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Estimated parameters

up to 32 GPS and LAGEOS-1/2,
Osculating A9 C, i9 Qa ®, Ug Aa C, ia Q) 0, Uy
elements (1 set per 3 days) (1 set per 7 days)

24 GLONASS satellites Starlette, Stella, Ajisai
LAGEOS-1/2: S(), Sc, SS

Dynamical Dy, Y, Xo, Xs, Xc (1 set per 7 days)
parameters (1 set per 3 days, see Fig. 1) Sta/Ste/Aji: Cp, S¢, Ss. We, Wy

Introduction

GPS satellites are very sensitive to some of the Earth's gravity field
coefficients, because of the deep 2:1 orbital resonance. The resonant
coefficients (C22, S22, C32, S32, Ca4, Sa4) cause a secular drift of the
semi-major axes up to 5.3 m/day (Hugentobler 1998). We processed
10 years of GPS and GLONASS data using the standard orbit modeling Fig: 1: Satellite-Sun-oriented reference frame

from the Center of Orbit Determination in Europe (CODE) with a s LAGSOS;tIPZTdaWI
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simultaneous estimation of the Earth gravity field coefficients and 1.20 (once per revolution) Sta/Ste/Aji: S
other parameters (Tab. 1). The weekly GNSS solutions are compared LLE (once per revolution)
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toweekly SLR and monthly GRACE gravity field solutions. barameters (1 set per day) (1 set per day)
Figure 2 shows the amplitudes of annual signals of gravity field 0.80 = GRACE I set per 7 days I set per 7 days
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solutionsis0.28<107, i.e., the amplitudes agree on average at the 30% 0.20 | IRFR1 and ZTD biases
level. |1 I I I [ I I r] I Tab: 1: List of estimated parameters in the 7-day GNSS and 7-day SLR gravity field
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Figure 3 shows that the sectorial and tesseral coefficients agree very 20 o1 21 Car S22 C30 C31 S31 32 S3» C33 S33 CAO CAL SAL Cha SAa C43 43 CAd SAd solutions. The quelmg standars follow the II?RS 2010 Conventions in -both solutlo.ns.
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estimated using an a posteriori fit

large deviations: are derived from the GNSS solution together with other parameters for the first time.

>variations of C20 are overestimated in the GRACE solutions (Fig. 2),
because of the alias with S2 tide (Meyer et al., 2012). C20 from the
GNSS solutions does not fully agree with the SLR results, but can be
improved by changing the orbit modeling (see Sec. 1), o | A A MAL . .

>C30agrees inthe GRACE and GNSS solutions and disagrees in the SLR | & NED | NE) | ¢ | 2d e ‘ ) 1—‘ "*l ‘ ‘“‘* ?‘
solution (Fig. 3), because of the correlations between C30and Csoin E | '

the SLR solution using 5 spherical satellites (see Sec. 2),
»C40 agrees in the SLR and GNSS solutions, and disagrees in the Fig: 3: Correlations between Earth gravity field coefficient variations from the SLR, GRACE, and GNSS solutions (with standard CODE orbit modeling). Correlation coefficients
GRACE solution, because of the alias with S2 tide (see Sec. 2). were estimated using the series of the 7-day SLR and 7-day GNSS solutions, and interpolated values of montly GRACE solutions with subtracting the mean value of each series.
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Figure 4 shows that the variations of C20 do not seem to be fully | 8. ! o

recovered from the standard CODE orbit parametrization, which is §4_ oré harmonie 80E11
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semiannual signals as compared to the SLR solutions. Figure 5 shows —neelr LR GRESadlilons i o
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the constant and once-per-revolution parameters in the X direction Fig: 4: Variations of C20 w.r.t. EGM2008 from the GNSS solutions with standard CODE 5.0E-11 = GRACE
are not estimated: the semi-annual signal is well reproduced, the 3" modeling, compared to the SLR results for a time span 2002-2011 = multi-SIR
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solutions with estimating one of the these parameters or both show Fig: 5: Variations of C20 w.r.t. EGM2008 from the GNSS solutions without estimating

constant and once-per-rev dynamical orbit parameters in the X direction, compared
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standard CODE modeling and without estimating constant and once-per-rev Ig: 3: Lorrelation matrix from reduced daily normal equation system. The osculating
>Do & 522/C22, 532/532’ C44/S44 (resonant terms)’ dynamical orbit parameters in the X direction elements and dynamical parameters of one GPS satellite are shown with Earth rotation
> C20 &Xo. parameters (ERP), Geocenter coordinates and gravity field parameters

2. Earth’s Gravity Field from SLR - 3. Summary

Most of the low degree Earth’s gravity field coefficients can be p evarenoy orace. | >The increasing number of GLONASS satellites and a well-

determined from the multi-SLR solutions (LAGEOS-1, LAGEOS-2, e AR e A S4 mpactofSztide - distributed network of GNSS stations improve the quality of
= : L/ MY SH s VAN VWM W on GRACE

AJISAI, Star.lette, Stella) with a comparablfe qufallty to the GBACE | f _ | _ the GNSS-derived C2o(Fig. 5).

solutions (Fig. 10). C20 and C4o0 are better defined in the SLR solutions, vkl LE-SLF sooons | S Gt correlateditith car T i B Tl N i W

because of the alias with S2 tide in the GRACE solutions (Fig. 11, top). 7002 2004 2006 2008 2010 2012 0 200 300 400 500 600 P y

Period in Days orbit parametersin the X direction. C20can be well established
X107 | S S L E— from GNSS when these orbit parameters are not set up.
f% : | | »GPS resonant gravity field parameters have very small a
| posteriori errors, but they are strongly affected by the solar
radiation pressure (correlation with Do).

On the other hand, C3o0 cannot be fully recovered from the SLR solution
(Fig. 11, bottom), because C30 and Cso impose similar orbit
perturbations on low orbiting SLR satellites, i.e., on Starlette, Stella,
and AJISAI (Cheng et al., 1997). Thus, a lumped coefficient C30+0.9-Cs0
is derived from the SLR solutions, instead. Some of the coefficients

Amplitude

C30+C50

from the multi-SLR solutions are affected by the mismodeling of the i g | , | - & » Most of the gravity field parameters of low degree can be well
. . . § r 2%02 2004 2006 2008 2010 2012 200 300 400 500
solar radiation pressure (e.g., C41 in Fig. 12), because their spectral Period in Days established from the SLR solutions with a comparable quality

analyses show periods related to a draconitic year of Starlette (73 days) | Fig: 11: Variations of Ca0 and C30 w.r.t. EGM2008 from the SLR solutions compared to to the GRACE results. The quality of C20and Caois better in the

% - : the GRACE results. Cso from the GRACE solutions is also shown
and AJISAI (89 days), or Starlette’s revolution of perigee (121 days). S SLR solutions, whereas C3o is better recovered in the GRACE

and GNSS solutions.
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