sampling. 

2. Shim: varying the Gaussian linewidth from 2, to 4, 6, and 8 Hz. 

3. T2 estimation: inclusion vs. exclusion of T2s as fitting variables. 

4. MMBL estimation: inclusion vs. exclusion of the MMBL as fitting parameters.  

5. Model complexity: hypothetical simple situation of only 5 metabolites without MMBL vs. 

the full model. In this case, only the areas of the 5 metabolites were fitting parameters. 

2.5. Verification on simulated data 

The improvement in quantification precision predicted by the respective CRBs was verified in a 

first step on simulated data. For an optimized and a conventional 2DJ experiment, a set of 130 

spectra each was constructed by adding different noise realizations to the model data. 

The optimized experiment considered was the generalized 2DJ found to be optimal for Glu 

quantitation (for which the acquisition of the signal for TE=22 ms was repeated 6 times and the 

echo times of 58 ms and 202 ms were acquired once each), and the echo times considered for 

the conventional 2DJ experiment were 22 ms up to 246 ms, incremented in steps of 32 ms. In 

both cases, MES was assumed. The noise added to the data was realized as white Gaussian 

noise, such that an SNR of 45.6 (defined by the maximum peak amplitude (methyl singlet of 

NAA) at TE=22 ms) was obtained.  

A power analysis for the F-test was used to calculate the sample size needed to prove that the 

variance in the results for Glu is smaller from the generalized 2DJ experiment than from the 

conventional 2DJ. For the expected difference in standard deviations (20% decrease), a 

significance level  of 0.05, and a power of 0.8, the minimum sample size came out to be 126 

for each 2DJ variant (Lenth, 2012).   

The parameters for each simulated experiment were fitted in FiTAID, where basis spectra 

simulated for 18 metabolites with Voigt lineshapes were applied and where the Lorentzian 

widths were coupled with the respective T2s. Only 5 different metabolite T2s were introduced: a 

common T2 for all multiplets, and individual T2s for the singlets of Cr, NAA, and total choline.  

Standard deviations for the fitted Glu concentrations were calculated. In order to exclude effects 

of those cases where the fitting procedure terminated in a local  minimum, outliers were 

excluded by removing values that lay outside the mean ±2 standard deviations of the whole set 

and were outside of the range defined by the mean ± 3 standard deviations of the reduced set. 
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The one-sided F-Test was used to compare the variances of the Glu area parameters obtained 

from the selected conventional and generalized 2DJ scans 

2.6. In vivo verification 

In order to verify the predicted precision improvement in vivo, human brain spectra were 

recorded in 8 healthy subjects (6 female, 2 male, age 35.0 12.9 years) from a region of interest 

of 15.4 cm3 in occipital grey matter on a 3T Siemens Trio scanner using a quadrature 

transmit/receive head coil. The standard 2DJ experiment (8 TEs from 22 to 246 ms, in steps of 

32 ms, 16 acquisitions per TE), as well as an optimized generalized experiment (TEs of 22ms, 

22ms, 58ms, 22ms, 22ms, 202ms, 22ms, and 22ms, 16 acquisitions per TE), was recorded for 

each subject 6 times in an interleaved fashion (5.5 min acquisition time each, TR 2.5 s) in a 

single session. MES was used, as described in chapter 2.3. Metabolite cycling (MacMillan et al., 

2011) was applied instead of water presaturation in order to obtain the metabolite and reference 

spectra simultaneously. Post processing included adding/subtracting the metabolite-cycled 

scans to obtain metabolite and water spectra (used for eddy current correction) and Hankel-

Lanczos Singular Value Decomposition (Pijnappel et al., 1992) to eliminate the residual water 

signal. 

Bootstrapping was used to create 25 out of the recorded 6 datasets for both the standard and 

the optimized experiment in each subject. Each data point of the bootstrapped spectra was 

obtained by random sampling from the corresponding 6 complex-valued data points of the 

(frequency-aligned and post-processed) original spectra. Each spectrum was fitted 

independently with FiTAID as described above in chapter 2.5, except for an additional overall 

shift parameter. The bootstrap estimate of the standard deviations of the fitted parameters, i.e. 

the variance of the bootstrapped dataset, was used as an approximation of the true standard 

deviation, which yields a more precise approximation than the variance of the original data 

based on 6 values only. Outlier removal was performed as described earlier, and a general 

linear model was applied for the fitted parameter of interest to determine the experimental 

variance  controlling for inter-individual differences in metabolite content.  
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3. Results  

3.1. Optimization of experimental parameters 

3.1.1.  1D PRESS and conventional 2DJ MRS 

CRBs optimization of experimental conditions is first illustrated for standard single TE spectra. 

Exemplary results for the optimization of 1D PRESS experiments are shown in Figure 1. The 

CRBs are plotted for 3 metabolites as a function of TE (full lines). Both traditional half echo 

sampling (Fig 1a) and MES (Fig 1b) were investigated. In both cases, there is no monotonic 

increase of CRBs with TE in spite of the decreasing signal due to T2 relaxation. With HES, short 

TEs are advantageous for all presented metabolites. In particular, the shortest TE clearly yields 

the lowest CRB for Glu, while for NAA, where the spectrum is dominated by the monotonously 

decreasing singlet signal, the CRB increase is weaker with increasing TE. For GABA, however, 

the CRBs decrease somewhat with echo times from 22 ms to around 110 ms.  

When MES is applied, the CRBs are lowest at different TE values for each metabolite, clearly 

suggesting different optimal acquisition conditions for each metabolite. In particular, for the 

specific fitting conditions (i.e. prior knowledge, known MMBL form, and fixed T2s) the use of the 

shortest available TE is only optimal for the determination of Glu, while for GABA the use of 

fairly long TEs yields lower CRBs. Minima are reached for TEs around 100 and 190 ms. In the 

case of NAA, shorter echo times are beneficial, not only for HES, but also MES.  

The CRBs are bounded from below by the inverse square root of the integrated power of the 

partial derivative function (for area parameters, the latter corresponds to the basis function 

itself). To motivate some of the TE dependence of the CRBs, this lower bound is included in 

Figure 1 as dashed line. The difference between these values and the CRBs is due to the 

correlations between fitted parameters. 

For conventional 2DJ experiments, it was first evaluated up to which maximum TE data 

sampling should be extended and second what echo spacing would prove to be most efficient. 

In Figure 2, the estimated CRBs of conventional 2DJ experiments are plotted versus the 

maximum sampled TE in the case of dense sampling (2 ms step size). For GABA, the CRBs 

reach minima at 128 ms (HES) and at 208 ms (MES). With HES, the single short TE experiment 

is best for Glu, but for MES the minimum CRB is reached at 94 ms, with hardly any substantial 
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further change for maximum TEs up to around 200 ms. Above this value, the CRBs increase 

steadily. Interestingly, an almost monotonic exponential decrease of CRBs is observed for NAA 

in the cases of HES as well as MES. Up to maximum TEs of ~100 ms, the decrease in CRBs is 

fast.  

In the bottom row of Figure 2, the ratio in CRBs for MES versus HES is illustrated as a function 

of maximum TE. MES is beneficial for all metabolites and all TEs. The decrease in CRBs for 

maximum TEs above 200 ms is as much as 25%. 

The influence of step size and maximum TE on CRBs for conventional 2DJ experiments (with 

MES) can be appreciated from Figure 3. In the upper row, the CRBs for three metabolite areas 

and a linewidth are plotted versus the maximum TE for different step sizes. Below, the CRBs of 

a subset of these experiments are drawn as a function of step size. It seems that fine sampling 

is beneficial for GABA, whereas for the other parameters coarser sampling yields lower CRBs. 

For Lorentzian widths, and hence, T2s, CRBs decrease monotonically with increasing maximum 

TE, though only with little further improvements above 200 ms.  

Apparently, including maximum TEs larger than 200 ms is not efficient, not even when taking 

into account larger step sizes. Hence, a maximum TE of 202 ms was chosen for the 

optimization of generalized 2DJ experiments with MES. 

Some quantitative results for the optimization of conventional 2DJ scans are assembled in the 

upper part of Table 1 for the strongly coupled metabolites GABA, Glu, Gln, and GSH. CRB 

based parameter optimization found the largest potential for improvement for Glu, with a 16% 

CRB decrease relative to the reference experiment. For GABA, this improvement was only a 

few percent. As illustrated in Figure 4, optimal conventional 2DJ experiments for Glu, Gln and 

GSH consist of only two or three echo times with coarse TE sampling. As already evident from 

Figure 3, the quantitation of GABA benefits from finer TE sampling. 

3.1.2. Generalized 2DJ MRS 

The expected precision improvements for generalized vs. conventional PRESS and 2DJ 

experiments are illustrated in the bottom part of Table 1 and Figure 4. Only small further 

improvements can be achieved by generalizing the TE spacings and the distribution of 

acquisition time per TE. The quantitation of Glu and GABA benefit most from generalization with 

decreases in CRBs  of 5 % and 4 %, respectively, while for Gln and GSH hardly any 
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improvement can be achieved. For the quantitation of Glu and Gln, experiments consisting of a 

combination of several repetitions of the shortest TE and shorter measurements of longer TEs 

are favorable, whereas for GABA and GSH the emphasis is on longer TE (see Fig. 4). Table 1 

illustrates also that optimizing experimental conditions for one metabolite often worsens the 

precision for others. If several metabolites are of interest, other experiments that compromise 

for the set of metabolites can be chosen. If one is, for example, mostly interested in the 

neurotransmitters GABA and Glu, one might opt for the experiment listed in the last row, which 

was found as the best setup for Glu among those scans that are within 1% of the optimum 

achievable for GABA.  This compromise yields almost the maximum improvement for GABA 

with hardly any penalty for Glu (or the other listed metabolites).  

3.2. Effects of model/experiment on optima 

The extent of the CRBs improvement and the optimal experimental parameters found for any 

specific metabolite depend on the exact experimental or model situation considered. To 

demonstrate this, generalized 2DJ experiments optimized for the quantification of 3 different 

metabolites are depicted in Figure 5 for various scenarios. The figure also shows percentage 

CRBs improvements for each case in relation to its own corresponding conventional 2DJ 

experiment with TEs from 22 ms to 246 ms. 

HES was compared to MES, both for the full model and for a simplified case of only 5 

metabolites (see Methods, all with GW of 4Hz). In both cases, it was found that optimized 

experiments tend to include shorter TEs in the case of HES. In addition, the potential for CRBs 

improvements is clearly larger for HES than MES, which is mostly due to the fact that there is 

larger SNR loss for HES than MES with increasing TE.  

The influence of line broadening (shim performance) on the optimal scans can be seen from the 

comparison of the evaluations for models with different Gaussian widths. For broader lines, the 

shortest TE scans are weighed less, probably because of the larger correlation between 

metabolites and the MMBL. In agreement with this, the shortest TE tends to have more weight if 

the MMBL is not fitted (assumed to be known or removed in a preprocessing step).  

If T2 relaxation times are not fitted but kept fixed (possibly taken from a cohort average) the 

scans with the longest TEs lose importance and are replaced with shorter TE scans that have 

less T2-weighting. 
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If the model complexity is reduced to the inclusion of only 5 metabolite areas, the optimal 

experiments change noticeably, but there does not seem to be a clear trend on how they 

change.  

In addition, there are some metabolite-specific observations. For GABA, in the case of MES, the 

single TE PRESS experiment with TE=166 ms is superior to all generalized 2DJ experiments in 

the case where only the area parameters of five metabolites are fitted. This TE is also 

distinctively present in the optimized experiments when more parameters are fitted or when the 

Gaussian line width is varied. For HES, the most relevant TE seems to be 94 ms. However, the 

overall potential for improvement seems to be rather small for GABA. 

For Glu, in all cases a combination of repeated measurements at the shortest TE combined with 

fewer scans at longer TE is optimal. These experiments decrease the CRBs by 20% and more 

for most cases. The optimal experiments for the quantitation of NAA show similar patterns, 

though with a slightly lower potential for improvement. 

3.3. Verification on simulated data 

Monte Carlo fits of an in silico dataset, where the ground truth is known, were used to test 

whether the improvement in estimation precision, as predicted by the CRBs criterion used in 

experiment design, does indeed hold. The CRB for Glu quantification was expected to be 7.9% 

and 5.6% for the conventional and the optimized experiments. Least squares optimizations in 

130 experiments each yielded coefficients of variance for the two cases of 5.6% and 4.0% and 

showed that there was no significant bias of the estimated concentrations in either experiment. 

The one-sided F-test showed that the variance of the fitted Glu concentrations for the optimized 

experiment is significantly lower than for the conventional 2DJ experiment (p=0.0005). 

3.4. In vivo verification 

The same experiments were tested also on in vivo data acquired in 6 measurements in 8 

subjects. In Figure 6, sample spectra obtained for the conventional and the generalized 2DJ 

experiment optimized for Glu are presented (6 spectra with TE=22 ms plotted as an average 

with improved SNR). The six repeats per subject were extended to 25 pseudo-repeats by 

bootstrapping (see Methods for details and the inline electronic supplement for a figure to 

illustrate this procedure).  The results for Glu from 2D model fitting of the conventional and the 
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generalized 2DJ experiments in 8 subjects are presented in Figure 7. The quantitative analysis 

of the fitted Glu concentrations confirmed the prediction. The coefficient of variance decreased 

to 66% of the value obtained for the conventional experiment, while the CRBs calculations had 

forecast an improvement of the variance to 80%. 

4. Discussion  

CRBs provide well-suited criteria to select optimal sampling strategies for many applications and 

fields. Here, it was shown that the CRBs criteria can be very beneficial for the optimization of 

acquisition parameters of localization and quantification sequences used in clinical MRS and in 

combination with linear combination model fitting. In particular, this was illustrated for the 

optimization of 2D experiments targeted at specific individual or groups of metabolites of interest 

in neuroresearch. 

The proposed principle is valid for any MRS technique where the results are obtained by 

unbiased least squares fitting with a complete model. As shown in the examples, specific 

potential for CRBs as design criteria is not only found for complex experiments like the 

generalized 2DJ, but even for the most standard 1D localization sequence in clinical use. 

However, the basic principle was illustrated primarily for the more complex situation of the 2D J 

separation experiment that is becoming more and more popular in brain research at clinical field 

strengths for a simultaneous and more accurate determination of coupled metabolites. 

Conventional or generalized 2DJ experiments, i.e. acquisitions of a series of PRESS scans with 

varying TEs, have several advantages over single short TE experiments: First, they provide for 

determination of transverse relaxation times. Second, because J-coupled spins show 

specifically varying spectral patterns as function of TE (or cross-peaks in doubly Fourier-

transformed 2D spectra), 2DJ has the potential for better discrimination between metabolites. 

And third, 2DJ experiments benefit from maximum-echo sampling where signal acquisition 

starts immediately after the last RF pulse rather than at the echo maximum (Kiefer et al., 1998; 

Macura and Brown, 1983; Schulte et al., 2006). Here, it was demonstrated how acquisition 

parameters for conventional and generalized 2DJ experiments can be optimized in order to 

manifest the purported advantages. Expected CRBs were estimated for a set of experiments 

and those with minimal CRB for a parameter of interest were considered optimal. Optima 

depend on which metabolites are prioritized, but also on experimental circumstances, like shim 
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quality, or on whether or not the MMBL or metabolite T2s are expected to change or are 

assumed to be constant.  

In terms of specific optimization results, it is most noteworthy that it has been shown 

quantitatively that MES provides a large benefit for all metabolites and that careful selection of 

the maximum TE and the TE spacing in conventional 2DJ can substantially lower the CRBs 

further. For the typical in vivo T2 values, the maximum useful TE amounted to about 200 ms in 

the case of MES and fairly large TE spacing seemed optimal for most metabolites. 

Generalization of the 2DJ sampling strategy did not lead to dramatic further improvements. 

Interestingly, optimal experiments for Glu and NAA contain at least one scan with the shortest 

TE of 22 ms, but this is not the case for GABA, which is in agreement with the optimized single 

TE experiments and a recent study (Napolitano et al., 2013). It is certainly of note that optimal 

1D experiments for some metabolites may ask for longer echo times and that also for the 1D 

experiments one may well benefit from MES, a strategy that is currently hardly ever pursued. 

It should be stressed that the estimated CRBs are strictly only valid for the specific 

circumstances considered (e.g. field strength, ideal RF pulses, line width, metabolite set) and 

the case of a complete model where the treatment of the baseline is crucial. This certainly limits 

this approach for experiment design, however, being able to finetune the acquisition strategy to 

the exact experimental situation (e.g. field strength), or postprocessing strategy, is also an 

advantage. For example, it makes sense to use different experiments whether or not the T2s or 

MMBL will be treated as unknown. 

The inverse of the square root of the diagonal elements of the Fisher matrix do not depend on 

the prior knowledge applied to the other parameters and provide a lower bound to the 

respective CRBs. They might thus be used as an approximation. However, conclusions from 

this approximation can be misleading, as seen in the case of GABA. 

Alternative methods for parameter optimizations mostly aiming at specific metabolites have 

often been based on finding the best acquisition parameters for optimal target signal yield but 

also with minimal spectral overlap between the target and nuisance signals (Choi et al., 2010; 

Choi et al., 2012; Hu et al., 2007; Kim et al., 2005; Snyder and Wilman, 2010), usually based on 

quantum mechanical simulations and in vitro experiments. These investigations certainly have 

the advantage of yielding basic understanding of why certain parameter settings are optimal, but 

the CRBs inherently provide a tool that includes these optimization criteria and also extends 

them to other interfering metabolites and experimental factors. 
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One considerable advantage of the proposed strategy is the possibility to optimize experiments 

not just for single but also for multiple metabolites. If the optimum for two parameters is 

targeted, an approach as presented for the quantification of GABA and Glu can be chosen, 

where the experiment yielding minimal CRB for Glu has been selected from all experiments 

yielding close to the minimal CRB for GABA. As an alternative, or if the optimum for a larger set 

of parameters is required, criteria used in multi-objective optimization, such as Pareto-optimality 

(Bolliger et al., 2011) or weighted sums, can be applied to choose the optimal experiment.  

It should be noted that CRBs, if calculated with the full data range in both domains, do not 

depend on whether FT is applied in the 2nd dimension or not. Furthermore, in the case of a 

complete model, neglecting any information leads to an increase in CRBs. Therefore, restriction 

of 2 calculation to off-diagonal areas (in the 2D FT case) does not help - on the contrary. This 

might be different if the model is incomplete (e.g. unknown baseline that cannot properly be 

parameterized) and off-diagonal regions in the 2D spectrum might be virtually unaffected by the 

unknown baseline components that interfere in the overall model.  

The verification of the proposed strategy of experiment optimization was performed in two steps 

for a specific 2DJ experiment optimized for quantification of Glu: First, using synthetic spectra 

where the true parameter values are known, and second for in vivo spectra. In the latter case, 

where the number of experiments that can be acquired per volunteer is limited, bootstrapping 

was used to artificially increase the number of experiments acquired for every volunteer for a 

better estimation of the variance of the fitted parameters. However, this approach cannot be 

used to artificially expand on the number of volunteers because inter-individual differences 

interfere with bootstrapping. It should be noted that in absolute terms the standard deviations 

obtained with bootstrapping are slightly lower than the true values because of induced 

correlations. However, for performance comparison of the two experimental settings, standard 

deviations from bootstrapped data are perfectly valid. 

Both verification approaches confirmed the improvement of quantitation precision that had been 

predicted by the CRBs estimations, which were based solely on a theoretical model. Using the 

synthetic model, where the true parameter values were known (and corresponded exactly to the 

values used for the CRBs estimation), it was shown that the accuracy of the fitted parameters 

was not degraded by using the optimized experiment. The improvement in quantitation precision 

in the in vivo case was in surprisingly good agreement with the prediction, in spite of the 

differences between the parameter values used for CRBs estimation and the fitted parameters, 
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and in spite of the limitations in the model, like the description of the macromolecular baseline 

as a set of mono-exponentially decaying Voigt lines, which is not true as known from GABA 

editing (Henry et al., 2001).  

5. Conclusions 

Localized MR spectroscopy experiments can be optimized for best use of scan time for 

particular target metabolites using Cramér-Rao bounds criteria. Specifically, for conventional 

2DJ experiments, best maximum TE to be included and best echo spacing can objectively be 

defined. Furthermore, CRBs criteria can be used to generalize the 2DJ experiment to allow 

unequal echo spacing and unequal number of acquisitions per TE. The benefit of maximum 

echo sampling has been documented quantitatively, not only for 2DJ, but also common 1D 

PRESS. The principle of experiment design based on CRBs optimization has been illustrated 

and verified with artificial spectra, but also in vivo brain spectra where the parameter 

optimization was documented with the expected improvement of variance in fitting results for 

Glu. It was also shown that bootstrapping can be used to effectively extend the measurement 

time beyond what is normally tolerable by human subjects. The CRBs method has clear limits 

that have to be respected, including the need for a correct model and full model 

parameterization.  
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6. Tables 

Table 1:  

Relative Cramér- Rao minimum variance bounds for selected experiments as presented in Fig. 

4 and scaled for equal scan time. CRB values for all included area parameters are listed as 

relative values with respect to the corresponding CRBs in the default conventional 2DJ 

experiment provided in the top trace.. Further rows contain conventional 2DJ experiments 

optimized for the metabolite listed in the first column; the darker shaded area contains  

generalized 2DJ experiments optimized for either individual metabolites, or in the lowest row for 

GABA and Glu (cf. text). All scans include MES and T2 fitting. 

7. Figure captions 

Figure 1:  

Cramér- Rao minimum variance bounds for 1D single TE scans.  CRBs for single TE PRESS 

experiments are plotted as function of TE (solid lines) for three representative metabolite area 

parameters. The inverse square roots of the diagonal elements of the Fisher matrix (dashed 

line) provide a lower bound to the respective CRBs. The CRBs are expressed relative to the 

CRB value obtained for TE 22 ms.  The upper row corresponds to half echo sampling and the 

lower row to maximum echo sampling. (Lorentzian widths not fitted, note the different scales for 

HES and MES). 

 

Figure 2:  

Cramér- Rao minimum variance bounds for conventional 2DJ experiments as function of 

maximum TE. The graphs show the influence of the maximum TE for each experiment on the 

CRBs for the area parameters of the same metabolites as in Fig. 1 for dense TE sampling (step 

size of 2 ms) but assuming equal total experiment duration (relative scaling for CRBs as in 

Fig. 1). The difference of MES (blue) vs. HES (red) is already evident in the top row and is 

further illustrated quantitatively in the lower row. 
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Figure 3:  

Cramér- Rao minimum variance bounds for conventional 2DJ experiments as function of 

maximum TE and TE sampling density.  Row a) shows relative CRB values of all sampled 2DJ 

experiments as a function of the maximal TE, while row b) zooms into the subset of experiments 

with maximum TE between 180 and 220 ms (blue rectangle in the upper row) and shows these 

selected CRBs as a function of TE step size (relative scaling for CRBs as in Fig. 1). CRBs for 

three metabolite areas and one linewidth parameter are shown. The data are color-coded 

depending on the number of steps: darker colored dots refer to finely-sampled 2DJ, brighter 

dots to a coarser sampling. Example: experiment consisting of TEs 22, 36, 50 ms  max TE = 

50ms, TE step = 14 ms, number of steps = 3. An extended version of this figure can be found in 

the electronic supplement (ES1). 

 

Figure 4:  

Experimental schemes for the optimized experiments listed in Table 1.  Each row represents a 

2DJ experiment consisting of different TE scans as described in Table 1. The TE values used 

are given by number (in ms) and the width of each field represents the scan time dedicated to a 

specific TE. 

 

Figure 5:  

Pictorial representation of generalized 2DJ experiments optimized for GABA, Glu and NAA 

under different model situations.  2DJ experiments are depicted as histograms of the rate of use 

for each TE, hence the height of the bars represents how often the respective TE was sampled 

(maximum height corresponds to 8 repetitions, e.g., the top left graph represents a 2DJ 

experiment with 6 scans at TE 22, one scan at TE 94, and one scan at TE 118 ms). The 

different rows correspond to different model or acquisition conditions as stated on the left and 

representing: 

 GW 2 Hz to 8 Hz: models with increasing overall Gaussian width (decreasing shim 

quality). 

 no T2: model with fixed T2s (not fitted). 
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 no MMBL: model with fixed MMBL contribution, no MMBL related parameters fitted. 

 5 met: strongly simplified model with only 5 metabolites and 5 free parameters (area 

parameters of Cr, GABA, Glu, Gln and NAA). 

Blue and red graphs represent MES and HES, respectively. The values on top of the bar plots 

stand for the percentage CRB decrease achieved for this case in comparison to the 

conventional 2DJ experiment with TEs from 22 ms to 246 ms, in steps of 32 ms (with the same 

model settings and acquisition scheme (HES or MES)). 

 

Figure 6:  

Representative conventional and generalized 2DJ spectra recorded from human grey matter in 

a healthy subject.  The spectra obtained with MES and plotted in magnitude mode correspond 

to a conventional (A, TE 22 to 246 ms, 16 acquisitions per TE) and a generalized 2DJ 

experiment optimized for Glu (B, see 3rd row in Fig. 5). The higher scan time spent on TE 22 ms 

is evident from the lower noise in that spectrum. 

. 

Figure 7:  

Glutamate content as obtained from 2D fitting of conventional and optimized generalized 2DJ 

spectra for volunteers A to H.  The bars represent average values ± 1 standard deviation for the 

fitted Glu concentration. Left: conventional 2DJ experiment, right: optimized experiment (cf. Fig. 

6). Evaluations with (orange) and without bootstrapping (black) are given. 
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optimized 

for 

CRB  

[in % of values for reference experiment] 

 GABA Glu Gln GSH 

 100 100 100 100 

GABA 96 97 95 97 

Glu 113 84 92 102 

Gln 106 90 87 101 

GSH 100 95 90 95 

GABA 92 115 101 100 

Glu 121 80 90 101 

Gln 106 86 87 98 

GSH 96 105 93 94 

GABA & Glu 93 101 96 97 
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P. Mathematical Proofs 

P1. Lower bound for diagonal elements of the inverse of a positive-definite 

matrix  

The inverse of the square root of the diagonal elements of the Fisher matrix provide a lower 

bound to the respective CRB. 

Statement:  

For any positive definite matrix , the following holds: 

 [Eq. A1] 

Proof:  

Let  be the eigenvalue decomposition of F, where  is the unitary matrix 

( ) whose columns are the normalized eigenvectors (orthogonalized for 

eigenvalues of multiplicity greater than 1) and  is the diagonal matrix whose main diagonal 

contains the corresponding eigenvalues .  

It follows that  . 

Thus we conclude that 
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Here we used that  for any . 



 

P2.  CRB cannot be decreased by neglecting information  

Increasing the number of data points is reflected in adding rows to the matrix of partial 

derivatives  and thus adding a positive-semidefinite matrix to the original (positive-definite) 

information matrix, which leads to decreased or unchanged values on the diagonal of the 

inverse (and thus CRB) . Conversely, neglecting information may lead to an increase in CRB, 

but never to a decrease. 

Statement:  

For a positive-definite matrix  and a positive-semidefinite matrix  it holds that  

  [Eq. A2] 

with equality if and only if all eigenvalues of  are zero (  is nilpotent). 

Proof:  

Let  be the eigenvalue decomposition of F, where  is the unitary matrix whose 

columns are the normalized eigenvectors and  is the diagonal matrix whose main diagonal 

contains the corresponding eigenvalues .  

Defining , and  as the -th column vector of , we can write 

, and thus  

. 

Further, we define  by  and write 



 

where we introduced the eigenvalue decomposition 

 , with  and 

  (since  and thus are positive semi-definite). 

It follows that  with ,  

and hence the diagonal elements can be written as  

 .  

 is a Hermitian matrix with eigenvalues  

Expressing  in the basis of eigenvectors of , i.e.  and thus , yields: 

 

as required. 

 



 

F: Figures 

Figure ES1: 

Cramér- Rao minimum variance bounds for conventional 2DJ experiments as function of 

maximum TE and TE sampling density.  Row a) shows relative CRB values of all sampled 2DJ 

experiments as a function of the maximal TE, while row b) zooms into the subset of experiments 

with maximum TE between 180 and 220 ms (blue rectangle in the upper row) and shows these 

selected CRBs as a function of TE step size (relative scaling for CRBs as in Fig. 1). In this 

extension of Fig. 3 CRBs for four metabolite areas and two linewidth parameters are shown. 

The data are color-coded depending on the number of steps:  darker colored dots refer to finely-

sampled 2DJ, brighter dots to a coarser sampling. Example: experiment consisting of TEs 22, 

36, 50 ms  max TE = 50ms, TE step = 14 ms, number of steps = 3.  

 

Figure ES2:  

Single spectra from 2DJ datasets illustrating the bootstrapping method used to extend the 

number of repeated experiments to determine the coefficient of variance for fitted Glu when 

comparing conventional with optimized 2DJ.  On the left the spectra with TE 22 ms from each of 

the repeated generalized 2DJ spectra (c.f. Fig. 7 B) is plotted for one subject, while on the right, 

the 25 corresponding spectra obtained by bootstrapping are depicted, where each data point 

(for all TEs) was randomly picked from one of the six original 2D spectra 
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