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Fibroblasts
Roman Lutz1¤, Kristopher Pataky2, Neha Gadhari3, Mattia Marelli2, Juergen Brugger2, Matthias

Chiquet3*

1 Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland, 2 Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,

3 Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland

Abstract

Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical
way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects
cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a
width and spacing between 250 nm and 2 mm. The gold was functionalized with RGD peptide as ligand for cellular
integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less
disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by
poor recruitment of a5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not
polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover,
these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly
compared to fibroblasts on 2 mm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-
dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by
nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering
fibroblasts.
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Introduction

Cell adhesion to extracellular matrix (ECM) is mediated mainly

via integrins, heterodimeric cell surface receptors that play key

roles in transmembrane signaling processes and thereby regulate

cell behavior and fate [1]. One important group of integrins

interacts with Arg-Gly-Asp (RGD) peptide motifs that are pre-

sented by many ECM ligands; depending on their subunit

composition, however, these receptors bind to individual RGD-

containing ECM proteins with different affinities. For example, the

vitronectin receptor integrin-avb3 recognizes RGD in various

contexts (also in short peptides), whereas integrin-a5b1 very

specifically interacts with fibronectin. Intracellularly, integrins are

linked to the actin cytoskeleton by means of specialized adaptor

proteins such as talin and vinculin, which form a dense and

heterogeneous protein network [2]. Interaction partners also

involve protein kinases like Src and FAK that build a platform for

early steps of signaling. Since cell-matrix adhesions are the sites

where forces are transmitted from the ECM to the cytoskeleton

and back, they are critical for transducing mechanical stimuli, such

as substrate rigidity or changes in substrate strain, into chemical

signals [1]. Among the signaling cascades that are activated by

mechanical stimuli is the RhoA/ROCK pathway [3,4] that

promotes actin stress fiber formation [5,6].

Attachment and spreading of cells on an ECM substrate occurs

in several steps that depend on integrin-mediated sensing of local

substrate features, a process which in turn controls the formation

and maturation of cell-matrix adhesions. Shortly after first contact

of a cell with its substrate, Rac1, a Rho-family GTPase, stimulates

the assembly of a fine meshwork of actin filaments at cell borders

and the protrusion of lamellipodia [7,8]. A lamellipodium

represents the ‘‘leading edge’’ of a moving or spreading cell and

is the birthplace of cell-matrix adhesions called focal complexes.

These small, dot-like adhesions are less than 1 mm2 in area and

characterized by the colocalization of avb3-integrin, paxillin, talin,

vinculin, FAK and phosphotyrosine [9,10,11]. Focal complexes

are highly ephemeral and often disassemble rapidly. Alternatively,

if at this site the ECM substrate is adhesive (i.e. of high integrin

ligand density) and mechanically stable, focal complexes can

mature into focal contacts by growing in size and recruiting

additional proteins like zyxin, tensin, and a5b1-integrin. This

maturation depends on actin and myosin-II induced cellular
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traction and can be arrested by inhibitors of the RhoA/ROCK

pathway [10,12]. Mature focal contacts are usually found at the tip

of actin stress fibers; they are 1–2 mm wide, several mm long, and

can persist for many minutes at the same location. Further traction

by means of the actin cytoskeleton pulls out a5b1-integrin and

tensin from focal contacts, initiating the formation of fibrillar

adhesions that are tens of mm long [13]. During this process,

secreted pericellular fibronectin is bound to a5b1-integrin and

stretched, and exposes self-assembly sites that lead to the formation

of fibronectin fibrils [14]. Thus, on most substrates the different

types of cell-matrix adhesions are assembled in a hierarchical way,

growing in size during the process.

Much has been learned about the mechanisms of integrin-

dependent cell-ECM interactions by the use of micro- and

nanopatterened adhesive substrates that were engineered in recent

years [15,16,17]. The most widely used method is microcontact

printing, whereby patterns of adhesive ECM proteins (e.g.

fibronectin) are applied onto a passivated (non-adhesive) back-

ground surface. Cell-sized ECM islands of various shapes were

designed to impose onto cells a defined surface area and form; this

allowed to study how cell shape controls cell survival [18], division

[19], and differentiaton [20]. On the other hand, ECM stripe or

dot patterns in the micro- and nanometer range were engineered

that forced cells to establish cell-matrix contacts only at locations

defined by the print design. With these techniques, essential

physical parameters of ECM substrates could be explored that are

required for focal contact formation [16], cell spreading [21], cell

polarity and cell motility [22].

In the present study, we used a different technique to produce

substrate patterns in the sub-micrometer range. By a nanostencil

procedure [23], gold squares were applied to glass surfaces,

functionalized with RGD-thiol peptide, and the intervening spaces

passivated with poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-

PEG). Because of the almost covalent nature of the Au-S bond,

organic thiol compounds assemble into monolayers on gold

surfaces [24], and it is thus generally assumed that the amount of

coupled RGD-thiol is proportional to the gold surface area [16].

RGD rather than fibronectin was used here as a ligand, in order to

render the initial cell adhesion dependent on integrin-avb3. Cells

that attach to a pure fibronectin substrate immediately engage

integrin-a5b1; this leads to activation of RhoA [25] and the

distinction between different types of cell-matrix adhesions

becomes blurred [6]. For the same reason, medium depleted of

exogenous fibronectin was used to plate cells on the nanopatterns.

The smallest RGD-gold pattern consisted of squares 2506250 nm

(0.06 mm2) in size, spaced 250 nm apart. For the larger pattern,

the respective dimensions were 500, 1000, and 2000 nm. On

purpose, for all patterns used in these experiments the coverage of

substrate area with integrin ligand (i.e. RGD-coupled gold) was set

to 25%, which is far in excess to that reported to be required for

full cell spreading [21]. We used this new method with the aim to

restrict the size of cell matrix adhesions, and hence to inhibit the

maturation of small, newly formed focal complexes into larger,

a5b1-integrin-positive focal contacts. Similar nanopatterns to

control focal adhesion assembly have been produced before by

electron beam lithography [26]; however, downstream effects on

cell behavior were not explored in this study. Here, we asked

specifically how manipulating the size and spacing of cell-matrix

adhesions affected cell shape and motility. We found that cells

were able to attach and spread on sub-micrometer RDG-gold

patterns via small focal complexes, but that the formation of focal

and fibrillar adhesions was inhibited. The nanostructure of cell-

matrix adhesions in turn affected lamellipodia formation, the actin

cytoskeleton, fibronectin fibrillogenesis, and directed cell migra-

tion. Our results suggest that distinct signals arise from cell-matrix

adhesions during different stages of their maturation.

Results

Design of the RGD-gold patterns
In order to restrict the growth of cell-matrix adhesions during

cell adhesion to a defined size, gold square patterns in the

micrometer and sub-micrometer range were applied to glass

surfaces with a nanostencil technique [23]. Before seeding

fibroblasts, Cys-containing RGD peptide was bound to the gold

squares to provide restricted and integrin-specific cell attachment,

and the area surrounding the gold squares was passivated with

poly-L-lysine covalently grafted to polyehthylene glycol (PLL-g-

PEG; [27]). Four different patterns with gold squares ranging from

2506250 nm2, 5006500 nm2, 161 mm2 to 262 mm2 were

prepared (Fig. 1). To ensure that cells on all patterns had the

same areal density of adhesive ligand to attach, the patterns were

designed in a way that the surface area of RGD-coupled gold was

fixed to 25% of the total substrate area. This was achieved by

spacing the gold squares at a distance corresponding to their side

length (Fig. 1A). Control experiments showed that gold surfaces

were functionally saturated with RGD peptide under the coating

conditions used (see Materials and Methods; Figure S1). Thus, the

only difference between the four patterns used is the distribution,

not the amount or density, of adhesive RGD-gold ligand.

Scanning electron microscope images of the patterns are shown

in Fig. 1B. For simplicity, the four different substrates are called

250 nm, 500 nm, 1000 nm and 2000 nm patterns in the following

paragraphs. For positive and negative controls, cells were plated

on plain (i.e. unpatterned) RGD-gold or on plain PLL-g-PEG

passivated glass surfaces, respectively.

Restriction of cell-matrix adhesions to RGD-coupled gold
areas

Mouse embryo fibroblasts (MEF) were plated on the RGD-

coupled and PLL-g-PEG-passivated gold patterns in medium

containing 3% fibronectin-depleted FCS (to reduce nonspecific

adhesion). Cells were allowed to attach and spread for 4 hours,

subsequently fixed and stained for vinculin (Fig. 2). Some

cytoplasmic staining in the perinuclear area was seen on all

substrates. On plain RGD-coupled gold surface, specific staining

for vinculin was additionally found in elongated, up to 10 mm long

cell-matrix adhesions primarily at the cell border, with radial

orientation towards the cell center. Such a distribution is

indistinguishable from what is observed for the same cells on

tissue culture plastic (not shown; see eg. [6]). On the 2000 nm and

1000 nm patterns, anti-vinculin labeled cell-matrix adhesions were

located over the RGD-coupled gold squares. More intense staining

was usually detected for adhesion sites in the cell periphery;

however, they were also present in more central regions. On the

2000 nm patterns, often two vinculin-positive, elongated foci could

be discerned on individual RGD-gold squares. In most cases, they

ran either parallel or diagonal to the sides of the squares, and their

orientation was roughly centripetal with respect to the cell nucleus.

On the 1000 nm patterns, a single cell-matrix adhesion practically

filled the area of each RGD-gold square. Interestingly, however,

many peripheral adhesions exhibited a vinculin-positive short

‘‘tail’’ that extended over the margin of the respective 1 mm2

square, pointing again towards the cell center. The directionality

of cell-matrix adhesions on both the 2000 nm and 1000 nm

patterns indicated that they were subjected to centripetal

cytoskeletal force by actin contractility (see below; Fig. 5), a

typical feature of classical focal adhesions [1]. In contrast, on the

Nano-Patterns Inhibiting Focal Contact Maturation
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500 nm patterns vinculin was assembled in dot-like, non-polarized

cell-matrix adhesions that were most prominent at the periphery of

large lamellipodia, and again matched the underlying RGD-gold

squares (Fig. 2). A similar observation was made for cells on the

250 nm RGD-gold dots although this pattern is at the limit of

resolution for light microscopy. Thus on all patterns, vinculin-

positive cell-matrix adhesions were clearly positioned over areas

coated with RGD-coupled gold.

In the absence of gold or without coupling of RGD, cells did

neither attach nor spread on the passivated substrate (not shown).

Poor recruitment of a5b1-integrin to matrix adhesions on
RGD-gold squares smaller than 1 mm2

Integrin-a5b1 is largely absent from focal complexes of

spreading cells [2], but during their maturation is recruited into

early focal adhesions [28] where it binds secreted fibronectin [25].

Shortly later, a5b1-integrin is pulled out of early focal adhesions to

form fibrillar adhesions, leaving late focal adhesions behind with a

low content of this integrin [13]. To analyze the localization of

a5b1-integrin in cell-matrix adhesions, we plated fibroblasts on the

various RGD-gold patterns for 4 hours and stained them with

anti-a5-integrin antibody (Fig. 3). On plain RGD-gold (as on tissue

culture plastic; not shown), cells exhibited many a5-integrin-

positive fibrillar adhesions several mm in length, many of them

starting at the cell periphery and oriented in the long axis of the

cell. A similar distribution was observed on the 2000 nm and

1000 nm patterns: The cells bridged neighboring RGD-gold

squares with a5-integrin positive fibrillar adhesions, and hence

overcame the restriction given by pattern. However, staining for

a5-integrin was often brighter over the RGD-gold dots (Fig. 3), i.e.

at sites of vinculin-positive focal adhesions (cf. Fig. 2). In contrast,

on RGD-coupled gold patterns with dot size smaller than 1 mm2,

staining for a5-integrin in cell-matrix adhesions was clearly

diminished, especially in peripheral regions of the cells (Fig. 3).

A small amount of this integrin subunit was still found more

centrally in short (1–3 mm long) fibrillar structures, which however

did not appear to correlate with the underlying RGD-gold pattern.

These data indicated that the vinculin-positive, a5-integrin-

negative structures detected in the cell periphery on 250 nm and

500 nm patterns (Fig. 2) can indeed be classified as focal

complexes that failed to be converted into focal and fibrillar

adhesions.

Enhanced lamellipodia formation on RGD-gold squares
smaller than 1 mm2

When plating fibroblasts on the various RGD-gold patterns, we

found clear differences in cell morphology already by visual

inspection with a phase contrast microscope. To analyze cell-shape

more quantitatively, we fixed cells after 4 hours, co-stained them

for vinculin and actin, and viewed them by fluorescence

microscopy. On plain RGD-gold as well as on the 2000 nm and

the 1000 nm patterns, cells were well spread 4 hours after plating

(Fig. 4). Fibroblasts appeared elongated with usually several (3–7)

spiky processes and few lamellipodia (less than one per cell in

average). However, on the 500 nm and the 250 nm patterns the

cell morphology changed drastically. Cells again were well spread,

but assumed a phenotype with an average of 4–5 extended

lamellipodia per cell and almost no spike-like processes. Lamel-

Figure 1. RGD-gold patterns produced by the nanostencil technique. (A) Design of the patterns. Gold squares of the indicated sizes were
applied to glass surfaces (see Materials and Methods). Unit cells of the four individual patterns are shown in blue. Note that by keeping the width of
the squares the same as their lateral spacing, the patterns were designed such that the surface of RGD-coupled gold was fixed to 25% of the total
area. After manufacturing the patterns, RGD peptide was coupled to the gold squares to provide restricted and integrin-specific cell attachment, and
intervening spaces were passivated with PLL-g-PEG. (B) SEM micrographs of patterns of gold squares (5006500 nm2, 100061000 nm2 and
200062000 nm2) on glass coverslips. The 2506250 nm2 squares could not be imaged due to electron charging effects.
doi:10.1371/journal.pone.0025459.g001
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lipodia did not localize to a specific end of the cell but rather

formed all around the perinuclear cell body. On the 500 nm and

the 250 nm patterns, cells were also less elongated with an average

long axis of 55 mm. In comparison, the long axis for cells on the

larger RGD-gold patterns was measured to be 75–80 mm in

average, and it reached about 100 mm on plain gold (Fig. 4).

Altered actin assembly on RGD-gold squares smaller than
1 mm2

We found clear differences in the number of lamellipodia in

fibroblasts grown on different RGD-gold patterns, and cells

showed a different morphology (Fig. 4). Since actin assembly is

largely involved in the formation of cellular processes, we wanted

to analyze the actin cytoskeleton more precisely. To this aim, cells

grown on the various patterns for 4 hours were stained with Alexa-

labeled phalloidin and analyzed by fluorescence microscopy. In

fibroblasts on plain RGD-gold substrate, we found thick actin

stress fibers throughout the cells, which often bundled in the cell

center forming actin foci (Fig. 5). Also on the 2000 nm pattern

thick actin stress fibers were identified. Some crossed the cell body

but most of them were found along the cell borders. This might be

a reason why actin foci were hardly found on these patterns.

Fibroblasts on the 1000 nm pattern only exhibited actin stress

fibers at the cell border. More central actin fibers were rather fine

but still aligned parallel to the major cell axis. They started at the

cell margin over gold squares and extended centripetally (see insert

in Fig. 5), in accordance with the location and elongated shape of

focal adhesions on the 1000 nm pattern (cf. Fig. 2). In contrast, on

the 250 nm and 500 nm patterns thick actin stress fibers were

basically absent. In some cells, short actin bundles were found at

the cell margin perpendicular to the border of lamellipodia.

However, most of the actin was polymerized into a fine meshwork

Figure 2. Fibroblasts form matrix adhesions only on RGD-
coupled gold areas. Cells were grown on RGD-coupled gold patterns
for 4 hours with 3% fibronectin-free serum and subsequently fixed and
stained with an anti-vinculin antibody. The images in the right row are
enlargements of the boxed areas at left. Note that vinculin staining in
cell-matrix adhesions is restricted to RGD-gold nano- and microsquares,
whereas on plain RGD-gold vinculin-positive adhesions are several
micrometers long. On the 1000 nm pattern, peripheral adhesions over
gold squares are elongated in the centripetal direction (arrow). Scale
bar is 20 mm (left row) and 5 mm (right row), respectively.
doi:10.1371/journal.pone.0025459.g002

Figure 3. Integrin a5b1 is poorly recruited to matrix adhesions
on RGD-gold squares smaller than 1 mm2. Cells were grown on
RGD-coupled gold patterns for 4 hours with 3% fibronectin free serum
and subsequently fixed and stained with an anti-a5-integrin antibody.
Notice that a5b1-integrin localizes to fibrillar adhesions on plain gold
and on patterns $1 mm2, whereas on smaller patterns it is only
modestly recruited to cell adhesions. Scale bar is 10 mm.
doi:10.1371/journal.pone.0025459.g003
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in lamellipodia and also in the cell body. At the rear end of

protruding lamellipodia, the orientation of the meshwork was

parallel to the cell border. To quantify our observations, images

from three independent experiments with a total of around 50 cells

per pattern were evaluated. The threshold of the 8-bit pictures was

set to a grey value of 150, and remaining visible structures with a

fibrous shape were counted as actin stress fibers. The number of

stress fibers above threshold increased from almost zero on the

250 nm and 500 nm patterns to 2–3 on the 1000 nm and

2000 nm patterns, and up to 5 in average on plain RGD-gold

substrate (Fig. 5, lower panel). The mean length of these structures

gradually increased from 10 mm on the 250 nm pattern to 40 mm

on plain RGD-gold.

Altered fibronectin fibrillogenesis on RGD-gold squares
smaller than 1 mm2

Fibronectin fibrillogenesis by fibroblasts depends on actomyosin

contractility [29]. Since cells on the 250 nm and 500 nm pattern

assembled actin into a fine meshwork rather than stress fibers, we

asked whether these cells are still able to assemble fibronectin into

fibrils. Therefore we cultured cells on RGD-coupled gold patterns

in fibronectin-depleted medium as described in Materials and

Figure 4. Fibroblasts on RGD-gold squares smaller than 1 mm2

show altered morphology. Cells were grown on RGD-coupled gold
patterns for 4 hours with 3% fibronectin-free serum and subsequently
fixed and stained with Alexa-labeled phalloidin (red) and anti-vinculin
antibody (green). Scale bar is 50 mm. Note the high number of
lamellipodia on the 250 nm and 500 nm patterns, which is quantified in
the graph (bottom left). In addition, the maximal cell span was reduced
on the smaller compared to the larger patterns (bottom right).
PG = Plain gold. Values indicate the mean 6 S.E.M. from three
independent experiments including $30 cells per pattern size;
**p,0.01.
doi:10.1371/journal.pone.0025459.g004

Figure 5. Fibroblasts on RGD- gold squares smaller than 1 mm2

do not form actin stress fibers. Cells were grown on RGD-coupled
gold patterns for 4 hours with 3% fibronectin free serum and
subsequently fixed and stained with Alexa-labeled phalloidin. The
insert at the upper right of the cells on the 1000 nm pattern is an
enlargement of the boxed area. Scale bar is 50 mm. For quantification of
stress fibers, a fluorescence intensity threshold was set to distinguish
stress fibers from remaining actin structures. Note the increased
number (bottom left) and length (bottom right) of actin stress fibers on
patterns $1 mm2 and on plain gold (PG). Values indicate the mean 6
S.E.M. from three independent experiments including $30 cells per
pattern size; **p,0.01, *p,0.05, #p = 0.056.
doi:10.1371/journal.pone.0025459.g005

Nano-Patterns Inhibiting Focal Contact Maturation

PLoS ONE | www.plosone.org 5 September 2011 | Volume 6 | Issue 9 | e25459



Methods. Cells were fixed 4 hours after plating and subsequently

stained with anti-fibronectin antibody (Fig. 6). Within this short

time, fibroblasts on plain RGD-gold assembled their secreted

fibronectin into a few, relatively thick and long fibrils per cell. The

fibrils reached a length of 15–30 mm in average. Long fibronectin

fibrils were also observed for cells on the 2000 nm and 1000 nm

patterns (Fig. 6). They roughly aligned with the underlying

pattern, and as for a5-integrin (c.f. Fig. 3), the staining intensity for

fibronectin was increased over the RGD-gold dots. Conversely, on

the 500 nm and the 250 nm pattern cells assembled more

numerous, but fainter and shorter fibronectin fibrils. To quantify

our observations, fibronectin fibrils with a length above 3 mm were

scored. On the 250 nm and the 500 nm patterns, cells formed in

average 6–7 fibrils with a size longer than 3 mm. A large number

of fibrils shorter than 3 mm were observed; however, these were

often difficult to distinguish from plaque-like fibronectin aggre-

gates and therefore were not included for quantification. On the

1000 nm and 2000 nm patterns the number of fibronectin fibrils

per cell above threshold was lower, whereas their average length

was increased several fold (Fig. 6).

Decreased rate of cell migration on 500 nm versus
2000 nm RGD-gold patterns

Fibroblasts on RGD-coupled gold squares smaller than 1 mm2

formed excessive numbers of lamellipodia (c.f. Fig. 4). These

structures are found at the leading edge of migrating cells [7]. To

investigate whether these additional lamellipodia also lead to

changed motility, we plated fibroblasts on 500 nm and 2000 nm

RGD-coupled gold patterns, respectively, and imaged the cells by

time-lapse microscopy for the first 6 hours in culture (Fig. 7). On

both patterns, it took 1–2 hours until the cells started to flatten and

to form cell protrusions that were visible by phase contrast. These

lamellipodia, which were present all around the cell body, were

highly dynamic and visibly changed their shape and position every

2K minutes (the time interval between individual images).

Fibroblasts on the 2000 nm pattern assumed a more elongated

shape 3 hours after plating. These cells also started to pull

themselves along the substrate 3–4 hours after plating. In obvious

contrast, cells on the 500 nm pattern flattened but retained their

original non-polarized phenotype with motile circumferential

protrusions. Interestingly, despite of their high number of

lamellipodia, cells hardly changed their net position on this

substrate. To analyze this phenomenon more precisely, we tracked

cells between 3 and 6 hours after plating and determined their net

translocation. For each of the two patterns 3 independent

experiments were performed, and the net translocation of the

nuclei of 12–15 cells was tracked per experiment. The mean speed

of all cells analyzed on a respective pattern is represented in

Fig. 7A. Cell tracks are depicted from one of the experiments on

each pattern by tracking plots (Fig. 7B). The data show that in

average, cells on the 2000 nm pattern exhibit a rate of net

locomotion three times higher than on the 500 nm pattern. Light

micrographs of individual cells on the 500 nm and the 2000 nm

pattern, respectively, are shown at 2, 3, 4, 5 and 6 hours after

plating (Fig. 7C). Note that throughout the experiment, the cell on

the 500 nm pattern remained non-polarized with branching

lamellipodia all around the cell body. In contrast, the cell on the

2000 nm pattern assumed an elongated shape 3–4 hours after

plating, in accordance with the morphometric analysis presented

earlier (cf. Fig. 4).

Effect of RhoA/ROCK activation and inhibition on
nanopattern-controlled cell shape

The inhibition of focal contact maturation and increased

lamellipodia formation on 500 nm versus 2000 nm RGD-gold

dots indicated that the nanopattern size might influence cell shape

by controlling activation of the small GTPase RhoA and hence

actin dynamics in the adhering cells (see Discussion). We therefore

tested the effects of activators and inhibitors of RhoA and its

downstram target Rho-dependent kinase (ROCK) on the shape

and actin cytoskeleton of cells attached to the various patterns.

Fibroblasts were plated on 500 and 2000 nm RGD-gold patterns

for 4 hours, changed to new media without or with drugs for an

Figure 6. Fibroblasts on RGD-gold squares smaller than 1 mm2

form short and thin fibronectin fibrils. Cells were grown on RGD-
coupled gold patterns for 4 hours with 3% fibronectin free serum and
subsequently fixed and stained with an anti fibronectin antibody. Note
that long fibronectin fibrils are detected only on patterns $1 mm2 and
on plain gold (PG). Scale bar is 20 mm. Quantifications of the number
(bottom left) and size (bottom right) of fibronectin fibrils with a length
.3 mm per cell are shown by the graphs. Values indicate the mean 6
S.E.M. from three independent experiments including $30 cells per
pattern size; **p,0.01.
doi:10.1371/journal.pone.0025459.g006
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additional two hours, and then fixed and stained for actin (Fig. 8).

After a total of 6 hours with medium change alone, fibroblasts on

the 2000 nm pattern were again largely polar with extended

processes, whereas those on the 500 nm patterns showed many

circumferential lamellipodia (Fig. 8, upper left panel; cf. Figs. 3

and 4). After incubation in 5 mM of the Rho activator lysopho-

sphatidic acid (LPA), cells on both 500 and 2000 nm RGD-gold

dots appeared contracted with intense actin bundles along their

margins; no more obvious difference in shape could be observed

between cells on the two patterns (Fig. 8, LPA). Both the specific

ROCK inhibitor Y27632 (5 mM; Fig. 8, Y27) and the Rho

inhibitor C3 transferase (0.25 mg/ml; Fig. 8, C3) induced collapse

of long cellular processes on the 2000 nm patterns and of

lamellipodia on the 500 nm pattern, with F-actin accumulating

in ruffle-like structures at the cell periphery on both patterns.

Again, after either Y27632 or C3 transferase treatment no

apparent difference in cell shape could be observed any more

between fibroblasts on the two sizes of patterns. In summary, drug

induced activation as well as inhibition of RhoA/ROCK signaling

appeared to eliminate the differences in cellular shape and actin

cytoskeleton that are observed on the large vs. small patterns in the

absence of drugs.

Discussion

For the patterning of cell culture substrates in this work,

nanostencil lithography was used rather than microcontact

printing for several reasons. We had initially attempted to use

microcontact printing, but found that nanostencil lithography

involved fewer steps and resulted in less variation between users

and experiments in the resulting patterns. Another motivating

factor is that the 250 nm squares in this work are at the limit of

resolution of conventional microcontact printing [21], but well

within the reach of nanostencil lithography, which can produce

structures #100 nm in size [23]. In the present study, we used

patterns of RGD-coupled gold squares of different side lengths and

spacings (250, 500, 1000 and 2000 nm) to restrict the growth of

cell-matrix adhesions formed by adhering fibroblasts. The patterns

were designed in a way that the coverage of RGD-coupled gold

was always 25% of the total substrate surface, making them

different only by the size and distance of adhesive spots. Thereby

we could show that limiting individual cell-matrix adhesion area to

,1 mm2 affects cell morphology, the actin cytoskeleton, fibronec-

tin fibrillogenesis, and cell motility. The switch between two

different types of cell morphologies occurred between the 500 nm

and the 1000 nm pattern. Localization, size and a5-integrin

content of cell-matrix adhesions suggested that fibroblasts on

RGD-gold dots ,1 mm2 only formed focal complexes, while on

larger dots cells were able to convert these early adhesions into

focal contacts. Adhesion maturation was accompanied by the

formation of actin stress fibers, elongation of the cells, and

appearance of a5-integrin-containing fibrillar adhesions as well as

long fibronectin fibrils. Analysis of the morphology and migration

behavior of cells on adhesive dots ,1 mm2 showed that fibroblasts

rapidly formed and retracted many lamellipodia, but failed to

move in a preferred direction. This may be due to the lack of cell

polarization and the absence of prominent actin stress fibers that

allow the cells to retract processes at one end.

The process of cell-matrix adhesion formation and maturation

has been discussed extensively [10,28,30]. However, little is known

about specific signals emanating from the distinct stages of cell-

matrix adhesions during their maturation. Several studies describe

Figure 7. Cell migration speed is decreased on 500 nm versus 2000 nm RGD-coupled gold squares. Fibroblasts were plated on RGD-
coupled gold patterns in 3% fibronectin free serum and analyzed by time-lapse microscopy for 6 hours. A) Three hours after plating the cell speed
was determined for the following 3 hours. For each pattern (500 nm and 2000 nm) $40 cells from three independent experiments were analyzed.
Values indicate mean velocity 6 S.E.M.; **p,0.01. B) Cell tracking plots on the 500 nm and the 2000 nm patterns for one of the experiments
described in A. C) Differential interference contrast pictures of representative cells on each pattern (500 nm and 2000 nm) are shown. The pictures
are taken at 2, 3, 4, 5 and 6 hours after plating. Scale bar is 20 mm.
doi:10.1371/journal.pone.0025459.g007
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induction of lamellipodia and focal complexes by activation of

Rac1 [7,8,31]. In our experiments, fibroblasts produced and

maintained small vinculin-positive adhesions and many large

lamellipodia after plating them on 250 nm and 500 nm RGD-gold

patterns, indicating that the formation of focal complexes was

stimulated but that their progression to focal contacts and fibrillar

adhesions was inhibited. Rac1 was demonstrated to induce new

cell-matrix contacts at the cell front, which are associated with the

formation of lamellipodia, whereas its functional opponent RhoA

serves in the maturation of focal complexes into focal contacts and

in actin stress fiber formation [32]. There is increasing evidence

that a5b1-integrin, coupled to its secreted ligand fibronectin,

initiates RhoA activation during cell spreading [5,25] and in

response to cyclic strain of the substrate [6]. Integrin a5b1 is

hardly found in focal complexes but is recruited upon their

maturation into focal contacts [9]. RhoA activation through

ligated a5b1-integrin induces actomyosin contraction [6], which in

turn stimulates fibrillar adhesion formation and fibronectin

fibrillogenesis [13]. Fibroblasts on 250 nm and 500 nm RGD-

gold patterns did not show classical (.5 mm long) fibrillar

adhesions. In addition, assembly of fibronectin fibrils on these

patterns was clearly affected as only fine short fibrils were found. A

similar finely weaved meshwork of fibronectin fibrils was observed

in endothelial cells upon siRNA silencing of RhoA [33]. Based on

the cited evidence, our present results indicate that on sub-

micrometer RGD-gold patterns, RhoA-dependent processes are

largely suppressed within the first hours of plating fibroblasts. Low

levels of a5b1-integrin in cell-matrix adhesions are likely to result

in low activation of RhoA, which would maintain Rac1-dependent

lamellipodia formation [32]. Interestingly, we found that both

maximal activation (with LPA) as well as complete inhibition (with

C3 exoenzyme or Y27632) of RhoA/ROCK activity tended to

eliminate the distinct morphologies of cells on the large versus the

small nanopatterns that we observed in the absence of drugs. In

both cases, it appeared that cells were no longer able to respond to

the size differences of the nanopatterns. This finding is in

accordance with a role of RhoA/ROCK-controlled actin

dynamics in the process by which cells distinguish between

substrate features in our model.

As mentioned, the 1000 nm and 2000 nm patterns permitted

the formation of long fibrillar adhesions once focal contacts had

formed on the RGD-gold dots. The likely reason for this is the

fibronectin that is secreted by the adhering fibroblasts and

assembled into fibrils, allowing old cell-matrix adhesion sites to

be bridged and new ones to be formed. Presumably, fibronectin

deficient cells [6] would not display these behaviors, but

interestingly our attempts failed to get such cells to attach and

spread on RGD-gold patterns (not shown). It seems possible that a

total absence of fibronectin and the consequential lack of a5b1

integrin recruitment would cause a drop in activation of RhoA

below the level needed for cell spreading on RGD substrates.

Micro- and nanopatterned substrates have been used exten-

sively to explore how physical parameters of the ECM control cell

behavior. For example, Chen et al. [18] produced patterns of

evenly spaced fibronectin dots (3 mm diameter) by micro-contact

printing to demonstrate that cell growth and survival depended on

the total substrate area available for focal contact formation and

spreading, rather than on the percentage of the area actually

covered by ECM ligand. Xia et al. [22] extended these studies to

show that asymmetric dot and stripe patterns of fibronectin can

align adhering cells and direct their movements. On the lower end

of the scale, Spatz and colleagues used a lithography technique to

generate patterns of RGD-coupled 8 nm gold dots with variable

spacings in the low nm range [16]. Their aim was to determine the

minimal ligand density required for cell spreading. They showed

that integrins cluster and focal contacts are able to form only if

individual integrin binding sites are spaced less than 70 nm apart.

With the same technique, they generated squares of RGD-gold

dots similar in dimensions and spacing to our patterns, and

investigated focal contact formation by REF52 fibroblasts [26]. In

obvious contrast to our results, however, on 500 nm RGD-gold

Figure 8. Effect of RhoA/ROCK activation and inhibition on
nanopattern-controlled cell shape. Fibroblasts were seeded onto
RGD-coupled 2000 nm and 500 nm gold patterns in medium with 3%
fibronectin-free FCS. Cells were allowed to attach and spread for
4 hours, before medium was changed against the same medium either
without drug (control) or with 5 mM lysophospatitic acid (LPA), 5 mM
Y27632 (Y27), or 0.25 mg/ml C3 exoenzyme (C3), respectively. After an
additional 2 hours, cells were fixed and stained for F-actin with Alexa-
labeled phalloidin. Note the difference in cell morphology between the
2000 nm and the 500 nm pattern in control medium. LPA (RhoA
activator), Y27632 (ROCK inhibitor) and C3 exoenzyme (Rho inhibitor)
cause similar cell shape changes on both the 2000 nm and the 500 nm
pattern, and morphological differences between patterns are lost. The
experiment was repeated three times with comparable results;
representative images from a single experiment are shown. Scale bar
is 50 mm.
doi:10.1371/journal.pone.0025459.g008
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dot squares spaced 500 nm apart these cells formed extended

paxillin-positive focal contacts that bridged the gaps between

patches. Thus, patterns in the sub-micrometer range did not

restrict the growth of cell-matrix adhesions in their case. This is

probably due to the different cell types used: REF52 cells are

considerably larger and spread more extensively than immortal-

ized mouse embryo fibroblasts which resemble primary cells [34].

In another study directly relevant to our present, Lehnert et al.

[21] used micro-contact printing to produce patterns of fibronectin

squares with side lengths from 0.3–3 mm (,0.1–10 mm2) and

center-to-center spacing from 1–30 mm. They found that a pattern

of 0.25 mm2 fibronectin dots with 5 mm spacing (1% coverage of

the substrate with ligand) was about the limit for B16 melanoma

cells to establish focal contacts, to spread, and to generate actin

stress fibers. These authors observed cell spreading and small cell-

matrix adhesions even on 0.1 mm2 fibronectin dots when the

spacing was reduced to 1 mm; however, they did not investigate

cell motility and the actin cytoskeleton under these conditions. In

the present study, we tested similar patterns engineered with the

nanostencil technique. We however kept the area covered with

ligand constant at 25% and used RGD peptide instead of

fibronectin, in order to reduce integrin-a5b1 and RhoA activation

during initial attachment of cells [5]. Our present results show that

for mouse embryo fibroblasts, adhesive RGD-gold patterns in the

sub-micrometer range inhibit the maturation of focal complexes to

focal contacts as well as stress fiber assembly, but still promote

extensive lamellipodia formation and cell spreading. This indicates

a difference in the balance between Rac1 and RhoA activation in

cells on the various patterns, which at present is difficult to

demonstrate directly due to the low number of cells available in

our experiments. Nevertheless, our findings demonstrate the

potential of the nanostencil patterning technique for manipulating

cell-matrix adhesion sites and hence the shape and motility of cells

adhering to engineered surfaces. RhoA-regulated cell shape has

been reported to control the differentiation of mesenchymal stem

cells towards the adipocyte and osteoblast lineage, respectively

[20]. Thus in the future, the nanostencil method may offer new

possibilities to control more precisely the interaction of mesen-

chymal cells with implant surfaces, and to influence their

differentiation around the implant.

Materials and Methods

Nanostencil technique
Nanostencil lithography is essentially a shadow-masking tech-

nique in which a material is added or removed through nanoscale

apertures in a thin membrane to create corresponding nanopat-

terns on a substrate in conformal contact. In this case, Au

nanopatterns were evaporated onto glass coverslips.

Precise details on nanostencil fabrication can be found in [35]

but we describe the major steps here. Fabrication begins by

depositing a 200 nm thick silicon nitride film on both faces of a

polished Si wafer. The nanoapertures are patterned into a resist on

the first face by electron beam lithography, and transferred into

the nitride film by reactive ion etching. Large (0.560.5 or

161 mm) ‘windows’ are patterned onto the second face using

photolithography and reactive ion etching. The exposed Si at the

‘window’ in the second face is etched through the wafer using a

combination of reactive ion and wet chemical etching, until it

meets the nanopatterned nitride film. The result is a 200 nm thick

nanopatterned nitride membrane supported in a sturdy silicon

frame. The wafer is cleaved into chips to facilitate stencil handling.

Patterning occurred in the following steps. The glass coverslips

were affixed to a large glass wafer using polyimide tape. Next, the

stencils were affixed to the coverslips using polyimide tape. The

assembly of wafers, coverslips, and nanostencils was cleaned in an

oxygen plasma chamber (30 s, 500 W) to ensure proper metal film

adhesion to the coverslips (Tepla 300, PVA Tepla AG, Germany).

Finally, the assembly was placed in a LAB 600 electron beam

evaporator (Leybold Optics GmbH, Germany) for metallization.

First, a 5 nm thick Ti layer was deposited to ensure the Au would

stick to the coverslip. Next, 40 nm of Au was deposited to serve as

the cell adhesive pattern. Following the evaporation the nanos-

tencils were removed from the coverslips, and the coverslips were

removed from the glass wafer and stored for use.

RGD-coupling of gold patterned coverslips
Patterned coverslips were cleaned in a UV-ozone photoreactor

(PR-100, UVP, Upland, CA) for 30 minutes. Each coverslip was

then placed in a m-dish (35 mm diameter, high) from Ibidi (Vitaris,

Baar, Switzerland) and subsequently coated with a solution of the

RGD peptide Ac-Gly-Cys-Gly-Arg-Gly-Asp-Ser-Pro-Gly-NH2

(Polypeptide, Boulogne, France) at 3 mg/ml in water for 24 hours.

Patterns were then washed 3 times with PBS and passivated with

PLL(20)-g[3.5]-PEG(2) (SuSoS AG, Dübendorf, Switzerland) in

water at 0.2 mg/ml for 2 hours. PLL-g-PEG solution was

extensively washed away with PBS and the PBS was then again

changed against Dulbecco’s modified Eagle medium (D-MEM;

Seromed, Basel, Switzerland).

Plating of cells
A clonal mouse embryonic kidney fibroblast cell line immor-

talized by stable transfection with SV40 large T antigen [36] was

obtained from Dr. Reinhard Fässler (Max Planck Institute for

Biochemistry, Martinsried, Germany). Cells were maintained at

37uC with 6% CO2 in Dulbecco’s modified Eagle medium (D-

MEM; Seromed, Basel, Switzerland) containing 10% fetal calf

serum (FCS; Gibco/Invitrogen, Basel, Switzerland). Instead of a

commercial established fibroblast line e.g. NIH-3T3, we chose

these cells for our experiments because they are not transformed

and resemble primary fibroblasts in their gene expression pattern

[34] and integrin profile [6]. Cells were harvested with trypsin-

EDTA (Gibco/Invitrogen, Basel, Switzerland), resuspended in D-

MEM containing 3% fibronectin-depleted FCS [6], and seeded

onto the nanopatterned substrates (40’000 cells per 35 mm dish).

The medium was depleted of fibronectin to reduce deposition of

this adhesive glycoprotein to the passivated areas. Dishes were kept

at 37uC and 6% CO2 for 4 hours. In certain experiments, medium

was changed to D-MEM/3% fibronectin-free FCS containing

5 mM lysophophatidic acid (LPA, Sigma), 5 mM Y27632 (Y27;

Calbiochem), or 0.25 mg/ml bacterial recombinant C3 transferase

(C3; Cytoskeleton), respectively, and cells were incubated for an

additional 2 hours. Optimal drug concentrations for these cells

had been determined in previously published experiments [3,6].

Cells were then fixed with 4% paraformaldehyde for 10 minutes,

followed by washing with PBS.

Control experiments for RGD functionalization
In control experiments (Figure S1), gold-patterned coverslips

were coated with 3 mg/ml of a peptide in which the RGD

sequence was changed to RDG (Ac-Gly-Cys-Gly-Tyr-Gly-Arg-

Asp-Gly-Ser-Pro-Gly-NH2; synthesized by J. Patterson in the lab

of J. A. Hubbell, Ecole Polytechnique Féderale de Lausanne).

Additionally, patterns were functionalized as above with active

RGD and control RDG peptide mixed in different ratios (1:1, 1:4

and 1:9), keeping the total concentration of 3 mg/ml constant.

After passivation with PLL-g-PEG, cells were plated as above

before fixation. We observed that fibroblasts spread fully on gold
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patterns coupled with pure RGD as well as with mixtures of

RGD:control peptide of 1:1 and 1:4. On patterns coated with 1:9

mixtures, cells spread partially but did not polarize, whereas on

plain control peptide they attached but did not spread (Fig. S1).

These results showed that with pure RGD peptide and up to a 1:4

dilution with control peptide, gold patterns were functionally

saturated with RGD ligand for cell spreading.

Immunofluorescence and phalloidin staining
Patterned cover slips with attached, fixed cells were permeabi-

lized at room temperature for 30 minutes in PBS solution

containing 3% BSA and 0.1% Triton X-100 (Sigma, Buchs,

Switzerland). Cells were then stained for 1 hour at room

temperature with one or several of the following reagents in PBS

containing 3% BSA and 0.1% Triton X-100: anti-fibronectin

antiserum [37] diluted 1:300; anti-a5-integrin diluted 1:500 (BD

Pharmingen, Basel, Switzerland); anti-vinculin diluted 1:1000

(Sigma, Buchs, Switzerland); Alexa 546-labeled phalloidin at

1 mg/ml (Sigma, Buchs, Switzerland). After staining, cells were

washed three times with PBS/0.1% Triton X-100 and incubated

for 1 hour with one or several of the following secondary

antibodies: Alexa 488-labeled goat anti rabbit IgG; Alexa 488-

labeled goat anti mouse IgG; Alexa 488-labeled goat anti rat IgG;

Alexa 633-labeled goat anti rabbit (all from Sigma, Buchs,

Switzerland) diluted 1:1000 in PBS/3% BSA/0.1% Triton X-

100. Cells were again washed three times with PBS/0.1% Triton-

X100 and mounted in Prolong Gold antifade reagent (Invitrogen,

Basel, Switzerland). Slides were examined with a Zeiss Z1 or a

Olympus BX51 fluorescence microscope equipped with 206/0.8

and 406/0.75 objectives and filter cubes for Alexa 488 and Alexa

546. Numbers of lamellipodia, cell span, number and length of

actin and fibronectin fibers per cell were determined from

fluorescence images of cells on the various patterns. At least 30

cells from three independent experiments were measured per

pattern. Data were evaluated by ANOVA to test the null

hypothesis, and the significance of differences between 500 nm

and 1000 nm patterns was determined by unpaired Student’s t-

test.

Live Imaging Microscopy
For live imaging microscopy, fibroblasts were seeded into Ibidi

m-dishes (Vitaris, Baar, Switzerland) onto RGD-coupled gold

patterns as described above. Immediately after seeding, cells were

observed with a Zeiss inverted microscope for the following

6 hours. Time-lapse phase contrast images were collected every

2K minutes. Pictures were processed and analyzed with the

ImageJ program and the manual tracking plug-in. For quantifi-

cation of cell velocity, $40 cells per pattern were measured, and

the significance of the difference between 2000 nm and 500 nm

patterns was determined by unpaired Student’s t-test.

Supporting Information

Figure S1 Control experiment for RGD functionaliza-
tion of gold patterns. 1000 nm gold patterns were coupled

with either RGD peptide alone (pure RGD), control peptide alone

(pure RDG control), or mixtures of RGD:control peptide of 1:1,

1:4 and 1:9, respectively (total peptide concentration 3 mg/ml in

all cases). Fibroblasts were plated, fixed and stained for F-actin as

described in Materials and Methods. Note that cells spread fully on

the coated gold patterns up to a RGD:control peptide ratio of 1:4.

The experiment was repeated three times with comparable results;

representative images from a single experiment are shown. Scale

bar is 50 mm.

(TIF)
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