
Biomech Model Mechanobiol (2013) 12:793–800
DOI 10.1007/s10237-012-0443-2

ORIGINAL PAPER

Morphology–elasticity relationships using decreasing fabric
information of human trabecular bone from three major
anatomical locations

Thomas Gross · Dieter H. Pahr · Philippe K. Zysset

Received: 3 May 2012 / Accepted: 18 September 2012 / Published online: 2 October 2012
© Springer-Verlag Berlin Heidelberg 2012

Abstract With improving clinical CT scanning technology,
the accuracy of CT-based finite element (FE) models of the
human skeleton may be ameliorated by an enhanced descrip-
tion of apparent level bone mechanical properties. Micro-
finite element (μFE) modeling can be used to study the
apparent elastic behavior of human cancellous bone. In this
study, samples from the femur, radius and vertebral body
were investigated to evaluate the predictive power of mor-
phology–elasticity relationships and to compare them across
different anatomical regions. μFE models of 701 trabecular
bone cubes with a side length of 5.3 mm were analyzed using
kinematic boundary conditions. Based on the FE results, four
morphology–elasticity models using bone volume fraction
as well as full, limited or no fabric information were cali-
brated for each anatomical region. The 5 parameter Zysset–
Curnier model using full fabric information showed excellent
predictive power with coefficients of determination (r2

adj) of
0.98, 0.95 and 0.94 of the femur, radius and vertebra data,
respectively, with mean total norm errors between 14 and
20 %. A constant orthotropy model and a constant transverse
isotropy model, where the elastic anisotropy is defined by
the model parameters, yielded coefficients of determination
between 0.90 and 0.98 with total norm errors between 16
and 25 %. Neglecting fabric information and using an isotro-
pic model led to r2

adj between 0.73 and 0.92 with total norm
errors between 38 and 49 %. A comparison of the model
regressions revealed minor but significant (p< 0.01) differ-
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ences for the fabric–elasticity model parameters calibrated
for the different anatomical regions. The proposed models
and identified parameters can be used in future studies to
compute the apparent elastic properties of human cancellous
bone for homogenized FE models.
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Finite element method · Human cancellous bone

1 Introduction

Finite element (FE) modeling is becoming increasingly pop-
ular as a tool to predict mechanical loading responses of
full bones (Cristofolini et al. 2010; Jones and Wilcox 2008;
Taddei et al. 2006), bone segments (Varga et al. 2011; Silva
et al. 1998) and bone implant systems (Bougherara et al.
2010; Roychowdhury 2009 ) in humans. However, all macro-
level FE models rely on homogenized material properties of
trabecular bone, in which determination is a delicate task.

Ex vivo, the fabric information can be accurately assessed
by means of high-resolution CT images, and homogenized
bone FE models using fabric-based orthotropic material
behavior have shown better predictions of stiffness and
strength than models using bone volume fraction alone (Pahr
and Zysset 2009). Up to date, clinical FE models of the central
skeleton use either isotropic symmetry (Keyak et al. 2011) or
in case of the vertebral body transverse isotropic symmetry
where the direction of anisotropy is based on anatomical con-
siderations (Chevalier et al. 2010). However, with improving
CT scanning technology (Mulder et al. 2012) and advanced
image processing algorithms (Graeff et al. 2007), it is now
possible to also analyze the trabecular bone structure in
vivo. This opens the opportunity to include location-specific
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anisotropic mechanical properties as model input for clinical
FE models.

Apparent mechanical properties of trabecular bone can be
investigated by means of mechanical testing (Goulet et al.
1994), ultrasound wave propagation (Turner et al. 1990) and
the digital finite element method (Hollister 1994). However,
all of the aforementioned testing strategies struggle with
either the anisotropy of cancellous bone; the fact that the
characteristic length of the intratrabecular spacing is of the
same order of magnitude as the characteristic length of archi-
tectural heterogeneity (Harrigan et al. 1988) or that they are
only valid for a given set of boundary conditions (Pahr and
Zysset 2008).

Since the apparent elastic behavior of cancellous bone
is closely related to its intrinsic architecture (Cowin 1985),
apparent mechanical properties can be approximated using
morphological parameters which are accessible by a number
of imaging techniques. Bone volume fraction (ρ) and archi-
tectural anisotropy described by the fabric tensor (M) (Cowin
1985) can be accurately investigated using serial reconstruc-
tion (Odgaard et al. 1990), micro-computed tomography
(μCT) (Ruegsegger et al. 1996) and micro-magnetic reso-
nance imaging (μMRI) (Hipp et al. 1996).

For apparent level compression, tension and torsion tests,
micro-finite element (μFE) models of trabecular bone which
are based on high-resolution scans have shown fair to excel-
lent agreement with mechanical tests (Wolfram et al. 2010;
Chevalier et al. 2007). Unlike experimental methods, μFE
methods for homogenization allow to compute the full aniso-
tropic stiffness tensor of the bone microstructure.

In Zysset (2003), different testing techniques have been
reviewed and models relating trabecular bone stiffness and
morphology have been introduced. However, for usage in
clinical FE models, the problem arises that the resolution in
clinical scans is inferior to μCT scans and in most cases a
computation of the complete fabric tensor is not possible.

Therefore, the objective of this study was to calibrate dif-
ferent fabric–elasticity models that are based on full, lim-
ited or no fabric information using a large data set (n = 701)
of trabecular bone cubes from the femur, radius and verte-
bra. Furthermore, the fabric–elasticity relationships should
be established and compared across the different anatomical
sites.

2 Theoretical models

In this study, four different models are used to relate bone
volume fraction and in three cases bone volume fraction and
fabric information to elastic properties obtained by μFE anal-
ysis. The positive definite second-order fabric tensor M with
the strictly positive definite eigenvalues mi and the normal-
ized eigenvectors mi is defined by Cowin (1985):

M =
3∑

i=1

mi Mi =
3∑

i=1

mi (mi ⊗ mi ),

m1 ≤ m2 ≤ m3.

(1)

The fabric tensor M is normalized by dividing it by its
trace and multiplying it by a factor of 3 such that

tr(M) = 3. (2)

The following theoretical models were used to fit the
results of the FE analyses:

2.1 Volume fraction and fabric-based orthotropic model
(Zysset–Curnier model)

In the case of complete fabric information, the stiffness ten-
sor (C) can be expressed by means of the five parameter
Zysset–Curnier model (Zysset 2003):

C(ρ, M) =
3∑

i=1

(λ0 + 2μ0)ρ
km2l

i Mi ⊗ Mi

+
3∑

i, j=1
i �= j

λ′
0ρ

kml
i m

l
j Mi ⊗ M j

+
3∑

i, j=1
i �= j

2μ0ρ
kml

i m
l
j Mi⊗M j . (3)

The double tensorial product of second-order tensors is
defined by Curnier et al. (1994):

A⊗B = 1

2
(Aik B jl + Ail B jk)ei ⊗ e j ⊗ ek ⊗ el . (4)

2.2 Volume fraction and fabric-based constant orthotropic
model (constant orthotropy model)

If only the three eigenvectors and the ranking of the eigen-
values (m1 ≥ m2 ≥ m3) of the fabric tensor are known, a
constant orthotropy model with 10 constants can be used to
relate bone volume fraction and limited fabric information to
bone stiffness. Using this model, the stiffness tensor can be
written as:

C(ρ, M1, M2, M3) =
3∑

i=1

λ0i iρ
kMi ⊗ Mi

+
3∑

i, j=1
i �= j

λ0i jρ
kMi ⊗ M j

+
3∑

i, j=1
i �= j

2μ0i jρ
kMi⊗M j ,

λ0i j = λ0 j i , μ0i j = μ0 j i . (5)
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2.3 Volume fraction and fabric-based constant transverse
isotropic model (constant transverse isotropy model)

For bone regions, with information about the bone volume
fraction and the main direction (m3) only, a transverse isotro-
pic approach can be used. The stiffness tensor of the constant
transverse isotropy model with 6 parameters writes the fol-
lowing:

C(ρ, M3) = λ0ρ
kI ⊗ I + 2μ0ρ

kI⊗I

+ (λ03 − λ0)ρ
k(I ⊗ M3 + M3 ⊗ I)

+(λ033 + λ0 − 2λ03)ρ
kM3 ⊗ M3

+ (2μ03 − 2μ0)ρ
k(M3⊗I + I⊗M3)

− (4μ03 − 2μ0)ρ
kM3⊗M3. (6)

2.4 Volume fraction-based isotropic model
(isotropic model)

For no fabric information, an isotropic power model relat-
ing volume fraction and elastic properties was formulated
by Gibson (1985). In this case, the isotropic stiffness tensor
writes the following:

C(ρ) = λ0ρ
kI ⊗ I + 2μ0ρ

kI⊗I. (7)

3 Materials and methods

Trabecular bone sections were obtained from 3 proximal
femora (3 female, age 62–75 years, mean age 66±8 years),
6 distal radii (three left and three right, age and gender
unknown) and 6 vertebral bodies, locations L2–L4 and T11
(6 male, age 44–82, mean age 60±16 years). The femoral
trabecular bone was extracted from the greater trochanter,
lesser trochanter, femoral head and femoral neck. All sections
were submerged into 0.9 % saline solution and after removal
of air bubbles, scanned with CT (μCT 40, SCANCO Med-
ical AG, Brüttisellen, Switzerland) using the settings of 70
kVp, 114 mA, 200 ms integration time, 2,048×2,048 pixels
image matrix and 18μm isotropic spatial resolution. After
applying a Gaussian filter (σ = 1.2, support = 2), cubic sub-
regions with a side length of 5.3 mm were extracted from
the μCT scans and further used for the analysis. For each
anatomical region, an optimal threshold was computed by
thresholding the individual bone cubes using the single-level
threshold of IPL (SCANCO Medical AG, Brüttisellen, Swit-
zerland) and averaging the threshold values for each region.
After segmentation, unconnected bone regions were removed
from the scans, bone volume fraction was computed via voxel
counting, and fabric was measured using the mean intercept
length (MIL) method (Whitehouse 1974) providing the fabric
tensor. μFE models of the segmented trabecular bone cubes
were created by converting image voxels into linear isotropic

eight-node hexahedral finite elements. Each element was
assigned a Young’s modulus of 12 GPa and a Poisson’s ratio
of 0.3 (Zysset et al. 1999; Wolfram et al. 2010). The apparent
elastic properties of the μFE models were evaluated by per-
forming FE simulations of six independent load cases under
kinematic boundary conditions (Pahr and Zysset 2008). Test-
ing of the μFE models comprised three compressive and
three shear tests in which a linear transformation is applied
to the surface nodes of the cube. The FE simulations were
performed on a parallel Linux server with 2×6 Xeon X5680
CPUs and 144 GB user memory using ParFE ( 2008). The
full elastic stiffness tensor of each bone cube was computed
by means of stress and strain averages of the FE results. Sub-
sequently, the anisotropic stiffness tensor was rotated such
that its principal directions corresponded to the fabric ei-
gensystem leading to the rotated anisotropic stiffness tensor
CF Eaniso . In this coordinate system, an orthotropic representa-
tion CF Eortho was obtained by neglecting the non-orthotropic
entries of the stiffness tensor (see Fig. 1). The error asso-
ciated with this procedure was quantified by N EF Eortho and
computed by

N EF Eortho = ||(CF Eaniso − CF Eortho)||
||CF Eaniso ||

. (8)

Nonlinear optimization routines (Python, 2.6.6) were used
to fit the data sets of the three anatomical regions and the com-
bined data set (see Table 1) to the above described theoretical
models (see Sect. 2). Linear regression analyses in log scale
were performed between the stiffness tensors obtained from
morphology–elasticity relationships (Caniso) and from the FE
analyses (CF Eortho ). The linear regression data were then stud-
ied by ANCOVA (significance level p < 0.01) in MATLAB
(Mathworks, Natick, USA) to investigate differences in the
fabric–elasticity relationships between the different anatom-
ical regions. The model norm error, expressing the variation
of the model stiffness to the orthotropic FE stiffness, was
computed with:

N Emodel = ||(CF Eortho − Cmodel)||
||CF Eortho ||

. (9)

The total norm error, describing the variation of the model
stiffness with respect to the full anisotropic stiffness tensor,
was computed with:

N Eaniso = ||(CF Eansio − Cmodel)||
||CF Eansio ||

. (10)

4 Results

For the trabecular bone cubes from the femur, radius and
vertebra, the mean bone volume fraction (± standard devi-
ation) was 18.75 % (±11.56), 16.45 % (±3.89) and 11.32 %
(±4.01), the degree of anisotropy (± standard deviation) was
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(a) (b) (c)

Fig. 1 a Voxel model of trabecular bone cube with fabric tensor representation; b full anisotropic stiffness tensor in the fabric coordinate system;
c orthotropic stiffness tensor in the fabric coordinate system

Table 1 Descriptive statistics of the investigated bone specimens

Location ρ DA Specimens

Femur 0.19 (±0.10) 1.67 (±0.34) 264

Radius 0.16 (±0.04) 1.71 (±0.23) 81

Vertebra 0.11 (±0.04) 1.45 (±0.20) 356

Combined 0.15 (±0.084) 1.57 (±0.28) 701

Mean values (± standard deviations); ρ, bone volume fraction; DA,
degree of anisotropy.

1.67 (±0.34), 1.71 (±0.23) and 1.45 (±0.20) (see Table 1). In
the vertebra, the mean bone volume fraction and the degree of
anisotropy were significantly lower as in the femur and radius
(p < 0.05). No significant difference was found between
the femur and radius for volume fraction (p = 0.08) and DA
(p = 0.37).

The orthotropic representations of the obtained aniso-
tropic stiffness tensors in the fabric coordinate systems of
the bone cubes were associated with norm errors (N EF Eortho )
of 8.6 % (±0.05), 4.6 % (±0.02) and 7.2 % (±0.04) for the
femur, radius and vertebra data set.

The Zysset–Curnier model with 5 parameters and com-
plete fabric information showed the best statistical power
with coefficients of determination (r2

adj) of 0.98, 0.95 and
0.95 for the femur, radius and vertebra and a mean model
norm error of 15 %. The constant orthotropy model with 10
parameters and information about the principal directions
of the fabric tensor led to r2

adj between 0.94 and 0.98 with
a mean model norm error of 18 %. The constant transverse
isotropy model using 6 parameters and information about the
main direction of the bone regions yielded r2

adj between 0.90
and 0.96 with a mean model norm error of 21 %. Negligence
of fabric information and the usage of an isotropic power
model with 3 constants led to r2

adj between 0.73 and 0.92
with a mean model norm error of 43 %.

The calculated model constants and adjusted coefficients
of determination of all theoretical models are shown in
Table 2. The computed stiffness tensors were positive defi-
nite for all models and regions. The quality of the regressions
of the Zysset–Curnier model is shown in Fig. 2.

Comparison of the model regressions using anatomy-
specific parameters and the parameters from the combined
data set showed a significant (p < 0.01) difference for all
anatomical regions (see Fig. 2). However, the total norm
errors from the models (N Eaniso) using the combined param-
eters were on average only 7.57 % higher than the errors from
the models using the anatomy-specific parameters with a rel-
ative increase in the error of 10.39 7.32 and 5.83 % for the
femur, radius and vertebra.

5 Discussion

In this study, a data set of 701 trabecular bone cubes from
the proximal femur, distal radius and lumbar and thoracic
vertebra was used to study different models relating bone
morphology and elastic properties. To account for situations
where fabric information can not be assessed completely
(clinical CT scans), models for complete, limited and no fab-
ric information were investigated.

Bone volume fraction and degree of anisotropy from the
analyzed trabecular bone regions were in the expected range
and are similar to those found in Hildebrand et al. (1999);
Varga and Zysset (2009); Charlebois et al. (2010). To distin-
guish between the different regions, analyses were performed
separately for the femur, radius and vertebra data set. A com-
bined data set consisting of the three regions and accounting
for the different number of specimens in each group was also
analyzed.

The apparent elastic properties of the trabecular bone
cubes were computed using high-resolution digital finite
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Fig. 2 Observed (μFE) and computed components of the 6× 6 stiffness matrix using an orthotropic morphology–elasticity relationship. In addi-
tion, regression lines are also plotted for fabric–elasticity models with parameters calibrated with a different sample set. The FE models were based
on kinematic BCs

element (micro-FE) models. This method has demonstrated
fair to excellent agreement with experimental tests in the
elastic loading regime (Wolfram et al. 2010; Chevalier et al.
2007).

Linear homogeneous μFE models of the 701 bone cubes
were created using an in-house software. The tissue modu-
lus and the Poisson’s ratio in the models were set to 12GPa
and 0.3, which agrees well with material properties identi-
fied by nanoindentation and mechanical tests (Zysset et al.
1999; Wolfram et al. 2010). However, the computed model
parameters can be scaled to an arbitrary tissue modulus.

In order to obtain an orthotropic representation, the com-
puted stiffness tensors (CF Eaniso ) were rotated such that its
principal directions matched the fabric eigenvectors and all
the non-orthotropic entries were neglected. This approach
was pursued since in homogenized FE applications, the com-
puted model parameters will be used to build the stiffness
tensor based on the fabric tensor. Therefore, it is meaningful
that the stiffness tensor is also represented in the fabric coor-
dinate system for the computation of the model parameters.

Linear regressions of the Zysset–Curnier model and the
results of the FE analyses yielded coefficients of determina-
tion between 0.94 and 0.98. Using this model, the relative
norm errors were 17 % averaged over all regions. This is an
improvement in predictive power compared to the results in
Turner et al. (1990); Kabel et al. (1999); Zysset (2003) which
can be attributed to the large population of specimens used
in this study. The fabric–elasticity parameters found in this
study are in the same range as those found in Zysset (2003)
for the kinematic boundary condition-based FE results.

The constant orthotropy and the constant transverse isot-
ropy model, where the elastic anisotropy is defined by the
model parameters, also yielded high coefficients of determi-
nation with total norm errors of 20 and 23 %, respectively.
In cases where complete fabric information is not available,
these models offer an appropriate alternative for the Zysset–
Curnier model. The isotropic model, which is only based
on bone volume fraction, provided inferior results for all
regions (mean total norm error 43 %). The total norm errors

for the different morphology–elasticity models are illustrated
in Fig. 4. When comparing the total norm error and the model
norm error, it can be seen that the orthotropy assumption has
only a small impact on the errors made by the morphology–
elasticity relationships. The full anisotropic stiffness tensor
of an arbitrary bone cube and the stiffness tensors computed
by the different models are illustrated in Fig. 3.

In the distal radius, the anatomical site with the highest
trabecular orientation (highest mean DA), incorporation of
fabric information, decreased the total norm error at least
by a factor of 2 (see Fig. 4). This highlights the importance
of anisotropic elasticity models especially for regions with
distinct trabecular orientation.

Using ANCOVA, the dependency of the fabric–elasticity
parameters on the anatomical regions was investigated for the
Zysset–Curnier model. The regression lines for the models
using anatomy-specific parameters were significantly differ-
ent from those using the parameters from the combined data
set (see Fig. 2). However, compared to the anatomy-specific
models, the increase in total norm error for models using
combined parameters was on average 7.57 % higher. This
indicates that the fabric–elasticity relationship for the femur,
radius and vertebra is significantly but only slightly different.

It is worth mentioning that the bone volume fraction range
in the different locations was not similar. This also con-
tributes to the slightly different fabric–elasticity relationship
parameters in the different regions.

One limitation of this study is the usage of kinematic
boundary conditions. In Pahr et al. (2012), it was shown
that kinematic boundary conditions tend to overestimate the
effective stiffness of trabecular bone. Therefore, the pre-
sented model parameters can be seen as an upper bound,
and down scaling is necessary for homogenized FE models.

For modeling of the bone tissue, it was assumed that the
heterogeneity of the tissue has only a minor influence on the
apparent elastic properties. This assumption is supported by a
recent SRμCT-based finite element study (Gross et al. 2012).

Mechanical anisotropy of the bone tissue might also have
an impact on the apparent elastic behavior. However, since
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(a) (b) (c)

(d) (e)

Fig. 3 a Voxel model of an arbitrary bone cube and stiffness plot of the full original stiffness tensor; b–e full original stiffness tensor in the
background and stiffness tensor computed by b Zysset–Curnier, c constant orthotropy, d constant transverse isotropy and e isotropic model in the
foreground
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Fig. 4 Mean total norm errors and standard deviations for femur, radius
and vertebra models using different morphology–elasticity relation-
ships

the predominant loading mode of the trabeculae is either
compression or bending, isotropic modeling of the tissue
with the longitudinal Young’s modulus is not supposed to
induce considerable errors.

In conclusion, different morphology-based elasticity mod-
els were investigated and calibrated using 701 trabecular

bone samples. The presented models can be used to predict
the apparent elastic behavior of trabecular bone regions by
measuring bone volume fraction and full, limited or no fab-
ric information via CT or MRI. In an indirect way, this may
improve clinically relevant homogenized FE models used for
the diagnosis of bone quality and fracture risk.
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