Screening and prediction of erosive potential

Barbour, M E; Lussi, A; Shellis, R P (2011). Screening and prediction of erosive potential. Caries research, 45 Suppl 1, pp. 24-32. Basel: Karger 10.1159/000325917

Full text not available from this repository. (Request a copy)

The literature on the erosive potential of drinks and other products is summarised, and aspects of the conduct of screening tests as well as possible correlations of the erosive potential with various solution parameters are discussed. The solution parameters that have been suggested as important include pH, acid concentration (with respect to buffer capacity and concentration of undissociated acid), degree of saturation, calcium and phosphate concentrations, and inhibitors of erosion. Based on the available data, it is concluded that the dominant factor in erosion is pH. The effect of buffer capacity seems to be pH dependent. The degree of saturation probably has a non-linear relationship with erosion. While calcium at elevated concentrations is known to reduce erosion effectively, it is not known whether it is important at naturally occurring concentrations. Fluoride at naturally occurring concentrations is inversely correlated with erosive potential, but phosphate is probably not. Natural plant gums, notably pectin, do not inhibit erosion, so they are unlikely to interfere with the prediction of erosive potential. The non-linearity of some solution factors and interactions with pH need to be taken into account when developing multivariate models for predicting the erosive potential of different solutions. Finally, the erosive potential of solutions towards enamel and dentine might differ.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > School of Dental Medicine > Department of Preventive, Restorative and Pediatric Dentistry

UniBE Contributor:

Lussi, Adrian and Shellis, Peter








Eveline Carmen Schuler

Date Deposited:

04 Oct 2013 14:16

Last Modified:

25 Jan 2017 12:16

Publisher DOI:


PubMed ID:


URI: (FactScience: 208584)

Actions (login required)

Edit item Edit item
Provide Feedback