Interactive Diffraction from Biological Nanostructures

Daljit Singh J. S. Dhillon1, Jeremie Teyssié2, Michael Single1, Jaroslav Gaponenko3, Michel C. Milinkovitch1 and Matthias Zwicker1

3] Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211 Geneva.

PROBLEM
- Rendering structural colors due to diffraction.
- Using actual measured biological nanostructures.
- At interactive rates.

Challenges are:
1. Modelling the statistical distribution of the height bumps for a "general" nanostructure.
2. Performing complex computations in real-time at high resolution.

RESULTS

- Elaphe nanostructure Diffraction Diffuse texture Diffraction + diffuse
- Different illumination

CONTRIBUTIONS
- A method to render structural colors due to diffraction gratings directly based on physical measurements with atomic force microscopy (No assumptions about the distribution).
- An algorithm for interactive rendering leveraging precomputed look-up tables.

METHOD
- Bi-directional reflection distribution function [1]:
 \[BRDF_F(\omega, \omega') = \frac{F^{G}}{2\pi A_{\omega}} \left| P \left(\frac{\mathbf{u}}{\lambda} \times \frac{\omega}{\lambda} \right) \right|^2, \]
 \[Y = \int_{\Delta} BRDF_F(\omega, \omega') S_{\lambda}(\lambda) d\lambda, \]

- Key Ideas:
 - Exploit properties of Fourier transforms to use discrete Fourier transforms.
 - Use spatial coherence length to compute response for non-discrete frequencies.
 - Separate \(\lambda \) and optical geometry related terms.
 - Pre-compute integration over wave spectrum for discretized optical geometry space \((u - v)\).
 - Use relative reflectance for tone-mapping.

VALIDATION
- We validate our method in comparison with an idealized diffraction grating defined by:
 \[\sin(\theta) = \sin(\phi) + m \lambda / a, \]
 where \(\theta \) is the angle of incidence, \(\phi \) is the viewing angle, \(\lambda \) is a wave frequency and \(a \) is the idealized periodicity of a grating. In our setup, Fig (a) above, \(L \) is the light direction, \(V \) is the viewing direction and \(N \) is the surface normal. \(\omega' \) represents the periodicity. We plot reflectances obtained using our BRDFs at different viewing angles over visible wavelengths. The BRDFs exhibit typical 'peak-viewing-angles' corresponding to idealized gratings with matching periodicities (table below).

<table>
<thead>
<tr>
<th>Data</th>
<th>Estimated Periodicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blazed grating (2500nm)</td>
<td>2500.34</td>
</tr>
<tr>
<td>Elaphe</td>
<td>1144.28</td>
</tr>
<tr>
<td>Xenopelis (Along fingers)</td>
<td>1552.27</td>
</tr>
<tr>
<td>Xenopelis (Across fingers)</td>
<td>605.89</td>
</tr>
<tr>
<td>- Blue curve in Figure (c)</td>
<td>536.13</td>
</tr>
<tr>
<td>- Brown curve in Figure (c)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

A FUTURE DIRECTION
To extend our method for modeling diffraction from other biological nanostructures such as multilayer arrangement on butterfly wings.

REFERENCES

BRDF MAPS
- (a) Shows BRDF maps generated using normal incident light for different viewing directions \((\theta, \phi)\).
- (b) Shows BRDF map for Xenopelis with incident light at an angle of 20°.
- (c) Convergence of the Taylor series with higher values for \(N \) for Elaphe nanostructure.

OBSERVATIONS
- Elaphe Diffraction
- Xenopelis

CONCLUSION
Our approach achieves interactive performance (upto 20 FPS) by precomputing spectral integrals into look-up tables using a Taylor series expansion.