Session 1.2a Strength, Weakness, Modeling Standards and Processing Strategies of Space Geodetic Techniques

Impact of GLONASS in a rigorous combination with GPS

M. Fritsche\(^{(1)}\), C. Rodriguez-Solano\(^{(2)}\), P. Steigenberger\(^{(2)}\), K. Sosnica\(^{(3)}\), K. Wang\(^{(4)}\), R. Dietrich\(^{(1)}\), U. Hugentobler\(^{(2)}\), R. Dach\(^{(3)}\), M. Rothacher\(^{(4)}\)

\(^{(1)}\) Technische Universität Dresden, Germany
\(^{(2)}\) Technische Universität München, Germany
\(^{(3)}\) AIUB, Universität Bern, Switzerland
\(^{(4)}\) Eidgenössische Technische Hochschule Zürich, Switzerland

IAG Scientific Assembly 2013, Potsdam 01-06.09.2013
Outline

Observation data, modeling, processing scheme

Results from a combined GNSS processing

- Station coordinates/velocities
- Orbit validation
- Satellite clocks

Conclusions
Observation data and modeling

- Reprocessing starting on observation level: 1994 - 2011
- 340 GNSS stations in total (140 with GLONASS observation), 70 SLR stations
- GLONASS included since 01. January 2002
- GPS-only, GLONASS-only and GPS+GLONASS-combined solutions
- SLR: range residuals w.r.t. to microwave-based GNSS satellite orbits
- Processing of 24-hour epoch for clock solutions
- Major modelling aspects

 Terrestrial reference frame: ITRF2008/IGS08
 GNSS antenna phase center: IGS08.atx
 Atmospheric tidal loading: S_1+S_2 tides (Ray and Ponte, 2003)
 Atmospheric+oceanic non-tidal loading: GRACE AOD1B (RL04)
 Radiation pressure for GNSS satellites: Earth albedo included
Station network

- GPS+GLONASS
- GPS-only
- SLR
Number of processed stations and satellites

- GPS
- GPS+GLONASS
- GPS
- GLONASS
System-specific number of observation days

Relative contribution in terms of time series length

Graphs:

- **GPS**
 - Observation Time [years]
 - Number of Stations [%]
 - Observation Time [years]

- **GLONASS**
 - Observation Time [years]
 - Number of Stations [%]
Terrestrial Reference Frame (TRF)

<table>
<thead>
<tr>
<th>IGS08 w.r.t.</th>
<th>Translation [mm] / Translation rates [mm/y]</th>
<th>Scale [ppb]/ Scale rate [ppb/y]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>GPS-only</td>
<td>-4.3</td>
<td>-7.0</td>
</tr>
<tr>
<td></td>
<td>-1.1</td>
<td>+1.3</td>
</tr>
<tr>
<td>GPS+GLONASS</td>
<td>-4.1</td>
<td>-6.7</td>
</tr>
<tr>
<td></td>
<td>-1.0</td>
<td>+1.2</td>
</tr>
</tbody>
</table>
TRF: Time series analysis

Input: daily position time series

Functional model: annual, semi-annual, draconitic harmonics

Stochastic model: combined white + flicker noise model

GPS+GLONASS
(Vertical components)
GPS-only

![Graphs showing](image.png)
ORB: Transformation of satellite positions

1.9 cm (Earth albedo)
ORB: Overlaps from 1-day arcs

GPS:
- GPS-only
- GPS+GLONASS

GLONASS:
- GLONASS-only
- GPS+GLONASS
ORB: Overlaps from 3-day arcs

GPS:
- GPS-only
- GPS+GLONASS

GLONASS:
- GLONASS-only
- GPS+GLONASS
ORB: SLR range residuals

<table>
<thead>
<tr>
<th>GLONASS</th>
<th>GLONASS-M</th>
<th>GLONASS-M</th>
<th>GLONASS-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>#15</td>
<td>#8</td>
<td>#1</td>
</tr>
</tbody>
</table>

Mean bias [mm]

RMS [mm]

3-day arc

1-day arc

GPS+GLONASS

GLONASS-only
GNSS satellite clocks (30sec)

Modified Allan Deviation (MDEV) from a 5-day interval in 2008

GPS

\(\sim \tau^{-1/2}\)

\[\begin{align*}
10^{-12} & \\
10^{-13} & \\
10^{-14} & \\
10^{-15} & \\
\end{align*}\]

Averaging Interval \(\tau\) [s]

- BLOCK IIA
- BLOCK IIR

GLONASS

\(\sim \tau^{-1/2}\)

\[\begin{align*}
10^{-12} & \\
10^{-13} & \\
10^{-14} & \\
10^{-15} & \\
\end{align*}\]

Averaging Interval \(\tau\) [s]

- GLONASS
- GLONASS-M

(missing epochs < 5%)

(missing epochs < 15%)
PPP Phase Residuals
Conclusions

• Impact of including GLONASS on TRF parameters
 – no systematic effect for linear TRF parameters
 – slight reduction of daily position repeatabilities

• Combination with GPS and 3-day arc length significantly improves GLONASS orbits

• Conventional consideration of albedo modeling required

• Study of remaining model errors based on precise clocks products (yaw maneuvers modeling for both GNSS)
The authors acknowledge the support provided by the German Research Foundation (DFG) and the Swiss National Science Foundation (SNSF).