
Dual-Domain Image Denoising

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Claude Knaus

von Hemberg

Leiter der Arbeit:
Prof. Dr. M. Zwicker

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, Der Dekan:
Prof. Dr. S. Decurtins

Originaldokument gespeichert auf dem Institutionellen Repositorium der Universität Bern

(BORIS) unter http://boris.unibe.ch/45508/

Dieses Werk ist unter einer Creative Commons Namensnennung – Keine Bearbeitung 4.0

International lizenziert. Um die Lizenz anzusehen, gehen Sie bitte zu

http://creativecommons.org/licenses/by-nd/4.0/deed.de

Sie dürfen:

Teilen — das Material in jedwedem Format oder Medium vervielfältigen und

weiterverbreiten und zwar für beliebige Zwecke, sogar kommerziell.

Der Lizenzgeber kann diese Freiheiten nicht widerrufen, solange Sie sich an die

Lizenzbedingungen halten.

Unter folgenden Bedingungen:

Namensnennung — Sie müssen angemessene Urheber- und Rechteangaben machen,

einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese

Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so,

dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade Sie oder Ihre Nutzung

besonders.

Keine Bearbeitungen — Wenn Sie das Material remixen, verändern oder darauf anderweitig

direkt aufbauen dürfen Sie die bearbeitete Fassung der Materials nicht verbreiten.

Keine weiteren Einschränkungen — Sie dürfen keine zusätzlichen Klauseln oder technische

Verfahren einsetzen, die anderen rechtlich irgendetwas untersagen, was die Lizenz erlaubt.

Sie müssen sich nicht an diese Lizenz halten hinsichtlich solcher Teile des Materials, die

gemeinfrei sind, oder soweit Ihre Nutzungshandlungen durch Ausnahmen und Schranken

des Urheberrechts gedeckt sind.

Es werden keine Garantien gegeben und auch keine Gewähr geleistet. Die Lizenz verschafft

Ihnen möglicherweise nicht alle Erlaubnisse, die Sie für die jeweilige Nutzung brauchen. Es

können beispielsweise andere Rechte wie Persönlichkeits- und Datenschutzrechte zu

beachten sein, die Ihre Nutzung des Materials entsprechend beschränken.

Eine ausführliche Fassung des Lizenzvertrags befindet sich unter

http://creativecommons.org/licenses/by-nd/4.0/legalcode

http://boris.unibe.ch/45508/
http://creativecommons.org/licenses/by-nd/4.0/deed.de
http://creativecommons.org/licenses/by/3.0/ch/
http://creativecommons.org/licenses/by/3.0/ch/
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
http://creativecommons.org/licenses/by/3.0/ch/
http://creativecommons.org/licenses/by/3.0/ch/
http://creativecommons.org/licenses/by/3.0/ch/
http://creativecommons.org/licenses/by-nd/4.0/legalcode
http://creativecommons.org/licenses/by-nd/4.0/deed.de

to my parents

Abstract

Image denoising is a classic problem in digital image processing, which is half
a century old. Despite its age, it remains an active subject. State-of-the-art
image denoising methods produce objectively excellent results and approach
theoretical limits. However, they still suffer from visually disturbing artifacts.
While they produce acceptable results for natural images, human eyes are
less forgiving when viewing synthetic images. Their success in denoising
natural images is believed to be based on the use of patches, and the ability to
learn statistics about them. Unfortunately, patch-based algorithms producing
high-quality results are sophisticated and difficult to implement.

We present a class of new image denoising algorithms that does not use
patches and yet produces high-quality images. Our algorithms produce com-
petitive results for grayscale images and surpass the state-of-the-art for color
images. Unlike other state-of-the-art methods, the methods presented in this
thesis produce nearly artifact free images, making them suitable for denoising
synthetic images. Our methods are based on a new filter which operates in
the spatial domain and in the frequency domain. This new filter is versatile
and can also be used for removing denoising and compression artifacts. Our
results demonstrate that patches are not essential to image denoising. Without
the additional complexity of patches, our algorithms are surprisingly simple.

Acknowledgments

This work would not have been possible without the support of many people.
I would like to thank the following groups and individuals in making this
journey possible.

Thanks to Prof. Dr. Matthias Zwicker for accepting me as his first PhD
student in the computer graphics group (cgg) in Bern, for giving me freedom
in my research and tolerating my persistence, for providing reliable advices,
technical expertise, support, and trust.

Thanks to all the members of our institute, the institute of computer science
and applied mathematics (iam), for providing a cozy environment fit for research.

Thanks to Assistant Dragana Esser, mother of cgg, for bringing warmth
into our group, for taking care of all administrative work, for allowing me to
focus on research, and for baking all the delicious cakes!

Thanks to all my PhD colleagues. Wan-Yen Lo, for reviewing my paper
writing and presentation skills and pushing to aim higher. Fabrice Rousselle,
for sharing my interests in rendering and image denoising. Daljit Singh Dhillon,
for discussing pdes and Fourier transforms. Marco Manzi for sharing interests
in rendering and demonstrating how effortlessly code can be written. Daniel
Donatsch for sharing the office and everyday’s happenings and organizing the
PhD coffee breaks and pizza events. Peter Bertholet for being a maven in math
and provider in brain teasing puzzles.

Thanks to Peppo Brambrilla, for being a reference in system administration.
Thanks to all my masters and bachelor students, for accepting me as a

mentor.
Thanks to Prof. Dr. Vladlen Koltun, for allowing me to use the facilities at

Stanford University, where this thesis was written.
Thanks to Prof. Dr. Alessandro Foi, co-author of bm3d and many related

works, for agreeing to serve as co-referee for this thesis and my defense.
Thanks to Charis Tsevis for allowing me to use his artworks in our papers

and this thesis.
Thanks to Patrick Bouchaud and Jarod Tang, for giving me courage to start

this endeavour.
Thanks to all the anonymous reviewers of our work.

Thanks to all my friends and relatives, for understanding that research is
time consuming.

Last not least, thanks to my parents, for having taught me math from early
on, for buying the first home computer, for exposing me to an environment full
of music, art, science and culture, for taking me on travels, for supporting me
through my studies, for always standing behind me, and for their love.

Contents

1 Introduction 1
1.1 Image Denoising . 5
1.2 Contributions . 7
1.3 Overview . 8

2 Methodology 11
2.1 Scientific Method . 11
2.2 Genetic Algorithm . 12
2.3 Metrics . 12

2.3.1 Mean Squared Error . 12
2.3.2 Peak Signal-to-Noise Ratio 13
2.3.3 Structural Similarity Index 13
2.3.4 Visual Assessment . 14

3 Related Works 15
3.1 Energy Minimization . 15

3.1.1 Anisotropic Diffusion . 16
3.1.2 Bilateral Filtering . 16
3.1.3 Total Variation . 17

3.2 Kernel-based Methods . 17
3.3 Wavelet-based Methods . 18
3.4 Patch-based Methods . 18

3.4.1 Sparsity . 20
3.4.2 Alternative Patch-based Methods 21
3.4.3 Theoretical Limits . 21

3.5 Discussion . 21

4 Dual-Domain Filter 25
4.1 Noise Estimation in Spatial Domain . 26
4.2 Noise Estimation in Frequency Domain 27
4.3 Guided Dual-Domain Filter . 28
4.4 Robust Noise Estimators . 29
4.5 Outlook . 31

I

5 Dual-Domain Image Denoising 33
5.1 D D F Parametrization . 34
5.2 Discussion . 35
5.3 Results . 41
5.4 Conclusions . 42

6 Progressive Image Denoising 47
6.1 Denoising as Gradient Descent . 49
6.2 Robust Noise Differential Estimation 49
6.3 Shape Shifting Estimator . 50
6.4 Implementation . 51
6.5 Results . 52

6.5.1 Natural and Synthetic Images 56
6.5.2 Alternative Robust Estimators 60
6.5.3 Artifacts Study . 62

6.6 Conclusions . 66

7 Dual-Domain Image Denoising Revised 67
7.1 Conclusions . 75

8 Artifact Removal 77
8.1 Noise Artifact Removal . 77
8.2 JPEG Artifact Removal . 78
8.3 Conclusions . 79

9 Implementation 87
9.1 Border Handling . 87
9.2 Color Images . 88
9.3 Block Processing . 89
9.4 FFT . 90

9.4.1 Array Shifting . 90
9.4.2 Array Indexing . 91

9.5 MATLAB Code . 91
9.5.1 Dual-Domain Filter . 92
9.5.2 Dual-Domain Image Denoising 93
9.5.3 Progressive Image Denoising 94
9.5.4 Dual-Domain Image Denoising Improved 95
9.5.5 Artifact Removal . 96

9.6 CUDA Optimizations . 96

II

9.6.1 Unordered Sande-Tukey F F T 96
9.6.2 Minimize Memory Access 97

10 Results 99
10.1 Parameter Study . 99
10.2 Evaluation Process . 102

10.2.1 Benchmark Images . 102
10.2.2 C S F Chart . 102
10.2.3 Noise Generation . 108
10.2.4 Image Denoising Methods 108

10.3 Images and Tables . 109
10.4 Performance . 118

11 Conclusions 121
11.1 Future . 122

References 122

Biography 133

III

IV

Figures

1.1 Comparison of artifacts. 3
1.2 Comparison of artifacts. 4
1.3 Signal-and-Noise Decomposition. 5
1.4 Example of denoising. 6

4.1 Examples of wavelet shrinkage functions. 30
4.2 Examples of redescending M-estimators. 30

5.1 Intermediate steps of denoising with D D I D. 36
5.2 Progression of denoising with D D I D. 36
5.3 Comparison of D D I D against S T F T with Wiener filtering. 36
5.4 Progression of denoising a grayscale image with D D I D. 37
5.5 Evaluation points for kernel analysis. 38
5.6 Evolution of kernels for arm region. 39
5.7 Evolution of kernels for pillar region. 40
5.8 Comparison of D D I D and B M 3 D for denoising a grayscale image. 43
5.9 Comparison of D D I D with B M 3 D for denoising a color image. . . 44
5.10 Comparison of artifacts. 45

6.1 Comparison of denoising Cameraman. 48
6.2 Evolution of the bilateral kernel. 51
6.3 P S N R and M S E improvement over time. 52
6.4 Pixels marked for measurements. 53
6.5 Denoising progress of P I D. 54
6.6 Evolution of two pixels during denoising. 55
6.7 Comparison of denoising natural images. 57
6.8 Comparison of denoising synthetic images. 58
6.9 Comparison of robust estimators. 61
6.10 Comparison of denoising pepper image. 63
6.11 Comparison of denoising soft C S F charts. 64
6.12 Comparison of denoising hard C S F charts. 65

7.1 Evolution of the range kernels in DDID2. 69

V

7.2 Evolution of the bilateral kernel in DDID2. 70
7.3 Comparison of denoising a natural image 1. 71
7.4 Comparison of denoising a natural image 2. 72
7.5 Comparison of denoising a synthetic color image 1. 73
7.6 Comparison of denoising a synthetic color image 2. 74

8.1 Removal of low-frequency noise and graininess. 80
8.2 Removal of outliers and ringing. 81
8.3 Removal of J P E G block artifacts. 85

10.1 Robustness against parameter change. 101
10.2 Robustness against parameter change (scaled). 103
10.3 Natural grayscale images for benchmark. 105
10.4 Natural color images for benchmark. 106
10.5 Synthetic images for benchmark. 107
10.6 Denoising progress of D D I D. 110
10.7 Denoising progress of P I D and D D I D2. 111
10.8 Denoising progress of P I D and D D I D2. 112
10.9 P S N R and M S E improvement over time. 113
10.10 Graphical comparison of methods. 117

VI

Tables

5.1 P S N R comparison between D D I D and B M 3 D. 41

6.1 P S N R comparison of P I D for grayscale images. 59
6.2 P S N R comparison of P I D for color images. 59
6.3 P S N R comparison of robust estimation kernels. 60

8.1 P S N R improvement of grayscale images with D D F 1. 82
8.2 P S N R improvement of grayscale images with D D F 2. 83
8.3 P S N R improvement of color images with D D F. 84
8.4 P S N R comparison of J P E G deblocking. 86

10.1 Comparison of parameter change. 104
10.2 Implementations of image denoising methods 109
10.3 P S N R comparison for denoising grayscale images 1. 114
10.4 P S N R comparison for denoising grayscale images 2. 115
10.5 P S N R comparison for denoising color images. 116
10.6 Speed comparison of M AT L A B implementations. 118
10.7 Speed comparison of native implementations. 119

VII

VIII

Algorithms

9.1 M AT L A B code of unguided D D F for grayscale images. 92
9.2 M AT L A B code of guided D D F for grayscale images. 92
9.3 M AT L A B code of guided D D F for color images. 92
9.4 M AT L A B code of D D I D. 93
9.5 M AT L A B code of P I D. 94
9.6 M AT L A B code of D D I D2. 95
9.7 M AT L A B code for artifact removal. 96
9.8 C U D A code of unordered Sande-Tukey-F F T. 97
10.1 M AT L A B code for generating C S F charts. 108

IX

X

1
Introduction

Don’t let the noise of others’ opinions
drown out your own inner voice.

Steve Jobs

What is image denoising? Ideally, this is the question we would like to answer
in this thesis. At first, it seems funny to ask this question. After all, this field
has existed for half a century and we would expect that such a fundamental
question has been answered by now.

Image denoising and digital image processing are indeed classic fields.
Ever since images have been digitized and processed, whether in photography,
medicine, astronomy, or robotics, image denoising has been the achilles heel of
other processing methods. For example in computer vision, the performance
of low-level vision and high-level vision tasks depends on the quality of the
input image. Seeking the holy grail, the quest for the highest possible image
quality has been persued by thousands of researchers in various domains.
Consequently, the literature in image denoising is vast and overwhelming. The
aspiring researcher has the impression that one has to become an expert or at
least have the guidance of an expert before making a difference in this matured
field. Today, even experts are pessimistic, asking if the field is dead.

Evidently, progress in image denoising has slowed down. For one thing,
the quality of denoising results have come close to theoretical limits, at least
for natural images. State-of-the-art image denoisers preserve every perceivable
detail while removing most of the noise. Yet, without exception, all of them
suffer from artifacts, particularly visible when images depict smooth objects
like sky or skin. Figure 1.1 and Figure 1.2 show that state-of-the-art denoising
methods introduce artifacts when denoising a simple gradient. Moreover, recent
state-of-the-art methods have become complex to implement, making it difficult
to further research based on analysis.

1

With this work, we want to give hope to current and future researchers.
Our research shows that surprisingly simple algorithms can achieve and even
surpass state-of-the-art results. Most importantly, our methodology has been
by and large empiric, and has required little knowledge of the literature. We
believe that our results hint towards the existence of simpler theories, eventually
answering the stated question.

2

G
au

ss
ia

n
(4

5.
77

dB
)

p
i
d

(4
5

.3
7

dB
)

m
l

p
(4

3
.1

7
dB

)
s

a
i
s

t
(4

1
.6

6
dB

)

b
m

3
d

-s
a

p
c

a
(4

0
.4

3
dB

)
b

m
3

d
(3

8
.7

1
dB

)
p

l
o

w
(3

9
.9

3
dB

)
n

l
b

(3
9

.0
7

dB
)

Fi
gu

re
1.

1:
C

om
pa

ri
so

n
of

ar
ti

fa
ct

s
of

im
ag

e
de

no
is

in
g

m
et

ho
ds

fo
r

no
is

e
si

gm
a

σ
=

25
.I

m
ag

es
ar

e
or

de
re

d
by

de
cr

ea
si

ng
qu

al
it

y.
St

at
e-

of
-t

he
-a

rt
m

et
ho

ds
pe

rf
or

m
w

or
se

th
an

a
si

m
pl

e
G

au
ss

ia
n

fo
r

de
no

is
in

g
sm

oo
th

im
ag

es
.O

ne
of

th
e

m
et

ho
ds

w
e

pr
op

os
e

is
p

i
d

,
w

hi
ch

pr
od

uc
es

cl
os

e
to

id
ea

lr
es

ul
ts

.

3

k
-s

v
d

(3
9

.5
3

dB
)

t
v

(3
8
.2

3
dB

)
i
s

k
r

(3
7
.6

6
dB

)
l

s
s

c
(3

7
.6

3
dB

)

k
-l

l
d

(3
7

.0
2

dB
)

n
l

m
(3

6
.9

1
dB

)
f

o
e

(3
3

.2
6

dB
)

N
oi

sy
Im

ag
e

(2
0
.1

4
dB

)

Fi
gu

re
1.

2:
C

om
pa

ri
so

n
of

ar
ti

fa
ct

s
of

im
ag

e
de

no
is

in
g

m
et

ho
ds

fo
r

no
is

e
si

gm
a

σ
=

25
.

T
he

t
v

m
et

ho
d

lo
ok

s
vi

su
al

ly
go

od
,b

ut
su

ffe
rs

fr
om

bi
as

ne
ar

th
e

bo
un

da
ry

.

4

y

=

x

+

n

Figure 1.3: Decomposition of a noisy signal y into its original image x and noise instance n.

1.1 Image Denoising

While we have no satisfying answer yet, we can at least formulate the classic
problem. We consider images as real-value functions defined over a two-
dimensional finite discrete domain. The problem of image denoising is to
decompose a noise contaminated image y into the sum of its original image x
and the noise instance n as

y = x + n. (1.1)

This equation is also visualized in Figure 1.3. The noise n is assumed to be
normally distributed and independent of the original image x. Furthermore,
the noise of two different pixels are assumed to be uncorrelated and they have
the same known variance σ2. This type of noise contamination is called additive
white Gaussian noise (awgn), inspired by the analogous spectral property of
visible white light.

Of course, the awgn is a simplifying model. In reality, the noise may not be
additive, may be correlated with the signal, its distribution may not be Gaussian,
and pixel noise may be correlated, and have non-homogeneous variance. Worse,
these properties may not even be apriori known.

However, the awgn serves as a good starting point. In simple cases,
the differences in distribution can be ignored as the Gaussian assumption is
malleable. Some of the unknown properties can be found in a pre-processing
step. A basic assumption is that the variance is known, which is not true for
any real image given in isolation. In response, many techniques for variance
estimation have been developed. In other cases, the noisy image y can be
transformed to meet the assumptions using variance stabilizing transformations

5

y

=

x̃

+

ñ

Figure 1.4: An example of denoising a noisy image y, resulting in a denoised image x̃ and
method noise ñ.

(vst). An example is to transform multiplicative noise into additive noise by
taking the logarithm. Another example is the application of the Anscombe
transform to turn Poisson and Rayleigh distributions into a normal distribution
[1]. For more specific cases, a generic awgn based algorithm should be
extended to handle the specific noise model.

Given that the awgn assumptions are valid, the problem is still considered
“ill-posed”. In general, information is lost, making it impossible to reconstruct
the original image x. In the simplest case, the original image is a constant
function, allowing near perfect reconstruction by mere averaging neighbouring
pixels. In the hardest case, the original image itself is pure white Gaussian
noise. Since the original pixels of the image x and therefore the noisy image y
are uncorrelated, neighboring pixels do not contain any additional information
and the best estimation of x is y. Therefore, interesting images which contain
some randomness are subject to loss of information.

In practice, the ideal decomposition can only be approximated, and any
denoising method decomposes the noisy image y into the denoised image x̃
and the method noise ñ as

y = x̃ + ñ. (1.2)

Visually, it will look as shown in Figure 1.4. Instantly, the question for the best
possible image arises. Assuming the image x∗ would be statistically the best
possible approximation of a given x and noise instances n with variance σ2,
how could we define it?

It is sobering that no such definition has been found in the literature. If
such a definition existed, image denoising could be considered “solved”, in the

6

sense that it remains an engineering exercise to seek efficient or elegant ways to
calculate the best image x∗. Researchers pursuing the approach of total variation
(tv) have the ambition to find such a definition, as they define ad hoc objective
functions to optimize. The results have been so far underwhelming, letting
us conclude that the correct objective function has not been found yet either.
Another popular approach is based on patches where, given a noisy patch, the
most likely patch is seeked. Approaches based on neural networks work in
principle, but require expensive off-line learning and do not give us insights
about image denoising. Others define objective functions over the patches,
but even those approaches do not produce entirely satisfying results. Today,
researchers and their methods are still competing to find closer approximations
to the best image x∗. We join the competition and take the challenge in the
quest of the holy grail.

1.2 Contributions

The contents of this thesis stems from three publications in the area of image
denoising. The first publication is a conference paper that carries the same title
as our thesis, Dual-Domain Image Denoising (ddid), which was presented at the
ieee International Conference on Image Processing (icip) 2013 and won the student
award [2]. This work introduces the main idea of our thesis, to perform image
denoising in both spatial and frequency domains. It distinguishes itself from
other hybrid approaches in that both spatial and frequency domain operations
are the same. This work stands out as it demonstrates that state-of-the-art
denoising can be performed by a very simple algorithm.

The second publication is a journal article called Progressive Image Denoising
(pid) submitted to ieee Transactions on Image Processing (tip) [3]. At the time of
writing, it was under review. pid improves over ddid by producing denoised
images with nearly no artifacts. This is convincingly demonstrated by denoising
synthetic images, where edges, gradients, and homogeneous areas are abound.

The third and last publication is a conference paper called Dual-Domain
Filtering (ddf) and was just submitted to ieee Computer Vision and Pattern
Recognition (cvpr) 2014 [4]. ddf generalizes the filtering operation at the core
of ddid and pid and introduces it as a stand-alone tool. We show that ddf is
very potent in removing residual noise from other image denoising methods,
as well as removing compression artifacts. Furthermore, using the ddf, we
present an improved image denoising method, which combines the strengths of
ddid and pid, simplicity and quality, into a coherent method named ddid2.

7

The denoising quality of ddid2 is numerically and visually on par with the
best methods for denoising grayscale images, and, in average, beats all known
methods for color images.

We summarize our practical contributions:

• We propose ddf, a new image filter that recasts the bilateral filter as a robust
noise estimator and generalizes to include the frequency domain. Thanks to this
generalization, our filter not only preserves edges, but also details. Our filter is
powerful in removing artifacts like residual noise and compression artifacts.

• Based on ddf, we propose three denoising methods, ddid, pid, and ddid2.
All of them achieve state-of-the-art results, while being exceptionally simple to
to implement. pid and ddid2 produce nearly artifact-free results, making them
suited for denoising synthetic images, and they also surpass the state-of-the-art
in denoising color images.

Our results lead to new insights in image denoising:

• Our methods show that state-of-the-art image denoising can be achieved without
using patches.

• Our methods also show that learning statistical models of the signal is unneces-
sary. We know the statistics of the noise, i.e., the variance, which is sufficient to
denoise awgn contaminated images by robust noise estimation.

• The implementation of pid is based on deterministic annealing, which hints at
image denoising being a physical process.

Note that in the literature, noise estimation usually refers to the estimation
of the statistics of the noise, such as the first and second moments of the noise.
In this thesis, we will use the term noise estimation to mean the estimation of
the noise realization, or noise instance. Because of its frequent use, we will
henceforth use the term noise estimation.

1.3 Overview

The chapters of this thesis are grouped into three parts. The opening part
consists of this introduction, our methodology in Chapter 2, and related works
in Chapter 3.

The main part starts by introducing the foundation of this thesis, the dual-
domain filter (ddf) in Chapter 4. We elaborate three generations of image

8

denoisers based on this filter. First, dual-domain image denoising (ddid) in
Chapter 5, then progressive image denoising (pid) in Chapter 6, and a combined
method (ddid2) in Chapter 7. We also demonstrate additional applications of
ddf for artifact removal in Chapter 8.

The closing part first discusses the implementations of ddf, ddid, pid,
ddid2, and artifact removal in Chapter 9. Then, the results are shown using
images, plots, and tables in Chapter 10. Finally, we conclude our work in
Chapter 11.

9

10

2
Methodology

Philosophy of science is about as useful to scientists
as ornithology is to birds.

Richard Feynman

How to attack a classic problem like image denoising? Common sense tells us
to first study the literature, then come up with an alteration or combination of
exisiting methods. In the case of image denoising, the sheer size of the literature
is daunting. Many methods exist, seemingly pointing into different directions.

Even if the student somehow attains expert level knowledge, how to differ-
entiate from the existing elite? Given the same knowledge on the subject, what
is the secret in coming up with something new, somebody else has not found
already?

2.1 Scientific Method

The answer lies not in the theory, but in the practice. Everybody in academia has
access to the same knowledge, but personal experience is unique. The best way
for a researcher to differentiate from the crowd is to perform experiments. Based
on experiments, the attentive researcher makes observations, which eventually
lead to forming hypothesis, ideas, or even theories. The new hypothesis is
subject to another round of experimental validation. This cycle is known as the
scientific method.

Unfortunately, experience tells us that most of our ideas and hypothesis are
wrong. It is therefore important that our ideas can be formulated in form of
questions which can be answered by an experiment, and in most cases to be
rejected.

Today, we are in the best position to perform empiric research, especially
for sciences that are home in the digital domain. Hardware in form of multi-

11

core cpus, gpus, and clusters of them offer access to exponentially growing
computational power. Combined with high-level software tools like matlab

allow for rapid prototyping and thus accelerated research.

2.2 Genetic Algorithm

In practice, for this research, we took the approach of the evolution inspired
genetic algorithm. We started with a population of denoising algorithms and
used a metric with a set of images to evaluate the fitness of each algorithm.
For every method, we first fitted parameters until every method produced the
best possible results. When the population grew, we performed crossovers, by
combining complementary methods to create hybrids which would perform
better. Alternatively, when the population shrunk, we performed mutation by
changing an algorithm in an arbitrary way. Iterating this procedure eventually
lead to the algorithms presented in this thesis.

An important deviation from the standard genetic algorithm is that every
step was manually taken, even parameter optimization. This was critical as
collecting more observations increases the chance of getting new ideas. We also
used refactoring to find simpler algorithms without altering the population.
The presented algorithms are deemed by the author as simple as possible.

2.3 Metrics

We use the most common ways to gauge the quality of denoised images, the
peak signal-to-noise ratio (psnr) and the judgment of our own eyes. In this
section, we first describe the most basic metric, the mean squared error (mse),
and then its derived and more popular metric, the psnr. We also discuss the
structural similarity index metric (ssim) and the reasons why we chose against it.

2.3.1 Mean Squared Error

The mean squared error (mse) is the most basic error metric for images. As
the name suggests, the mse calculates the squared difference between a test
image x̃ and a reference image x. However, the term mean can be understood in
two ways. The mse is a statistical measure, which averages either over time
or over space. When we consider a particular pixel, the mse is the expected
error of the pixel. This value cannot be calculated from a single image, but
only by averaging for the particular pixel the squared error over a collection

12

of images x̃i with the same statistics. What is more common and useful for
image processing rather than averaging over time is to average over space. The
squared error is averaged over all pixels p of an image, which is how usually
the mse is calculated for images, i.e.,

MSE =
1

wh ∑
p
(x̃p − xp)

2, (2.1)

where w and h are the width and height of the image in pixels.

2.3.2 Peak Signal-to-Noise Ratio

In the image denoising literature, the more convenient metric peak signal-to-noise
ratio (psnr) dominates. It can be calculated from the mse as

PSNR = −10 log10
MSE

MAX2 (2.2)

While the psnr does not contain more information than the mse, it is more
convenient in many ways. First, it normalizes the error by the squared maximum
possible value MAX2. This makes the error scale independent. Most images
are stored using 8-bits per channel resolution, allowing the maximum value
MAX = 255. Other images may use less or more bits of range resolution,
or even store floating point values as used by hdr images. For practical
purposes, an image normalized between 0 and 1 can be more intuitive. A
second benefit of the psnr is its transformation into log scale. Weber’s law
states that human vision perceives exponential light steps as linear. The log
transformation therefore alignes the metric closer with human perception. A
third benefit is the use of the negative log 10 base, which scales the psnr such
that better images have larger values. Last not least, psnr numbers are in
a range which are easy to memorize and relate to. Typical psnr values are
below 50 dB and for all purposes, two digits after the period are sufficient to
distinguish the quality of denoised images.

2.3.3 Structural Similarity Index

Recently, another metric has gained popularity among some researchers, the
structural similarity index metric (ssim) [5]. The ssim of a pixel is defined over
its neighborhood of pixels as

SSIM(x, y) =
2 µx µy + c1

µ2
x + µ2

y + c1

2σxy + c2

σ2
x + σ2

y + c2
, (2.3)

13

where x and y are the two images being compared. The sample means µx,y, the
sample variances σ2

x,y, and the sample covariance σxy are statistics calculated
over the neighborhood of the considered pixel. The constants c1 and c2 avoid
singularities in dark and flat regions. To compute the metric for an entire image,
the ssim value is averaged. Its definition is

MSSIM(x, y) =
1

wh ∑
p

SSIM(xp, yp). (2.4)

This metric is called mssim, but often the “M” is dropped.
Horé and Ziou have shown that for most degradation types, a simple

mathematical relationship holds beween the mssim and psnr [6]. We think
therefore that psnr as a single objective metric is sufficient for objectively
quantifying image denoising results.

2.3.4 Visual Assessment

Unfortunately, objective metrics are insufficient to describe the human percep-
tion of a noise free image. Perceptual metrics like the state-of-the-art hdr-vdp -
2 [7], are not well suited for assessing image denoising results. For example,
when the original image has already noise or consists of stochastic patterns,
a method which produces residual noise may get a good score because both
images are noisy, even though the two noise patterns are uncorrelated. Without
a reliable objective perceptual metric, we resort to trusting the author’s human
visual system (hvs).

14

3
Related Works

We don’t see things as they are.
We see them as we are.

Anais Nin

In this chapter, we review previous works related to our contributions. We
organize this chapter by the most important paradigms in image denoising.
In Section 3.1, we first look at image denoising as a solution to an energy
minimization problem. After that, we describe the classic methods that denoise
either in the spatial domain (Section 3.2) or in the wavelet domain (Section 3.3).
In Section 3.4, we move on to the currently dominating paradigm, the denoising
of image patches. We discuss the various methods that describe patches using
dictionaries and how these dictionaries are obtained. Patches are also attractive
as they allow for theoretical analysis. Finally, in Section 3.5, we discuss the
connection of the literature to our work.

3.1 Energy Minimization

The wishful thinking for image denoising is that we could formulate a smooth
and convex energy function over the entire image or over a limited neighbor-
hood for every pixel. If that was possible, we could straightforward minimize
this energy with a gradient descent. So far, no such energy formulation has
been found that denoises images well. We describe the past denoising attempts
which admit an energy based formulation.

15

3.1.1 Anisotropic Diffusion

A classic energy formulation is

E =
∫

R2
k
(
|∇y(p)|2

)
dp. (3.1)

The energy E is simply the energy of the gradient over the whole image. If
the function k is the scale operator, the gradient descent formulation of this
energy minimization is the well known heat equation, also known as diffusion
equation. Every time step corresponds to a convolution of the noisy image
with an enlarging Gaussian kernel. The Gaussian kernel is the most basic
image denoiser and works only well for nearly homogeneous images. This
is consistent with the fact that the (steady state) solution to this equation is a
constant.

If the gradient of the function k is a robust kernel, e.g., a Gaussian or a
Lorentzian, we get instead the anisotropic diffusion (ad) as introduced by Perona
and Malik [8]. The robust estimator ∇k becomes smaller for large gradients
end prevents diffusion across edges, thus preserving such features. Black et al.
have studied anisotropic diffusion using alternative robust kernels [9].

The ad formulation is attractive: while the energy is globally formulated,
the update operations only reguire the local gradient. Unfortunately, using the
proposed diffusion coefficients, details are washed out and the image converges
to a staircase signal.

3.1.2 Bilateral Filtering

In its original form, anisotropic diffusion was considered as a strictly local
method, but energy functionals over a neighborhood of pixels have been consid-
ered, which can be used to define the bilateral filter (bf) introduced by Tomasi
and Manduchi [10]. The bilateral filter calculates the bilaterally filtered value
x̄p for pixel p using pixels q in the neighborhood Np as

x̄p = ∑
q∈Np

yq kq/ ∑
q

kq, (3.2)

where the bilateral kernel kq is defined as a product of two Gaussians as

kq = e
− (q−p)2

2 σ2
s e
− (yq−qp)2

γr σ2 . (3.3)

16

The left term is the spatial Gaussian with σs being the standard deviation. The
right term is the range Gaussian with γr being a scale factor for the noise
variance σ2.

Although initially presented as an ad hoc method, the bilateral filter can be
found as the first Jacobi step in minimizing an energy defined by gradients over
a neighborhood window [11]. Its connection to anisotropic diffusion has also
been mentioned in [12, 13].

Bilateral filtering works best for low noise situations. More noise can be
removed by iterating the filter, but this leads to staircasing, just like anisotropic
diffusion [14]. Nevertheless, bilateral filtering has proven itself as an all-round
edge-preserving editing tool. Adaptive methods have been implemented for
hdr compression, detail enhancement, and jpeg deblocking [15, 16, 17].

3.1.3 Total Variation

The best known attempt to formulate image denoising as a variational problem
was formulated by Rudin et al. [18]. The energy minimization problem they
propose is

E =
∫

R2
|∇x(p)| dp + λ

∫
R2

(y(p)− x(p))2 dp, (3.4)

also called Rudin-Osher-Fatemi (rof) problem. The energy consists of a regu-
larization term and a data term. The regularization term is the total variation
norm, which is an L1 norm over the gradient, rather than a squared L2 norm as
in Equation 3.1. The data term prevents the solution to become flat as in the
case of the heat equation. The advantage of using a L1 norm is that it leads
to sparse signals, that is, the solution will be mostly flat and contain some
steps. However, minimization of L1 is not as straightforward as the L2 norm.
Besides the difficulty in finding the solution, depending on the parameter λ,
the resulting denoised images make a trade-off between residual noise and loss
of detail.

3.2 Kernel-based Methods

Classic image denoisers are formulated as filters using a convolution with an
adaptive kernel. The most popular filter is the previously mentioned bilateral
filter. Another adaptive method is steering kernel regression (skr) [19], where the
bilateral kernel is used to fit an anisotropic Gaussian.

17

Both methods work better for low-noise situations, as for high-noise sit-
uations details are washed out. A method which preserves more detail is
non-local means (nlm) by Buades et al. [20]. nlm is an extension to the bilat-
eral filter, where the distances between two pixels are replaced by distances
betweeen patches. Details are better preserved by detecting self-similarity
between patches.

The popularity of nlm is due to the combination of its simplicity, the
existence of efficient implementations, and the potential to produce visually
pleasant results. The nlm method discussed is the pixel-based nlm. As we
will discuss later, nlm can also be implemented as a patch-based variant, which
may be a reason for the boom of patch-based methods.

3.3 Wavelet-based Methods

An entire class of denoising methods are based on wavelet transforms [21, 22, 23].
They transform the noisy signal into the wavelet domain, and operate on the
obtained wavelet coefficients based on the noise statistics. The three common
types of operations are hard thresholding, soft thresholding, and Wiener filter-
ing. Thresholding implies a hard classification of each coefficient into signal
and noise, based on the amplitude of the coefficient. Hard thresholding reduces
coefficients with amplitudes smaller than the threshold to 0, while keeping the
signals with amplitudes larger than the threshold. Soft thresholding subtracts
a threshold value from all amplitudes and resulting negative coefficients are
clamped to 0. Extensive research has been done for finding good threshold
values [21, 22, 24]. Wiener filtering makes no hard classification, its factors vary
smoothly from 0 to 1. The Wiener filter is popular due to its mse minimizing
property. However, this is a theoretical result, since it requires an oracle that
has to be approximated.

Sometimes, the term shrinkage and soft thresholding are used interchangeably
in the literature. However, shrinkage is the general term for any kind of
attenuation of spectrum coefficients, including hard and soft thresholding and
Wiener filtering.

3.4 Patch-based Methods

Recently, the focus has shifted from denoising entire images and single pixels
to image patches. The general framework of patch-based methods is as follows.
For every pixel, the enclosing patch is denoised, using other patches in its

18

neighborhood. The final step is called aggregation, where the denoised patches
are accumulated into the image buffer, which is then normalized to handle
overlapping patches.

The key idea of using patches as a denoising primitive is that statistics over
patches can be collected, allowing to estimate the patch with the maximum
likelihood. A direct approach has been taken by Buades et al. in Non-Local
Bayes (nlb) and by Chatterjee and Milanfar in patch-based locally optimal Wiener
(plow).

The basic assumption underlying patch-based methods is that patches are
normally distributed and the distribution is centered around the noise free
patch. The Achilles heel of patch based methods is to find enough patches that
belong to the same distribution, i.e., patches which correlate with the patch to
be denoised. Intuitively, patches that are further away are less correlated than
closer patches. Levin et al. have analyzed that pixels across edges are almost
uncorrelated [25]. The common way to distinguish correlating patches from
non-correlating ones is to use patch distances based on the L2 norm, and to
perform a threshold either on the distance or on the number of patches [26, 27].
Other methods separate patches by clustering [28, 29].

nlm is possibly the most basic patch-based method. Besides the pixel-based
variant, nlm can be also implemented patch-wise. A subset of the image pixels
are chosen as centers of overlapping patches, such that the entire image is
covered by them. For every patch location, the patches are bilaterally filtered
by using the squared norm of the vectorized patches. Finally, every pixel is
calculated by averaging the denoised patches containing the pixel.

If the region surrounding the patch to be denoised is dominated by strong
features like edges and corners, it may be difficult to find enough correlating
patch samples. For example, when the patch to be denoised covers a strong
feature like an edge, the number of correlating patches are limited to the pixel
positions in the direction of the edge. The simplest way out is to avoid the edge
by decreasing the patch size at the cost of losing details or introducing noise.
A more sophisticated way to increase the number of patches without reducing
the patch size is to use data-adaptive shapes. Shape-adaptive methods like
sa -bm3d and bm3d -sapca [30, 31] mask out the patch regions with strong
features. The shape is given by a polygon mask, centered around the center
pixel. A similar path is taken by k -lld, where patches are grouped using skr.

19

3.4.1 Sparsity

Instead of rigorously finding the most likely patch, most methods are more
heuristic and are based on sparsity. The idea here is that the noise-free patch
can locally be represented as a linear combination of a few functions, called
atoms. The set of all atoms is called dictionary, which can be complete or
overcomplete. Dictionaries are overcomplete if the number of atoms exceeds the
dimensionality of the signal and, therefore, the atoms linearly depend on each
other. A property of overcomplete dictionaries is that they allow for sparser
representations.

The noisy patch is denoised by sparse coding, the process of finding a sparse
representation using the given dictionary. For complete dictionaries, usually
based on wavelets, thresholding, or Wiener filtering is used. In the latter
case, sparsity is not strictly enforced in an L0 sense, as the wavelet coefficients
are multiplied by non-zero factors. For overcomplete dictionaries, greedy
heuristics called pursuit methods find near-optimal sparse representations.
While producing numerically good results, wavelet methods are prone to
disturbing ringing artifacts, which is a reason why overcomplete dictionaries
are preferred.

There are many strategies to obtain a good dictionary. The simplest way
is to use a fixed dictionary, like complete or overcomplete wavelets. A well-
known method using a fixed dictionary is bm3d. However, dictionaries can
also be learned from data. Some methods process image databases off-line, for
example [32]. A method that learns on-line over the whole image is k -svd by
Aharon et al. [33]. k -svd is a generalization of the k-means algorithm, which
iteratively performs sparse coding and dictionary update. The difference to
k-means algorithm is that the sparse encoding is not limited to a single atom
and can have weights other than one. More recently, dictionaries are learned
over clusters (k -lld, bm3d -sapca), to make use of simultaneous sparse coding
(ssc).

The idea of ssc comes from the observation that patches which are similar
have stronger correlation than patches which are different. If two patches
are strongly correlated, then their sparse codings should also be correlated.
For complete dictionaries, the most known method making use of ssc is
bm3d by Dabov et al. [26], which stacks and transforms patches in three
dimensions, the two local dimensions and a third non-local dimension. Similarly,
for overcomplete dictionaries, the same structural sparsity can be enforced over
all patches. This idea was taken by lscc, proposed by Mairal et al. [34].
bm3d -sapca by Dabov et al. [31] performs a principal component analysis (pca)

20

over the set of patches, thus making use of non-local similarity between patches.
A related approach was taken by Chatterjee and Milanfar who proposed k -lld,
using locally learned dictionaries for each cluster of patches.

A new path was taken by Dong et al. who recently proposed spatially
adaptive iterative singular-value thresholding (saist). They replace sparse linear
combination using a single dictionary by a singular-value decomposition (svd)
with two dictionaries. Their formulation makes the effect of sparsity symmetric
in row and column space, with the orthogonal matrices of the decomposition
corresponding to local and non-local dictionaries.

3.4.2 Alternative Patch-based Methods

A deviation from the common patch-based methods is a method based on multi-
layer perceptrons (mlp) by Burger et a. [35]. Instead of learning dictionaries,
mlp learns the direct mapping from noisy image to the denoised signal itself.
An advantage of this method is that it can learn any degradation type. The
downside of this off-line learning method is that it takes many gpu-days
to learn for every degradation type, including a simple change in the noise
variance.

Another example of a off-line learning method is Field of Experts (foe). It
also learns a dictionary off-line, but uses probabilistic inference to find the most
likely image using a prior on the entire image. Like the mlp, its framework is
also flexible enough to generalize to other degradation types than denoising.

3.4.3 Theoretical Limits

With the rise of patch-based methods, denoising quality has improved so much
that theoretical limits of denoising have become a topic. Levin and Nadler [36]
and Chatterjee and Milanfar [37] analyze these limits based on patches and
come to the conclusion that for natural images, methods like bm3d are close
to what is theoretically possible. They also conclude that denoising smooth
images still has potential for improvement.

3.5 Discussion

We discuss how our work contrasts from recent development of the field. We
note that all state-of-the-art methods are based on patches. Our methods do
not follow the trend and are based on the classic works of bilateral filtering and
short-time Fourier transform (stft).

21

Most patch-based methods first search for correlating patches. In our ap-
proach, we keep the entire search window, so we do not need to locate correlat-
ing patches. We also do not have to use shape-adaptive methods to increase
the number of correlating patches. We simply use the bilateral filter to discard
uncorrelated pixels. Methods like bm3d and saist still treat self-similarity of
patches, i.e., local and non-local correlation, distinctly. In our world, both local
and non-local self-similarity translate simply to auto-correlation of the search
window, i.e., waves.

It seems plausible that if we have explicit statistical knowledge about the
signal, we can improve denoising. However, this has not be proven yet. Patch-
based methods [38, 26, 31, 27, 34, 29] collect statistics over patches and use
the sparsity argument to denoise the patches. Our methods do not require
learning of dictionaries, as we use simple Gabor wavelets. Learned dictionaries
are statistical models of the signal. In our works, we make no statistical
assumptions about the signal. Instead of trying to collect statistics about the
signal, we focus on the existing statistical knowledge about the zero-mean white
Gaussian noise, which is given by its variance. Using the variance, we perform
robust noise estimation by discarding large signals as outliers and estimate the
noise. In other words, instead of estimating an unknown model of the signal,
we use the known noise model and discard signals which do not fit the model.

Given that our patch-less denoising methods directly compete with the
state-of-the-art, we make the case that patches and the tools developed for them
are unnecessary for image denoising.

We note that for a long time, the image denoising community has been
focused on denoising natural images. Given the traditional application domains
of denoising, this may not be surprising. Consequently, a lot of effort is put into
collecting statistics about natural images and how to exploit them for image
denoising [36]. Synthetic images have not gotten the same attention as natural
images. Current image denoising methods produce unacceptable artifacts for
synthetic images. In our work, we show that no distinction has to be made
between denoising natural and synthetic images. Since we do not use any
statistics of the signal, our methods are signal agnostic.

Finally, we also note that there is a lack of contribution for denoising color
images. Only bm3d and nlb count as state-of-the-art methods for denoising
color images. Other methods have only shown their performance for grayscale
images. It is not entirely clear to the author if lack of interest or technical
difficulties are the reason for not extending current methods to color images and
more generally to hyper-spectral images. However, our algorithms presented in

22

this work produce visually and numerically the best color images.

23

24

4
Dual-Domain Filter

What is a scientist after all?
It is a curious man looking through a keyhole,

the keyhole of nature, trying to know what’s going on.

Jacques-Yves Cousteau

Image enhancement and reconstruction are important tasks in image processing.
Images may be degraded by awgn, by arbitrary method noise or compression
artifacts. To improve such images, specialized tools are often developed for
each type of degradation.

Some image processing tools are generally potent to attack such problems.
The bilateral filter (bf) [10] and its variant, the joint-bilateral filter [39], have
become popular tools due to their simplicity and effectiveness in removing
named artifacts. For example, bilateral filtering can be used for denoising
images contaminated with weak noise or for removing unwanted details. Also,
adaptive bilateral filtering has been proven effective for jpeg deblocking by
Zhang and Gunturk [17] and Nath et al. [40].

However, the bilateral filter, due to its spatial definition, makes a trade-off
between removal of noise and loss of contrast and detail. Typically, details are
better preserved using transform domain methods, which is why some jpeg

deblocking methods inspect the dct coefficents of the blocks. Sophisticated
image denoising methods operate in both spatial and frequency domains.
Moreover, it is common to cast artifact removal as a denoising problem, by
simply using existing denoising methods [38, 19, 20, 41, 26, 28]. However, the
best denoising methods are complex to implement and are not part of every
image processing engineer’s toolbox like the common bilateral filter.

In this chapter, we introduce a simple but powerful image processing filter
that we call Dual-Domain Filter (ddf). With ddf, we flip the semantics of
bilateral filtering and wavelet shrinkage and combine them as robust noise

25

estimation in two domains. Moreover, we offer an extension to allow guided
filtering using a second image. Recall that, in this thesis, we use the term noise
estimation to mean the estimation of the actual noise instance, rather than the
statistics of the noise which are known.

We formulate the ddf as a robust noise estimator in two domains. Typi-
cal image denoising filters estimate a signal x directly from a noisy input y,
attempting a decomposition y = x + n, where n is the noise. In contrast, our
filter first estimates the noise n which is then subtracted from the noisy signal
y to obtain x. This seemingly subtle difference matters when estimating the
noise in multiple domains. While we make no assumptions about the signal,
we assume to know the noise statistics. The noise statistics are used to robustly
estimate the noise first in the spatial domain, then in the frequency domain.

The ddf first uses the bilateral filter to estimate the noise n̄p in the pixel
value yp using neighborhood pixels q ∈ Np, limited by kernel radius r. It
then reestimates the noise n̂p in the frequency domain using the frequencies
f ∈ Fp. The noise estimations in the two domains are described in Section 4.1
and Section 4.2. In Section 4.3, we show a way to let ddf be guided by a
second image. We discuss our dual-domain robust noise estimation paradigm
in Section 4.4 and give a short outlook on the following chapters in Section 4.5.

4.1 Noise Estimation in Spatial Domain

The spatial domain filter is a reformulation of the bilateral filter, now designed
to estimate the noise n̄p. We first subtract the pixel yp from the neighbor pixels
yq, forming the “gradient” dq as

dq = yq − yp. (4.1)

Then, we use the squared norms of the gradient dq and the distance q− p to
define the bilateral kernel kq as

kq = k
(
|dq|2, |q− p|2

)
, (4.2)

where the bilateral kernel function k(·, ·) is assumed to be a robust kernel
that normalizes the squared norms according to the known noise statistics.
In particular, the kernel function is responsible for spatial and range scale

parameters, for example as k(|dq|2, |q− p|2) = e
− |dq |2

γrσ2 e
− |q−p|2

2σ2
s . This control over

the spatial and range scale parameters is critical for iterating ddf as it will be
shown in in the following chapters.

26

Finally, we estimate the noise n̄p by locally convolving the gradient dq with
the normalized bilateral kernel kq/ ∑q∈Np kq:

n̄p = a ∑
q∈Np

dq kq

/
∑

q∈Np

kq. (4.3)

We additionally introduce a confidence factor a ranging from 0 to 1. If we
have no confidence in the noise estimate, the confidence value is a = 0. If we
have full confidence, the confidence value is a = 1. This factor is useful for
implementing pid and ddid2, which iterate this filter and the confidence value
grows over time. The used confidence values are described in the respective
chapters. If not otherwise stated, we assume a = 1.

The estimated noise n̄p by Equation 4.3 is equivalent to the bilaterally filtered
value x̄p given by Equation 3.2 minus the noisy value yp.

4.2 Noise Estimation in Frequency Domain

Similar to the spatial domain filter, the frequency domain filter is a reformulation
of wavelet shrinkage, redesigned to estimate the noise n̂p.

We use the previous results to remove bias from the frequency domain noise
estimation in two ways. We first remove the spatially estimated noise n̄p from
the gradient dq. This corresponds to the removal of the dc component under
the bilateral kernel, asserting that noise has zero mean. Then, we mask the
resulting signal using the bilateral kernel kq, removing large gradients which
otherwise would bias the spectrum. Now we are ready to multiply with the
Fourier kernel to take the discrete Fourier transform (dft), yielding the Fourier
coefficients D f as

D f = ∑
q∈Np

(dq − n̄p) kq e−i 2 π
2 r+1 f ·(q−p), (4.4)

with frequencies f ∈ Fp. Next, we define the frequency domain kernel K f to
reject correlating signals as outliers. Since the variance of a scaled signal is
proportional to the squared factors, we normalize the energy of the Fourier
coefficients by the energy of the bilateral kernel kq. Our definition for the
frequency domain kernel becomes

K f = K

∣∣D f
∣∣2/ ∑

q∈Np

k2
q

 . (4.5)

27

Similar to the bilateral kernel function, the frequency domain range kernel
function K(·) is assumed to be robust and to normalize the energy according to
the known noise statistics.

Finally, we reconstruct the center pixel noise n̂p. We perform the inverse
Fourier transform of the scaled Fourier coefficients D f K f , followed by the
evaluation at pixel p by convolving with the Dirac delta function, yielding

n̂p = A ∑
q∈Np

δ(q− p)
1

(2 r + 1)2 ∑
f∈Fp

D f K f ei 2 π
2 r+1 f ·(q−p) (4.6)

=
A

(2r + 1)2 ∑
f∈Fp

D f K f ∑
q∈Np

δ(q− p) ei 2 π
2 r+1 f ·(q−p) (4.7)

=
A

(2 r + 1)2 ∑
f∈Fp

D f K f . (4.8)

We observe that we can omit the inverse Fourier transform and the noise
estimate reduces to a dot product in the frequency domain between the Fourier
coefficients D f and the frequency kernel K f . The normalization factor 1/(2r +
1)2 corrects for the fact that the dft is non-unitary. The parameter A is another
confidence factor between 0 and 1. Now we have the final noise estimate n̂p
and we can subtract it from the noisy pixel yp to get the estimate

x̂p = yp − n̂p. (4.9)

4.3 Guided Dual-Domain Filter

We can also formulate ddf as a “guided filter”, similar to the joint-bilateral
filter [39] and the guided image filter [42]. Instead of having a single input
image, we have an additional guide image g that defines the filter, which is then
applied to the noisy input image y. Since the same computations are performed
on both images, we can use a trick by using the complex substitution

y→ g + i y. (4.10)

We only have to make two adaptations. First, we extract the real part as the
guide to define the bilateral kernel and Equation 3.3 becomes

kq = k
(
|Re dq|2, |q− p|2

)
. (4.11)

Second, the Fourier transform now computes two real Fourier transforms
simultaneously, one for the guide image g and another for the noisy image

28

y. This is a common trick [43] to reduce the complexity of two real Fourier
Transforms. We can derive the rule to extract the Fourier transform of the real
part from the properties of a real Fourier transform [44]. The real part of the
Fourier coefficients of a real Fourier transform is even and the imaginary part
is odd. We can therefore extract the Fourier coefficients of the real part as the

guide with
D f +D∗− f

2 and Equation 4.5 becomes

K f = K

∣∣∣∣∣D f + D∗− f

2

∣∣∣∣∣
2/

∑
q∈Np

k2
q

 . (4.12)

Finally, the estimated noise is substituted as n̂p → Im n̂p and x̂p = Im(yp − n̂p).

4.4 Robust Noise Estimators

Our robust noise estimation paradigm unifies spatial and frequency domain
denoising. Durand and Dorsey have already made the connection between
bilateral filter and robust estimation [13]. The bilateral filter is robust in three
dimensions, two spatial and one range dimension for the spatial domain. Our
estimator adds another range dimension for the frequency domain. Since both
domains induce bias, our robust noise estimator protects from bias in both
domains.

The original bilateral filter is defined using the Welsch estimator for both
spatial and range dimensions. Durand and Dorsey considered alternative robust
estimators like the Lorentz and Tukey estimator. To add even more flexibility, it
is possible to pick different robust estimators for every dimension individually.

For example, we can consider alternative weight functions for the frequency
and, more generally, wavelet domain. In the wavelet domain, denoising is
usually performed by shrinkage of the wavelet coefficients. The idea is to
preserve the signal and to discard the noise. In our denoising framework, we
consider signal as the outlier and noise as the inlier being estimated. We denoise
by subtracting the estimated noise, rather than estimating the denoised signal
directly. We take an alternative perspective by considering wavelet shrinkage
as robust noise estimation. Figure 4.1 reveals typical shrinkage operators as
robust estimators of noise. The most popular wavelet shrinkage method is the
mean squared error (mse) minimizing Wiener filter. However, we can also
understand the Wiener filter as a robust noise estimator. If we subtract the

29

k(x)

Wiener

Soft

Hard

ψ(x)

Wiener

Soft

Hard

Figure 4.1: Typical wavelet thresholding and shrinkage functions interpreted as robust
estimators for noise. The left plot shows the weight functions k(x) and the right plot shows
the corresponding influence functions ψ(x) = x k(x). Wiener filtering corresponds to the
Lorentzian estimator and has poor outlier rejection. Soft thresholding corresponds to the Huber
estimator, which is not redescending. Only hard thresholding has strong outlier rejection.

k(x)

Lorentz

Welsch Tukey Epanechnikov

ψ(x)

Lorentz

Welsch Tukey Epanechnikov

Figure 4.2: Examples of redescending M-estimators. The left plot shows the weight functions
k(x) and the right plot shows the corresponding influence functions ψ(x) = x k(x). The
Lorentz estimator has the largest tail and does not sufficiently discard outliers. The Welsch
estimator has a Gaussian as its weight function. It has a steep descent while still being infinite
in support. The weight and influence functions of Tukey and Epanechnikov both have finite
supports, rejecting outliers completely. The Wiener filter (Lorentzian estimator) is shown for
reference.

30

Wiener filter from 1 as

Kp, f = 1−
|Xp, f |2

|Xp, f |2 + σ2
p, f

=
1

|Xp, f |2/σ2
p, f + 1

, (4.13)

we recognize the Lorentzian redescending M-estimator. While its influence
function is redescending, the Lorentzian has a heavy tail, failing to discard
strong signals as outliers, leading to ringing artifacts. The Wiener filter is
therefore a poor choice for outlier rejection. The same analysis can be made
for thresholding. Soft tresholding is the Huber estimator in disguise, which
is not redescending, making it ineffective for robust noise estimation. Hard
thresholding, on the other hand, is a redescending M-estimator with strong
outlier rejection.

4.5 Outlook

In the following chapters, we show how ddf can be configured using robust
noise estimators. By iterating ddf and plugging in dynamically changing
robust noise estimators, we will develop image denoising methods that produce
state-of-the-art results. Moreover, we will demonstrate that ddf is useful
outside of classic image denoising, by using it as a post-processing tool to
remove denoising and compression artifacts.

31

32

5
Dual-Domain Image Denoising

When the solution is simple,
God is answering.

Albert Einstein

Image denoising methods have been implemented in both spatial and transform
domains. Each domain has its advantages and shortcomings, which can be
complemented by each other. State-of-the-art methods like (bm3d) therefore
combine both domains. However, implementation of such methods is not trivial.
We offer a hybrid method that is surprisingly easy to implement and yet rivals
bm3d in quality.

The classic image denoising problem is the reconstruction of an image that
has been degraded by addition of white Gaussian noise. There are two main
classes of image denoising methods: one operates in the spatial domain, the
other in a transform domain. The bilateral filter [10] and the non-local means
filter [20] are examples of methods which define the filter kernel in the spatial
domain. They preserve features like edges, but have difficulties preserving
low-contrast details. On the other hand, wavelet thresholding and shrinkage
methods operate in a transform domain and excel in preserving details like
textures, but suffer from ringing artifacts near edges.

Thus, a hybrid approach is taken by recent works. bm3d [26], shape-adaptive
BM3D (sa-bm3d) [30], and BM3D with shape-adaptive principal component analysis
(bm3d -sapca) [31], sorted by increasing denoising quality, are considered state-
of-the-art. These are sophisticated methods which pay for the high quality with
implementation complexity [45]. While producing numerically good results,
the methods are not yet perfect [37, 36, 25]. They are based on block matching,
which introduces visible artifacts in homogeneous regions, manifesting as
low-frequency noise.

33

We propose a method that is competitive in quality with bm3d, but is much
simpler to implement. We combine two popular filters for the two domains
using the previously defined ddf. For the spatial domain, we define the
bilateral kernel function to be the standard bilateral filter, and for the transform
domain, we define it as wavelet shrinkage. The combination of the spatial kernel
from the bilateral filter together with the following dft allow the interpretation
of the wavelet transform as a short-time Fourier transform (stft). Furthermore,
since the spatial kernel of the bilateral filter is a Gaussian, the wavelet transform
is in fact a Gabor wavelet transform.

The bilateral filter is known for its edge-preserving properties. It retains
high-contrast features like edges, but cannot preserve low-contrast detail like
textures without introducing noise. stft wavelet shrinkage on the other hand
results in good detail preservation, but suffers from ringing artifacts near steep
edges. By combininge these two classic methods, we produce a new one which
denoises better than when used separately.

5.1 D D F Parametrization

Using the guided ddf, we can compactly describe ddid. We start with x0 = y
and iteratively improve the guide image xn as

xn+1 = y− Im DDFn(xn + iy), (5.1)

where DDFn(·) returns the noise estimate for iteration n. We define DDFn(·) by
changing the kernel functions kn(·) and Kn(·) for every iteration n. We use the
following confidence factors and kernel functions

a = A = 1 (5.2)

kn(d2, ρ2) = e
− d2

γr(n) σ2 e
− ρ2

2 σ2
s (5.3)

Kn(D2) = 1− e−
γ f (n) σ2

D2 . (5.4)

Empirically, we found that iterating the filter three times with the following
parameters works best:

γr(n) = (100, 8.7, 0.7) (5.5)
γ f (n) = (8.0, 0.4, 0.8) (5.6)

σs = 7. (5.7)

34

The parameter γr is the scale factor for the range of the bilateral kernel function.
Likewise, the parameter γ f is the scale factor for the range of the frequency
kernel function. The parameter σs controls the extent of the spatial Gaussian.
We chose the neighborhood kernel radius r = 15. Evaluating the bilateral
kernel kn(·, ·) function yields the standard bilateral kernel. The frequency range
kernel Kn(·) however is a wavelet shrinkage kernel, formulated as a robust
noise estimator.

5.2 Discussion

We can gain an intuition about the collaboration of the two domains by denois-
ing a 1d signal. We specify the input as a rectangular function modulated with
a sine wave, to which white Gaussian noise was added. Figure 5.1 illustrates
the intermediate steps in the spatial and frequency domain for the first two
iterations. The first bilateral filter step uses a large range parameter γr. This
retains the large steps of the rectangle, but smoothens the rest of the signal. The
following stft step recovers the previously lost detail without being affected
by the edges of the rectangle. The filtered signal is fed as a guide to the second
iteration step, which uses a smaller range parameter. This time, the bilateral
filter keeps the recovered edges from the previous stft step. Although the
first stft step reintroduced ringing artifacts, the bilateral filter recognizes them
as noise and filters out. The second stft step reinforces the detail features in
the center but does not bring back the ringing. As observed, the joint bilateral
filter has the power to “heal” ringing artifacts caused by the wavelet shrinkage
of the preceding iteration; this phenomenon has previously been exploited
by Yu et al. [46]. Figure 5.2 shows the evolution of the guide signal xn over
the three iterations. With every iteration, the noise decreases, while only little
bias is introduced. Figure 5.3 shows averaged plots over 200 denoised signals.
They demonstrate that ddid avoids noisy ringing artifacts typical to stft with
Wiener filter.

Figure 5.4 depicts the denoising progress for a grayscale image. The first
row shows the first iteration, with the initial bilateral filtered image on the left.
The stft step yields the details shown in the middle. The sum of the two
images give the improved image on the right. This improved image of every
iteration is used as an oracle or “guide” for the following iteration. Over the
iterations, the bilaterally filtered image becomes sharper, and less details are
added, and the noise in the resulting images is reduced.

35

Iteration 1: Bilateral only Iteration 1: Bilateral + STFT Iteration 2: Bilateral only Iteration 2: Bilateral + STFT

Figure 5.1: Intermediate steps of first two iterations of denoising. The bilateral filter and stft

shrinkage cooperate in alternation to denoise the signal. Denoised results in red are compared
against the initial noisy signal in black.

Noisy Input (21.50 dB) Iteration 1 (24.58 dB) Iteration 2 (27.67 dB) Iteration 3 (27.84 dB)

Figure 5.2: Progression of denoising. The guide signal in red improves every iteration,
approximating the original signal in black.

DDID

0

σ
2

DDID Bias
2
 and VarianceSTFT

0

σ
2

STFT Bias
2
 and Variance

Figure 5.3: Comparison of ddid against stft with Wiener filtering, averaged over 200
signals. stft has residual noise due to ringing artifacts, while ddid benefits from using the
bilateral mask. Left: red solid and dashed lines denote the expected value with a confidence
interval of one standard deviation. Right: red solid and dashed lines are the squared bias and
variance respectively. Black dashed lines are the initial noise variance.

36

Iteration 1

bf

+

Iteration 1

stft

=

Iteration 1

bf + stft

Iteration 2

bf

+

Iteration 2

stft

=

Iteration 2

bf + stft

Iteration 3

bf

+

Iteration 3

stft

=

Iteration 3

bf + stft

Figure 5.4: Progression of denoising a grayscale image with ddid. Each row consists of an
iteration step. In the left columns are the base images from the bf step, the center columns
contains the detail images from the stft step, and the right column contains the result of the
step as a sum of the previous two columns.

37

Another way to analyze the denoising process is by observing the evolution
of kernels. Unfortunately, we cannot easily express the dual-domain defined
kernel in closed form. The denoising actions in the spatial domain and in
the frequency domain are time-interleaved and do not occur simultaneously.
Therefore, it is unpractical to define a unified dual-domain kernel. However,
we can consider the bilateral kernel kq as an approximation of the dual-domain
kernel k̂q. Another approximation of the dual-domain kernel can be made
by assuming the original image x is zero mean, allowing us to ignore the
bilaterally filtered value. The resulting approximation of the dual-domain
kernel is k̂q ≈ δ− kq F -1{K f }. Figure 5.6 and Figure 5.7 show the evolution
of these kernels involved. The kernels are evaluated at the points marked in
Figure 5.5.

Figure 5.5: Evaluation points for kernel analysis. The first pixel is in the sky, next to the arm
of the Cameraman. The second pixel is on one of the pillars of a building.

38

Iteration 1

kq

Iteration 1

F -1{K f }
Iteration 1

kq F -1{K f }
Iteration 1

δ− kq F -1{K f }

Iteration 2

kq

Iteration 2

F -1{K f }
Iteration 2

kq F -1{K f }
Iteration 2

δ− kq F -1{K f }

Iteration 3

kq

Iteration 3

F -1{K f }
Iteration 3

kq F -1{K f }
Iteration 3

δ− kq F -1{K f }

Figure 5.6: Evolution of kernels near the arm of the Cameraman. Red values are positive
and blue values are negative. The left most filter is the bilateral kernel. The second kernel is
the inverse Fourier transform of the frequency domain kernel, followed by its product with the
bilateral kernel, used to estimate the noise. The last kernel is the final kernel if it was directly
applied to the noisy image y.

39

Iteration 1

kq

Iteration 1

F -1{K f }
Iteration 1

kq F -1{K f }
Iteration 1

δ− kq F -1{K f i}

Iteration 2

kq

Iteration 2

F -1{K f }
Iteration 2

kq F -1{K f }
Iteration 2

δ− kq F -1{K f }

Iteration 3

kq

Iteration 3

F -1{K f }
Iteration 3

kq F -1{K f }
Iteration 3

δ− kq F -1{K f }

Figure 5.7: Evolution of kernels for pillar region of the Cameraman. The bilateral filter
improves over time by eventually discarding the tripod as outlier. In the first two iterations,
the inverse Fourier trasnform of the frequency kernel is dominated by the diagonal direction of
the tripod. In the last iteration, the tripod is masked out by the bilateral filter and horizontal
frequencies dominate. The inverse Fourier transform of the frequency domain kernel is symmetric.
the pillars extend to the right and to the left. Masking this kernel with the bilateral filter discards
the incorrect pillars on the left. The final kernel contains the original pillar and similar pillars to
the right.

40

Grayscale D D I D B M 3 D

Barbara 30.80 30.72

Boats 29.79 29.91
Cameraman 29.46 29.45

Couple 29.56 29.72
Finger Print 27.32 27.70
Hill 29.71 29.85
House 32.66 32.86
Lena 32.14 32.08

Man 29.62 29.62
Montage 32.61 32.37

Pepper 30.26 30.16

Color D D I D B M 3 D

Baboon 26.17 25.95

F-16 32.88 32.78

House 32.69 33.03
Kodak 1 29.09 29.13
Kodak 2 32.29 32.44
Kodak 3 34.55 34.54

Kodak 12 33.46 33.76
Lake 28.85 28.68

Lena 32.30 32.27

Pepper 31.25 31.20

Tiffany 32.49 32.23

Table 5.1: psnr (dB) comparison between ddid and bm3d for noise sigma σ = 25.

5.3 Results

ddid produces competitive results. Table 5.1 compares the psnr of ddid

and bm3d for all the bm3d test images. We chose σ = 25 (psnr = 20.17 dB)
as the standard deviation of the noise. Numerically, bm3d and ddid show
comparable denoising quality.

Figure 5.8 demonstrates that low-frequency noise present in bm3d images
is absent in ddid images. Figure 5.9 shows another strength of ddid. The
error comparison shows that ddid has smaller errors than bm3d for hair
texture. bm3d on the other hand works well for edge-like structures as found
in architecture or in the blue ridges in the cheeks of the mandrill.

Figure 5.10 studies noise induced artifacts. Random noise can generate
patterns which can be confused as signal. ddid and bm3d -sapca retain the
wavy patterns in the noise, while bm3d smoothes them away. The latter should
be considered a mistake as on other occasions the pattern could indeed have
been a valid signal. Recall that our method is much simpler to implement
than bm3d and especially bm3d -sapca, which extends bm3d by additional
shape-adaptive and pca steps.

With an optimized matlab implementation of ddid, denosing a grayscale
image with 256× 256 pixels and a window size of 31× 31 using a single core
of a Intel Xeon 2.67 GHz takes 70 seconds. The bottleneck is the transition from
spatial to frequency domain. If this transition was a pure Gabor transform,
we could exploit sliding window techniques [47] to update the Fourier coeffi-
cients incrementally. However, since the signal is multiplied by an arbitrary
range kernel, we need a per-pixel fft with complexity O(N2 log N). Thus, we
implemented a C version using the fftw library, which shortened the time

41

to 40 seconds. Since the pixels are mutually independent, we achieved linear
scalability using dual quad-core cpus, reducing the time to 5 seconds. Finally,
our gpu implementation on an NVIDIA GeForce GTX 470 cut the time down
to one second.

5.4 Conclusions

In this chapter, we have presented ddid, a simple image denoising method
which works surprisingly well. Its quality is comparable to bm3d, while being
much easier to implement. The simplicity and effectiveness comes from the
ddf it is based on. This first result with ddf invites for more experimentation
to achieve even higher quality.

42

Original Noisy Image (20.17 dB)

BM3D (32.37 dB) DDID (32.61 dB)

Figure 5.8: Comparison of ddid and bm3d for denoising a grayscale image. ddid

has less low-frequency noise than bm3d.

43

Error Difference Noisy Image (20.17 dB)

bm3d (25.95 dB) DDID (26.17 dB)

Figure 5.9: Comparison of ddid and bm3d. ddid effectively denoises hair-like
structures, while bm3d is stronger for edge-like structures. Blue regions mark where
ddid has lower error than bm3d, yellow and red regions mark the opposite, and green
regions mark similar errors.

44

O
ri

gi
na

l
N

oi
sy

Im
ag

e
2

0
.1

7
dB

BM
3

D
3

0
.1

6
dB

D
D

ID
3

0
.2

6
dB

B
M

3D
-S

A
PC

A
30

.4
3

dB

Fi
gu

re
5.

10
: A

rt
if

ac
tc

om
pa

ri
so

n
of

d
d

i
d

,
b

m
3

d
,a

nd
b

m
3

d
-s

a
p

c
a

.M
is

cl
as

si
fic

at
io

n
of

no
is

e
as

si
gn

al
du

e
to

ac
ci

de
nt

ly
re

gu
la

r
pa

tt
er

ns
is

ac
ce

pt
ab

le
an

d
is

to
be

ex
pe

ct
ed

.
b

m
3

d
pr

od
uc

es
a

sm
oo

th
re

su
lt,

bu
t

th
is

w
ou

ld
fa

il
in

ot
he

r
oc

ca
si

on
s

w
he

re
th

e
pa

tt
er

n
w

ou
ld

be
a

si
gn

al
.

45

46

6
Progressive Image Denoising

When I am working on a problem, I never think about beauty
but when I have finished, if the solution is not beautiful,

I know it is wrong.

Buckminster Fuller

In the last chapter we have shown with ddid that by simply iterating ddf

three times, we can denoise images effectively. While the results of ddid

are qualitatively comparable to bm3d, both methods still have artifacts. Both
ddid and bm3d produce acceptable images for natural images, but human
vision is less forgiving when viewing synthetic images. Objective metrics have
difficulties capturing the nuances our eyes are sensitive to. The numerically best
image denoising method is bm3d -sapca, as shown in Table 6.1. bm3d -sapca

achieves exceptional psnr values, but still suffers from visible artifacts, as can
be seen in Figure 6.1.

In this chapter, we propose progressive image denoising (pid), a method that
produces minimal artifacts for both natural and synthetic images. Compared
to ddid, this method takes iteration to the extreme. Moreover, our new
formulation of image denoising gives new insights into the subject by connecting
high-quality image denoising to statistical mechanics.

pid is a method based on deterministic annealing (da) and robust noise
estimation. da is a heuristic method that is efficient at solving complex op-
timization problems where many local extrema exist. We combine da with
redescending M-estimators, similar to previous work of Li [48] and Frühwirth
and Waltenberger [49]. We use the ddf framework to define this redescending
M-estimator. Our method produces high-quality results, void of artifacts typical
to patch-based methods. It performs not only well for natural images, but also
for synthetic images where artifacts are usually more apparent.

47

BM
3

D
(2

9
.4

5
dB

)
B

M
3D

-S
A

PC
A

(2
9.

81
dB

)
LS

SC
(2

9
.5

0
dB

)
M

LP
(2

9
.6

1
dB

)
PI

D
(2

9
.6

8
dB

)

BM
3

D
B

M
3D

-S
A

PC
A

LS
SC

M
LP

PI
D

Fi
gu

re
6.

1:
C

om
pa

ri
so

n
of

de
no

is
in

g
C

am
er

am
an

w
ith

no
is

e
si

gm
a

σ
=

25
.W

hi
le

th
e

p
s

n
r

va
lu

es
of

th
e

co
ns

id
er

ed
m

et
ho

ds
ar

e
al

lh
ig

h,
on

ly
p

i
d

m
an

ag
es

to
pr

od
uc

e
ho

m
og

en
eo

us
sk

y
re

gi
on

s
w

it
ho

ut
ob

je
ct

io
na

bl
e

ar
ti

fa
ct

s.
T

he
bo

tt
om

ro
w

sh
ow

s
fa

ls
e

co
lo

r
im

ag
es

to
hi

gh
lig

ht
th

e
ar

tif
ac

ts
in

th
e

sk
y.

48

We describe the method in three steps. In Section 6.1, we first cast image
denoising as a gradient descent problem and identify the gradient with a
noise differential. Then, in Section 6.2, we estimate the noise differential using
redescending M-estimators in the spatial and frequency domains. To complete
the algorithm, we define the annealing schedule in Section 6.3. The parameters
of the algorithm are given in Section 6.4. In Section 6.5, we present high-
quality results and compare them to state-of-the-art methods and conclude in
Section 6.6.

6.1 Denoising as Gradient Descent

We start with the original “ill-posed” problem formulation given by Equa-
tion 1.1,

y = x + n. (6.1)

In practice, we can only estimate a decomposition y = x̃ + ñ. Formulated as
an optimization problem, we look for x̃ that minimizes the apriori unknown
energy E = (x̃− x)2. However, if we had an estimate of this energy, we could
derive a gradient as ∂Ẽ/∂x̃ = 2(x̃− x), which is the noise of x̃, up to scaling.

Starting with x0 = y, we can perform a gradient descent, where the gradient
is the momentarily estimated noise differential ni for the current estimate xi.
The noise differential ni integrates over time i to the estimated total noise
instance as ñ = ∑∞

i=0 ni. The gradient descent formulation is thus

xi+1 = xi − ni. (6.2)

6.2 Robust Noise Differential Estimation

In Chapter 5, we used ddf to estimate the total noise in every iteration using
Equation 5.1. Here, we use ddf to estimate the noise differential ni. Equation 6.2
becomes

xi+1 = xi − Im DDFi(xi + iy) (6.3)

Instead of estimating the noise anew in every iteration, the noise is progressively
removed, hence the name for our method. We empirically found that progressive
removal of noise is possible by specifying the following. First, we perform
unguided ddf, which is equivalent to identifying the noisy image y with the
current guide image xi as y = xi. Second, we discard the noise n̄ estimated by

49

the bilateral filter, which is equivalent to setting the spatial confidence factor
a = 0 in Equation 4.3. Third, we specify the gradient descent step by the
frequency domain confidence factor A of Equation 4.8.

6.3 Shape Shifting Estimator

The missing ingredient to our method is the dynamic parameterization of the
robust noise estimator. Time-varying robust estimators have been used by Li
et al. [48] to replace scale selection by deterministic annealing. Frühwirth and
Waltenberger [49] allowed other kernel shape parameters to change over time
as well. Similarly, we adapt the annealing concept in a flexible style. While we
shrink the scale of the range kernel kr like in traditional da, we simultaneously
enlarge the spatial kernel ks over time by defining

ki(d2, ρ2) = kr

(
d2

Ti

)
ks

(
ρ2

Si

)
. (6.4)

The resulting dynamic bilateral kernel ki(·) is schematically depicted in Fig-
ure 6.2. Our frequency range kernel function is independent of time and we
define it as

Ki(D2) = K(D2). (6.5)

We define the scale parameters Ti and Si for the range and spatial kernel of the
bilateral kernel function kik as functions of time i:

Ti = σ2 γr α−i (6.6)

Si = σ2
s γs αi/2 (6.7)

The first scale parameter Ti of the range kernel kr is our temperature which
is reduced over time. We found that an exponential decay of the temperature
works best, where α−1 is the rate of this decay. γr is a large initial scale factor.
The second scale parameter Si, however, we let grow. When the temperature
Ti is high, the range kernel kr covers the entire dynamic range and the spatial
kernel ks should be small to reduce bias from neighbouring pixels in the noise
estimation. On the other hand, when the temperature is low, the range kernel
becomes narrow and we require larger spatial support to discern autocorrelated
signal with small amplitudes from noise. When the temperature has totally
cooled down, the range kernel is a Dirac delta, and the spatial kernel is the
constant 1, covering the entire spatial domain. Similar to the parameter γr of

50

xx x x x

r r r r r

Time

Figure 6.2: Evolution of the bilateral kernel krks. Deterministic annealing changes the scale
parameters by shrinking Ti and increasing Si over time. The axis ‘r’ and ‘x’ represent the range
and spatial dimensions.

the range kernel, γs is a small initial scale factor for the scale σs of the spatial
kernel. The frequency domain kernel function Ki(·) we specify simply as a
robust kernel K(·), independent of time i.

6.4 Implementation

Many denoising methods split their algorithms into two steps. First, an oracle is
computed, and then the oracle is used to denoise the noisy image. The solution
of deterministic annealing is only near-optimal as we may still end up in a
local minimum. We therefore follow the same pattern like other methods and
perform an additional denoising step. We discovered that the resulting image
from the annealing stage serves as an excellent oracle to denoise the noisy
signal with a single ddid step. We use Gaussians for all the kernels of the
robust noise estimator, i.e., kr(d2) = ks(d2) = K(d2) = e−d2

. In Section 6.5.2, we
experiment with robust estimators that have stronger outlier rejection.

The parameters in the algorithm were empirically found. We use N = 30
iterations with a temperature decay rate of α−1 = 1.533−1 and gradient step
size A = 0.567 log α. These parameters change together. For example to double
the number of steps, we would perform N → 2N, α→

√
α, and A→ A/2. The

initial scale factor for the range scale is γr = 988.5, and for the spatial scale
γs = 2/9. The window radius is r = 15, and we use a reference spatial sigma of
σs = 7. For the final ddid step, we use a larger kernel size with window radius
r = 31 and spatial sigma σs = 16. The range and frequency domain parameters
are γr = 0.6 and γs = 2.16.

51

 20

 22

 24

 26

 28

 30

 0 5 10 15 20 25 30

Iterations

PSNR (dB)

 0

 0.005

 0.01

 0 5 10 15 20 25 30

Iterations

MSE

Figure 6.3: psnr and mse improvement over time. The psnr increases nearly linearly for
most of the time. The mse follows a hyperbolic curve with the bias as one of its asymptotes.

6.5 Results

We present the results of our algorithm. Figure 6.5 displays the denoising
process as an evolution starting with the noisy image. We used 30 iterations,
where the intermediate images are snapshots taken after 10, 20, and 30 iterations.
Usually, a denoising output of an iteration step cannot be used as input for
another step, as the output pixels are correlated and estimating the variance
would require expensive covariance tracking. In our case, however, we remove
correlated noise in the spatial domain that have wave-like struture. In the
frequency domain, these waves are decorrelated and therefore, no covariance
tracking is needed. This allows the iteration to go forward without getting stuck
in a local minimum.

We analyze the denoising process for the familiar cameraman. Figure 6.3
shows the improvement of quality over time. The psnr increases fast in the
beginning, and slows down as the noise becomes smaller. The corresponding
mse exhibits a strong linear decrease in the beginning and asymptotically
approaching the squared bias as the variance vanishes. The plots look similar
for any image we denoised.

We gain a better understanding about the annealing process by observing
the evolution of pixels marked in Figure 6.4. In Figure 6.6, we consider two
pixels, xq on the tall building and xp in the sky. The difference is relatively small,
in the range of the noise sigma, since σ = 25/255 ≈ 0.1. In the first plot, we see
the noise differentials of ni,q and ni,p as a function of time. Since the noise is
uncorrelated, the noise differentials also take “independent” paths. They first
rise steeply and then fall off, eventually vanishing. The second plot shows the

52

Figure 6.4: Red and blue pixels mark the locations of measurement xp and xq for analyzing
the annealing process.

integrals of the noise differentials, which are the range trajectories xi,q and xi,p
of the pixels, starting with the noisy values yq and yp. We observe a smooth
fall off towards the vicinity of their ground truth values, suggested by dashed
lines. The third plot shows the relation between the two pixels as the squared
difference/gradient (xi,q − xi,p)

2 between them. For the first 15 iterations, this
squared difference is smaller than the temperature T, so the squared gradient
is considered as noise from the perspective of the spatial range kernel kr. This
means that the two pixels affect each others noise estimates. After the two
curves cross each other, the temperature is below the squared gradient and
the interaction between the two pixels are “frozen”. This can be better seen

in the last plot: the normalized Euclidean distance, i.e., the quotient
(xi,q−xi,p)

2

Ti
becomes larger than 1 after iteration 15, which in turn lets the weight of the

range kernel e−
(xi,q−xi,p)

2

Ti vanish quickly. After iteration 20, the squared gradient
between the pixels are considered outliers for both pixels.

53

PI
D

It
er

at
io

n
0

1
6
.1

0
dB

PI
D

It
er

at
io

n
1

0

2
2

.6
7

dB
PI

D
It

er
at

io
n

2
0

2
8

.7
7

dB
PI

D
It

er
at

io
n

3
0

2
9

.3
1

dB
PI

D
Fi

na
l

3
0
.4

9
dB

PI
D

It
er

at
io

n
0

1
6
.1

0
dB

PI
D

It
er

at
io

n
1

0

2
2

.8
6

dB
PI

D
It

er
at

io
n

2
0

3
0

.2
2

dB
PI

D
It

er
at

io
n

3
0

3
1

.3
2

dB
PI

D
Fi

na
l

3
3
.7

4
dB

Fi
gu

re
6.

5:
D

en
oi

si
ng

pr
og

re
ss

of
p

i
d

.T
he

no
is

e
si

gm
a

is
σ
=

40
.T

he
im

ag
e

PI
D

It
er

at
io

n
3

0
is

us
ed

as
an

or
ac

le
to

pr
od

uc
e

th
e

fin
al

im
ag

e
w

ith
a

si
ng

le
d

d
i
d

st
ep

.

54

-0
.0

1 0

 0
.0

1

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

It
er

at
io

n
s

N
o

is
e

D
if

fe
re

n
ti

al
 n

i

 0
.5

 0
.7

 0
.9

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

It
er

at
io

n
s

P
ix

el
 V

al
u

es
 x

i

 0

 0
.1

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

It
er

at
io

n
s

E
n

er
g

y
 &

 T
em

p
er

at
u

re

N
o

is
e

S
ig

n
al

T

 0 1 2

 0
 5

 1
0

 1
5

 2
0

 2
5

 3
0

It
er

at
io

n
s

D
is

ta
n

ce
 &

 W
ei

g
h

t

Fi
gu

re
6.

6:
St

ud
y

of
th

e
ev

ol
ut

io
n

of
tw

o
pi

xe
ls

ac
ro

ss
an

ed
ge

on
ca

m
er

am
an

(F
ig

ur
e

6.
1)

.
P

ix
el

q
(b

lu
e)

is
on

th
e

ta
ll

bu
ild

in
g,

pi
xe

lp
(r

ed
)i

s
in

th
e

sk
y,

to
th

e
ri

gh
to

ft
he

bu
ild

in
g.

Th
e

le
ft

m
os

tp
lo

ts
ho

w
s

th
e

ev
ol

ut
io

n
of

th
e

no
is

e
di

ffe
re

nt
ia

ls
n i

,q
an

d
n i

,p
of

th
e

tw
o

pi
xe

ls
.T

he
y

ta
ke

in
di

vi
du

al
pa

th
s

an
d

ev
en

tu
al

ly
co

nv
er

ge
to

0
w

he
n

no
ch

an
ge

ha
pp

en
s

to
ei

th
er

pi
xe

l.
Th

e
se

co
nd

pl
ot

di
sp

la
ys

th
e

pi
xe

lv
al

ue
s

x i
,q

an
d

x i
,p

,w
hi

ch
ar

e
th

e
tim

e
in

te
gr

at
io

ns
of

th
e

no
is

e
di

ffe
re

nt
ia

ls
.T

he
da

sh
ed

lin
es

ar
e

th
e

gr
ou

nd
tr

ut
h

va
lu

es
.

Th
e

th
ir

d
pl

ot
di

sp
la

ys
th

e
en

er
gy

(p
ur

pl
e)

,i
.e

.,
th

e
sq

ua
re

d
di

ffe
re

nc
e
(x

i,q
−

x i
,p
)2

be
tw

ee
n

th
e

tw
o

pi
xe

ls
an

d
th

e
fa

st
er

de
cr

ea
si

ng
te

m
pe

ra
tu

re
T i

(g
re

en
).

Th
e

cu
rv

es
cr

os
s

ne
ar

ite
ra

tio
n

15
at

w
hi

ch
po

in
tt

he
in

te
ra

ct
io

n
be

tw
ee

n
th

e
tw

o
pi

xe
ls

sl
ow

s
do

w
n.

U
p

to
th

is
po

in
tt

he
pi

xe
ld

iff
er

en
ce

w
as

co
ns

id
er

ed
no

is
e,

af
te

r
th

is
po

in
tt

he
pi

xe
ld

iff
er

en
ce

is
co

ns
id

er
ed

si
gn

al
.N

ot
e

th
at

th
e

en
er

gy
fo

llo
w

s
a

si
m

ila
r

cu
rv

e
as

th
e

m
s

e
in

Fi
gu

re
10

.9
.T

he
la

st
pl

ot
sh

ow
s

th
e

qu
ot

ie
nt

of
th

e
pr

ev
io

us
tw

o
cu

rv
es

,i
.e

.,
no

rm
al

iz
ed

Eu
cl

id
ea

n
di

st
an

ce
(x

i,q
−

x i
,p
)2

T i
(o

ra
ng

e)
,a

nd
th

e
G

au
ss

ia
n

w
ei

gh
t

e−
(x

i,q
−

x i
,p
)2

T i
(c

ya
n)

.A
fte

r
th

e
20

th
ite

ra
tio

n,
th

er
e

is
no

m
or

e
di

ffu
si

on
ac

ro
ss

th
e

ed
ge

.

55

6.5.1 Natural and Synthetic Images

Visually, pid produces aesthetically pleasing results. Figure 6.7 demonstrates
that our method works well for natural images. Figure 6.8 constrasts the
qualities between bm3d and our method for synthetic images. With pid,
gradients are smoother, edges are sharper, tips are clearer, and text is crisper.
The color coded error image displays the difference of the squared errors of
bm3d and pid. Our method has lower error than bm3d for most pixels.

Numerically, pid is even more competitive than ddid. Table 6.1 summarizes
results for grayscale images. The grayscale images are the same set tested by
bm3d and mostly originate from the Signal and Image Processing Institute (sipi)
database. Some of the sipi/bm3d images have synthetic character with large
amount of homogenous regions like sky or gradients. These are Cameraman,
House, Lena, Montage, and Pepper. For these images, we observe most of the gain
using pid. Other images have more “natural” character and there is not much
to improve. Highly stochastic images like Finger Print are hard to improve.
Since pid excels at denoising highly correlated images, it is not a surprise that
it performs well on color images. Since color channels are highly correlated,
signals and noise are better separated. The results for color images are listed
in Table 6.2. For most images, especially for high-noise scenarios, pid exceeds
bm3d and ddid.

56

N
oi

sy
Im

ag
e

(2
0
.1

8
dB

)
BM

3
D

(3
2

.2
7

dB
)

D
D

ID
(3

2
.3

0
dB

)
PI

D
(3

2.
41

dB
)

N
oi

sy
Im

ag
e

(1
4
.1

6
dB

)
BM

3
D

(2
9

.7
9

dB
)

D
D

ID
(2

9
.7

8
dB

)
PI

D
(3

0.
10

dB
)

Fi
gu

re
6.

7:
C

om
pa

ri
so

n
of

de
no

is
in

g
na

tu
ra

li
m

ag
es

.
T

he
no

is
e

si
gm

a
ar

e
σ
=

25
an

d
σ
=

50
re

sp
ec

ti
ve

ly
.

O
ur

m
et

ho
d

pr
od

uc
es

sm
oo

th
re

su
lts

fo
r

sk
in

an
d

ho
m

og
en

eo
us

re
gi

on
s.

57

N
oi

sy
Im

ag
e

(1
6
.1

0
dB

)
BM

3
D

(2
9

.9
0

dB
)

D
D

ID
(3

2
.6

5
dB

)
PI

D
(3

3.
74

dB
)

N
oi

sy
Im

ag
e

(1
6
.1

0
dB

)
BM

3
D

(2
8

.5
4

dB
)

PI
D

(3
0.

49
dB

)
Er

ro
r

D
iff

er
en

ce

Fi
gu

re
6.

8:
C

om
pa

ri
so

n
of

de
no

is
in

g
sy

nt
he

ti
c

im
ag

es
w

it
h

no
is

e
si

gm
a

σ
=

40
.

O
ur

m
et

ho
d

re
co

ns
tr

uc
ts

cl
ea

ne
r

co
nt

ou
rs

an
d

gr
ad

ie
nt

s
th

an
b

m
3

d
an

d
d

d
i
d

.
T

he
bo

tt
om

ri
gh

t
im

ag
e

sh
ow

s
th

e
di

ffe
re

nc
e

of
th

e
sq

ua
re

d
er

ro
rs

of
b

m
3

d
an

d
p

i
d

.
R

ed
an

d
ye

llo
w

re
gi

on
s

m
ar

k
w

he
re

b
m

3
d

ha
s

a
sm

al
le

r
er

ro
r

th
an

p
i
d

,b
lu

e
re

gi
on

s
m

ar
k

th
e

op
po

si
te

,a
nd

gr
ee

n
re

gi
on

s
m

ar
k

si
m

ila
r

er
ro

rs
.

58

G r a y s c a l e B M 3 D S A P C A L S S C M L P D D I D P I D

Barbara 30.72 31.00 30.49 29.55 30.80 30.56

Boats 29.91 30.03 29.90 29.97 29.79 29.80

Cameraman 29.45 29.81 29.50 29.61 29.46 29.68

Couple 29.72 29.82 29.67 29.74 29.56 29.64

Finger Print 27.70 27.81 27.62 27.65 27.32 27.17

Hill 29.85 29.96 29.83 29.88 29.71 29.77

House 32.86 32.96 33.13 32.57 32.66 32.84

Lena 32.08 32.23 31.86 32.26 32.14 32.12

Man 29.62 29.81 29.70 29.89 29.62 29.68

Montage 32.37 32.97 32.25 32.03 32.61 32.76

Pepper 30.16 30.43 30.23 30.30 30.26 30.34

Table 6.1: For grayscale images, bm3d-sapca has the best numerical performance. However,
there are several methods which challenge bm3d, including lssc [34], mlp [35], ddid, and pid.
The noise sigma is σ = 25.

C o l o r B M 3 D D D I D P I D B M 3 D D D I D P I D

Baboon 25.95 26.17 26.12 23.15 23.31 23.41
F-16 32.78 32.88 33.02 29.79 29.78 30.10
House 33.03 32.69 32.90 30.47 29.99 30.54
Kodak 1 29.13 29.09 29.18 25.86 25.75 25.86

Kodak 2 32.44 32.29 32.40 29.84 29.61 29.81

Kodak 3 34.54 34.55 34.70 31.34 31.09 31.39
Kodak 12 33.76 33.46 33.55 30.98 30.53 30.82

Lake 28.68 28.85 28.93 26.28 26.41 26.57
Lena 32.27 32.30 32.41 29.88 29.82 30.07
Pepper 31.20 31.25 31.36 28.93 29.13 29.34
Tiffany 32.23 32.49 32.61 29.83 29.85 30.12

σ = 25 σ = 50

Table 6.2: psnr (dB) comparison between bm3d, ddid, and pid for color images with noise
sigma σ = 25 and σ = 50. Our method works well for strongly noise contaminated images.

59

Grayscale BM3D DDID PIDW PIDT PIDE

Barbara 30.72 30.80 30.56 30.70 30.79

Boats 29.91 29.79 29.80 29.81 29.78

Cameraman 29.45 29.46 29.68 29.64 29.55
Couple 29.72 29.56 29.64 29.66 29.62

Finger Print 27.70 27.32 27.17 27.25 27.31

Hill 29.85 29.71 29.77 29.75 29.68

House 32.86 32.66 32.84 32.90 32.95
Lena 32.08 32.14 32.12 32.17 32.18
Man 29.62 29.62 29.68 29.66 29.58

Montage 32.37 32.61 32.76 32.86 32.93
Pepper 30.16 30.26 30.34 30.39 30.40

WWelsch TTukey EEpanechnikov

Table 6.3: psnr (dB) comparison of robust estimation kernels for grayscale images with noise
sigma σ = 25. Welsch is the most conservative denoiser. Epanechnikov on the other hand is the
most aggressive denoiser for images with homogeneous regions like House, Lena, Montage,
and Pepper. Tukey is a compromise between Welsch and Epanechnikov.

6.5.2 Alternative Robust Estimators

To make use of our flexible ddf framework, we can experiment with robust
estimators which have stronger outlier rejection than the Gaussian. The most
typical redescending M-estimators besides the Gaussian/Welsch estimator are
the Tukey and Epanechnikov estimators, depicted in Figure 4.2. In Table 6.3,
we compare the psnrs using the different robust kernels for the range kernel
kr. All other kernels are Gaussians. A visual comparison is made in Figure 6.9.
Smooth images like House, Montage, and Pepper benefit most from using an
estimator with strong outlier rejection.

60

BM3D (32.37 dB) PID Welsch (32.76 dB)

PID Tukey (32.86 dB) PID Epanechnikov (32.93 dB)

Figure 6.9: Comparison of denoising montage image using different redescending M-
estimators for the range kernel. The noise sigma is σ = 25. Redescending M-estimators
with hard outlier rejection like Tukey and Epanechnikov produce numerically better results, but
visually, the images look similar.

61

6.5.3 Artifacts Study

Artifacts are sometimes hard to spot. When looking at natural images, artifacts
may actually increase the perceived realism, due to structures in the image
that are recognized as detail. Examples are clouds and surface textures like
in Figure 6.7 and Figure 6.10. However, careful observation shows that such
structures are not existent in the original image and are in fact residual noise.
In synthetic images as shown in Figure 6.8, these artifacts are more apparent
since we have an idealized reference image in mind.

Since most image denoising methods are biased towards natural images,
where the psnr results are close to the theoretical limit, it is desirable to
have synthetic images which can be evaluated numerically and visually. We
found that the Campbell-Robson contrast sensitivity function (csf) charts are
suitable candidates. csf charts are synthetic images used for evaluating human
perception of contrast as a function of frequencies. They contain therefore a
continuous range of amplitudes and frequencies in a single image. Figure 6.11

and Figure 6.12 demonstrate the effectiveness of csf charts for evaluating
image denoising methods. The table shows that most denoising methods have
difficulties in homogeneous regions. Also, the denoised csf charts reveal
characteristic artifacts for every method. The csf images were generated using
the formulas in Section 10.2.2.

62

Original Noisy Image (14.16 dB)

BM3D (28.93 dB) PID (29.34 dB)

Figure 6.10: The bm3d result looks apparently more real and closer to the original, but close
inspection reveals details as residual noise. The noise sigma is σ = 50.

63

O
ri

gi
na

l
M

LP
(3

5
.3

9
dB

)
LS

SC
(3

8
.5

9
dB

)
BM

3
D

(3
8
.1

3
dB

)
D

D
ID

(3
8
.4

5
dB

)

N
oi

sy
Im

ag
e

(2
0

.1
4

dB
)

K
-S

V
D

(3
5
.6

5
dB

)
PL

O
W

(3
7
.9

8
dB

)
BM

3
D

-S
A

PC
A

(3
7

.8
1

dB
)

PI
D

(3
9.

75
dB

)

Fi
gu

re
6.

11
:

C
om

pa
ri

so
n

of
de

no
is

in
g

c
s

f
ch

ar
ts

w
ith

si
nu

so
id

al
w

av
es

.N
oi

se
si

gm
a

is
σ
=

25
.T

hi
s

ta
bl

e
ex

po
se

s
th

e
ch

ar
ac

te
ri

st
ic

ar
tif

ac
ts

of
ea

ch
m

et
ho

d.
M

os
tm

et
ho

ds
su

ffe
r

ei
th

er
fr

om
lo

ss
of

co
nt

ra
st

or
lo

w
-fr

eq
ue

nc
y

no
is

e
in

ho
m

og
en

eo
us

re
gi

on
s.

Th
e

re
su

lts
of

p
i
d

ar
e

ne
ar

ly
ar

tif
ac

t-
fr

ee
.

64

O
ri

gi
na

l
M

LP
(3

3
.4

3
dB

)
LS

SC
(3

8
.8

6
dB

)
BM

3
D

(3
7
.9

3
dB

)
D

D
ID

(3
8

.1
7

dB
)

N
oi

sy
Im

ag
e

(2
0
.1

4
dB

)
K

-S
V

D
(3

6
.0

0
dB

)
PL

O
W

(3
7

.2
6

dB
)

BM
3
D

-S
A

PC
A

(3
8
.1

7
dB

)
PI

D
(3

9.
83

dB
)

Fi
gu

re
6.

12
:

C
om

pa
ri

so
n

of
de

no
is

in
g

c
s

f
ch

ar
ts

w
ith

re
ct

an
gu

la
r

w
av

es
.N

oi
se

si
gm

a
is

σ
=

25
.T

hi
s

ta
bl

e
ex

po
se

s
th

e
ch

ar
ac

te
ri

st
ic

ar
tif

ac
ts

of
ea

ch
m

et
ho

d.
M

os
tm

et
ho

ds
su

ffe
r

ei
th

er
fr

om
lo

ss
of

co
nt

ra
st

or
lo

w
-fr

eq
ue

nc
y

no
is

e
in

ho
m

og
en

eo
us

re
gi

on
s.

Th
e

re
su

lts
of

p
i
d

ar
e

ne
ar

ly
ar

tif
ac

t-
fr

ee
.

65

6.6 Conclusions

In this chapter, we have developed pid, an improvement over the previous
denoiser ddid. Unlike other state-of-the-art methods, the resulting images
of pid are nearly artifact free and produce visually pleasing results for both
natural and synthetic images.

In contrast to ddid, pid is mostly unguided and resembles a physical
process. Unlike ddid, which uses an oracle and the noisy image to calculate an
improved oracle, pid continuously improves the oracle. Using deterministic
annealing, we change the shape of the robust noise estimator over time. The
scale parameter of the range kernel corresponds to the falling temperature in
deterministic and simulated annealing. This annealing process allows us to find
near-optimal solutions.

Compared to ddid, pid uses more iterations. As they are both based
on ddf, they both have the fft as the bottleneck. Our focus in this work is
to emphasize on the quality and simplicity of the denoising process. Some
performance improvements are quite straightforward. For example, it would be
possible to adaptively grow the window radius to follow the growing spatial
kernel. We use this in the implementation of our next and final denoising
method, ddid2.

66

7
Dual-Domain Image Denoising Revised

Fail, fail again.
Fail better.

Samuel Beckett

In the previous two chapters, we have developed ddid and pid, two denoising
methods which are complementary. ddid iterates using the previously filtered
image as a guide, while pid iterates without guidance. We note that as a last
step of pid we still had to use a guided ddid step to get optimal results. From
these observations, we infer that a combination of both methods should be
better than ddid and simpler to implement than pid.

We formulate our new iterative denoiser similar to ddid, by stating the
guided iteration

xn−1 = y− Im DDFn(xn + iy), (7.1)

which is a time reversed version of Equation 5.1. As opposed to ddid, where
we empirically found our scale parameters, we use the experience from pid and
define the scale parameters as functions of iteration number n, counting down
from N to 1. We define the scale parameters for the bilateral kernel function
k(·) and the frequency kernel function K(·) as

Sn = 2 σ2
s α

1−n
2 N (7.2)

Tn = γr σ2 α
n−1

N (7.3)

V = γ f σ2. (7.4)

As n counts down to 1, the spatial scale Sn becomes larger, while the spatial
range factor Tn becomes smaller. The base α controls the initial range scale TN

67

and the final spatial scale S1. The frequency range scale V remains constant.
We achieved the best results using the constants

N = 8 (7.5)
σs = 13 (7.6)
γr = 5.3/N (7.7)
γ f = 13/N (7.8)

α = e15. (7.9)

For pid, we had used a fixed kernel r = 15, and an even larger kernel for the
final ddid step using r = 31. If we fixed our kernel radius to r = 31, every
iteration would be unnecessarily expensive. To improve performance, we adapt
the kernel radius r to be twice the spatial standard deviation

√
Sn/2 and at

least 4 pixels large. The kernel radius r is thus

r = max
(

4, round(2
√

Sn/2)
)

. (7.10)

In addition to dynamic scale parameters, we change also the shape of the range
kernels. We found that Gaussians work better in the beginning, and kernels
with strong outlier rejection like the Epanechnikov kernel, or the similar cosine
kernel work better against the end of the iterations. Since the Gaussian can
be approximated by powers of cosines, we use this relationship to define our
dynamic range kernel for both domains. The resulting spatial and frequency
kernel functions are

k(d2, ρ2) = cos

min

π

2
,

√
d2

Tn n

n

e−
ρ2
Sn (7.11)

K(D2) = cos

(
min

(
π

2
,

√
D2

V n

))n

. (7.12)

As visualized in Figure 7.1, the range kernel starts as an approximation of a
Gaussian, becomes steeper over time, and ends as a cosine. The spatial range
kernel also becomes narrower over time. Figure 7.2 depicts the evolution of the
bilateral kernel from the side.

We also specify the confidence factors dynamically. In the beginning, due to
the large scale parameters, the spatially estimated noise is biased and cannot
be trusted. Over time, the noise estimate becomes more accurate until in the
end, when it can be fully trusted. The same applies for the estimated noise in

68

 0

 1

-15 -10 -5 0 5 10 15

Spatial Range (√T1/2)

 0

 1

-4 -3 -2 -1 0 1 2 3 4

Frequency Range (√V/2)

Figure 7.1: Evolution of the range kernels from thick to thin lines as n counts down from
N to 1 in Equation 7.11 and Equation 7.12. The range kernel functions become steeper over
the iterations. The spatial range kernel function additionally becomes narrower. For reference,
the spatial range kernel function is normalized by the final standard deviation

√
T1/2 and the

frequency range kernel function is normalized by the standard deviation
√

V/2.

the frequency domain. We therefore specify the confidence factors a and A to
follow a sine ramp from 0 to 1, expressed as

a = A = cos
n− 1

N
π

2
. (7.13)

The differences to the previous methods ddid and pid are the following.
ddid uses a fixed scale σs for the spatial Gaussian and the role of the spatial
and frequency range parameters γr and γ f over the iterations were empirically
chosen. pid uses scale parameters similar to equation Equation 7.2 and Equa-
tion 7.3 due to deterministic annealing. However, pid does not change the
shape of the range kernel as we propose in Equation 7.11 and Equation 7.12.
More importantly, the pid formulation is not guided and requires 30 iterations
and an additional guided ddid step. Our new formulation only requires 8

guided iterations and is almost as simple in implementation as ddid.
Figure 7.3, Figure 7.4, and Figure 7.5, Figure 7.6 visually compare our new

denoiser, ddid2, against other state-of-the-art denoising methods that support
color images. ddid2 and pid produce the cleanest and smoothest results ans
work equally well on natural and synthetic images. Table 10.3, Table 10.4, and
Table 10.5 summarize the numerical results. Our method matches pid in quality,
but requires only a third of the iterations without a separate guided ddid step.
For grayscale images, ddid2 starts competing with the best denoisers. For
color images, ddid2 and pid produce the best results.

69

ρ

d (σ)

It
e

ra
ti
o

n
 8

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 7

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 6

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 5

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 4

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 3

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 2

−
1

0
0

1
0

−
1

0

−
505

1
0

ρ

d (σ)

It
e

ra
ti
o

n
 1

−
1

0
0

1
0

−
1

0

−
505

1
0

Fi
gu

re
7.

2:
Ev

ol
ut

io
n

of
th

e
bi

la
te

ra
lk

er
ne

lo
ve

r
8

ite
ra

tio
ns

.T
he

sh
ow

n
ra

ng
e

gr
ad

ie
nt

d
is

no
rm

al
iz

ed
by

th
e

no
is

e
si

gm
a

σ
.T

he
un

it
of

th
e

sp
at

ia
ld

is
ta

nc
e

ρ
is

pi
xe

ls
.T

he
bi

la
te

ra
lk

er
ne

ls
ta

rt
s

ta
ll

an
d

th
in

an
d

en
ds

fla
ta

nd
w

id
e.

Th
e

fin
al

ra
ng

e
sc

al
e

of
th

e
ke

rn
el

is
cl

os
e

to
th

e
no

is
e

si
gm

a
σ

an
d

th
e

sp
at

ia
ls

ca
le

sp
an

s
th

e
en

tir
e

w
in

do
w

.

70

Original Noisy Image (16.09 dB)

DDID (30.68 dB) BM3D (30.11 dB)

DDID2 (30.87 dB) PID (30.87 dB)

Figure 7.3: Comparison of denoising a natural color image with σ = 40.

71

NLB (30.42 dB) NLM (28.87 dB)

K-SVD (29.66 dB) PLOW (29.26 dB)

TV (27.21 dB) FOE (28.47 dB)

Figure 7.4: Comparison of denoising a natural color image with σ = 40.

72

Original Noisy Image (16.10 dB)

DDID (30.26 dB) BM3D (28.06 dB)

DDID2 (30.63 dB) PID (30.84 dB)

Figure 7.5: Comparison of denoising a synthetic color image with noise sigma σ = 40. Our
methods preserve edges well and provide cleaner results. ddid shows some artifacts, which are
mostly removed by ddid2. pid has the fewest artifacts. bm3d suffers from residual noise.

73

NLB (29.31 dB) NLM (28.29 dB)

K-SVD (27.97 dB) PLOW (26.40 dB)

TV (26.24 dB) FOE (25.34 dB)

Figure 7.6: Other methods suffer from residual noise or blur. For this image, nlm produces a
better result than bm3d.

74

7.1 Conclusions

Our last image denoiser, ddid2, combines the best parts of ddid and pid. It
produces results matching the quality of pid, while being structurally as simple
as ddid. In the process of defining this denoiser, we found two new insights.
First, the spatial and frequency kernel functions should not only change in
scale but also in shape. Second, the noise estimates in the spatial and frequency
domains are initially not reliable and become more reliable over time.

In the next chapter, we will extend the application domain of ddf outside
of classic image denoising and show its power for removing denoising and
compression artifacts.

75

76

8
Artifact Removal

Do something right or something new.

Anonymous

In this chapter, we show two different applications using the ddf. The first
application is the removal of residual noise from other common image denoising
algorithms. While it is not surprising that older algorithms produce artifacts,
even state-of-the-art methods like bm3d suffer from residual noise. We show
in Section 8.1 how ddf can be used to remove denoising artifacts. The second
application is deblocking of jpeg compressed images. For high compression
ratio, jpeg produces grid-aligned discontinuities over the whole image and
ringing artifacts near edges. Such artifacts have been addressed by many
tailored methods. We show in Section 8.2 that ddf is also capable of deblocking
jpeg images.

8.1 Noise Artifact Removal

To remove the artifacts of a denoising method, we post-process the denoised
output with ddf by feeding it as the guide image g to filter the noisy image y,
i.e., x = y− Im DDF(g + iy). We configure ddf using the following confidence
factors and kernel functions:

a = A = 1 (8.1)

k(d2, ρ2) = e
− d2

γr σ2 e
− ρ2

2 σ2
s (8.2)

K(D2) = max

(
0, 1− D2

γ f σ2

)
. (8.3)

77

Here, the spatial kernel function k(·, ·) is the ordinary bilateral kernel with the
spatial scale parameter σs, noise variance σ2, and a spatial range parameter γr.
For the frequency kernel function K(·), we chose the Epanechnikov estimator,
introducing the frequency range parameter γ f .

For grayscale images, we post-process the output of popular denoising
methods for noise sigma σ ∈ {10, 25, 40} and set the parameters to r = 15,
σs = 7, γr = 0.7, and γ f = 2.3. For color images, the input images had noise
sigma σ ∈ {20, 40} and we changed the range parameters to γr = 0.4 and
γ f = 1.1.

For grayscale images, we post-processed the output of the denoising methods
k -lld [50], k -svd [38], plow [28], non-local means (nlm) [20], non-local
Bayes (nlb) [27], lssc [34], multi-layer perceptrons (mlp) [35], bm3d [26],
bm3d -sapca [31], and saist [51]. For color images, we used the output of
the methods supporting colors, bm3d, nlb, nlm, and plow.

Figure 8.1 and Figure 8.2 give visual examples for removing denoising
artifacts. Low-frequency noise of k -svd, graininess of nlm, outliers of nlb,
and wavy patterns of lssc: all these artifacts are reduced or removed by ddf.
Table 8.1 and Table 8.2 show that nearly every grayscale output of any method
can be numerically improved by post-processing with ddf. The more smooth
regions an image has, the larger the gain is in psnr. This is not surprising, since
most methods excel at denoising natural images, whereas they have difficulties
denoising synthetic images where smooth regions dominate. Images denoised
by saist show almost no artifacts and can only be improved for high-noise
situations where the signal is more homogeneous. As can be seen in Table 8.3,
for noisy color images with σ = 40, all images show improvement.

8.2 JPEG Artifact Removal

For jpeg deblocking, we only have the artifact contaminated image, so we
identify the guide image g with the noisy image y. We compressed grayscale
and color images using three quality settings in matlab, Q ∈ {30, 20, 10}
and used a corresponding noise sigma σ ∈ {20, 25, 40}. For grayscale images,
we used the parameters r = 15, σs = 7, γr = 1.7, γ f = 1.1, and chose the
noise sigma σ = 25. For color images, we changed γr = 2.8 and γ f = 4.2. We
compare our results against sa-dct, a state-of-the-art jpeg deblocker by Foi et
al. [41]. We also compare against the bilaterally filtered image, using the same
parameters as ddf.

Figure 8.3 shows the deblocking of a jpeg image. The removed artifacts are

78

the typical block patterns. The image improves almost everywhere. Table 8.4
numerically summarizes the results for deblocking jpeg images. For grayscale
images, ddf approaches the quality of sa -dct. For color images, the results
are nearly identical.

8.3 Conclusions

We have shown that ddf can be used as a stand-alone filter to remove various
types of artifacts. We suspect that ddf is a universal tool that can be deployed
in many applications where edges and details must be preserved.

79

K
-S

V
D

(2
9
.5

7
dB

)
K

-S
V

D
→

D
D

F
(3

0.
12

dB
)

A
rt

if
ac

ts
(8
×

)
Er

ro
r

D
iff

er
en

ce

N
LM

(2
8
.6

3
dB

)
N

LM
→

D
D

F
(2

9.
11

dB
)

A
rt

if
ac

ts
(8
×

)
Er

ro
r

D
iff

er
en

ce

Fi
gu

re
8.

1:
d

d
f

re
m

ov
es

ar
tif

ac
ts

lik
e

lo
w

-fr
eq

ue
nc

y
no

is
e

an
d

gr
ai

ni
ne

ss
.T

he
no

is
e

si
gm

a
is

σ
=

25
.T

he
ar

tif
ac

ts
im

ag
es

ar
e

th
e

di
ffe

re
nc

e
im

ag
es

be
tw

ee
n

be
fo

re
an

d
af

te
r

pr
oc

es
si

ng
w

it
h

d
d

f
.

In
th

e
er

ro
r

di
ffe

re
nc

e
im

ag
es

,r
ed

an
d

bl
ue

m
ar

k
w

he
re

th
e

er
ro

r
in

cr
ea

se
d

an
d

de
cr

ea
se

d
re

sp
ec

tiv
el

y.

80

N
LB

(2
9

.4
5

dB
)

N
LB
→

D
D

F
(2

9.
65

dB
)

A
rt

if
ac

ts
(8
×

)
Er

ro
r

D
iff

er
en

ce

LS
SC

(3
2

.2
5

dB
)

LS
SC
→

D
D

F
(3

2.
94

dB
)

A
rt

if
ac

ts
(8
×

)
Er

ro
r

D
iff

er
en

ce

Fi
gu

re
8.

2:
d

d
f

re
m

ov
es

ar
tif

ac
ts

re
m

ov
es

ar
tif

ac
ts

lik
e

ou
tli

er
s

an
d

ri
ng

in
g.

Th
e

no
is

e
si

gm
a

is
σ
=

25
.T

he
ar

tif
ac

ts
im

ag
es

ar
e

th
e

di
ffe

re
nc

e
im

ag
es

be
tw

ee
n

be
fo

re
an

d
af

te
r

pr
oc

es
si

ng
w

it
h

d
d

f
.

In
th

e
er

ro
r

di
ffe

re
nc

e
im

ag
es

,r
ed

an
d

bl
ue

m
ar

k
w

he
re

th
e

er
ro

r
in

cr
ea

se
d

an
d

de
cr

ea
se

d
re

sp
ec

tiv
el

y.

81

G r a y s c a l e S A I S T S A P C A B M 3 D M L P L S S C

Barbara 35.19→ 34.93 35.10→ 34.90 34.98→ 34.83 34.07→ 34.01 34.99→ 34.98

Boats 33.93→ 33.79 34.10→ 34.00 33.92→ 33.87 33.81→ 33.80 34.03→ 34.01

Cameraman 34.23→ 34.09 34.59→ 34.48 34.18→ 34.27 34.18→ 34.22 34.24→ 34.32
Couple 34.00→ 33.91 34.17→ 34.14 34.04→ 34.05 33.91→ 33.98 34.01→ 34.05
Finger Print 32.68→ 32.48 32.64→ 32.42 32.46→ 32.32 32.57→ 32.45 32.57→ 32.60
Hill 33.70→ 33.60 33.83→ 33.80 33.62→ 33.67 33.59→ 33.63 33.67→ 33.70
House 36.81→ 36.71 37.01→ 36.92 36.71→ 36.76 35.98→ 36.12 36.95→ 36.96
Lena 35.85→ 35.69 36.07→ 35.96 35.93→ 35.87 35.85→ 35.86 35.85→ 35.92
Man 34.13→ 34.05 34.25→ 34.23 33.98→ 34.07 34.11→ 34.17 34.10→ 34.15
Montage 37.19→ 37.24 37.85→ 37.81 37.35→ 37.53 36.51→ 37.12 37.26→ 37.50
Pepper 34.79→ 34.72 34.94→ 34.89 34.68→ 34.74 34.72→ 34.82 34.80→ 34.85

σ = 10

G r a y s c a l e S A I S T S A P C A B M 3 D M L P L S S C

Barbara 31.23→ 31.07 31.00→ 30.91 30.72→ 30.74 29.55→ 29.74 30.49→ 30.70
Boats 29.97→ 29.95 30.03→ 30.01 29.91→ 29.95 29.97→ 30.00 29.90→ 30.00
Cameraman 29.41→ 29.55 29.81→ 29.88 29.45→ 29.68 29.61→ 29.85 29.50→ 29.84
Couple 29.74→ 29.81 29.82→ 29.89 29.72→ 29.83 29.74→ 29.84 29.67→ 29.84
Finger Print 27.93→ 27.73 27.81→ 27.62 27.70→ 27.61 27.65→ 27.49 27.62→ 27.60

Hill 29.90→ 29.88 29.96→ 29.96 29.85→ 29.89 29.88→ 29.88 29.83→ 29.92
House 33.17→ 33.10 32.96→ 33.00 32.86→ 33.02 32.57→ 32.80 33.13→ 33.15
Lena 32.26→ 32.25 32.23→ 32.23 32.08→ 32.19 32.26→ 32.22 31.86→ 32.16
Man 29.75→ 29.80 29.81→ 29.87 29.62→ 29.76 29.89→ 29.95 29.70→ 29.83
Montage 32.35→ 32.80 32.97→ 33.25 32.37→ 32.99 32.04→ 32.68 32.25→ 32.94
Pepper 30.40→ 30.58 30.43→ 30.52 30.16→ 30.44 30.31→ 30.64 30.23→ 30.49

σ = 25

G r a y s c a l e S A I S T S A P C A B M 3 D M L P L S S C

Barbara 28.62→ 28.62 28.68→ 28.66 27.99→ 28.20 27.62→ 27.75 28.17→ 28.44
Boats 27.62→ 27.69 27.92→ 27.97 27.74→ 27.84 28.54→ 28.33 27.77→ 27.91
Cameraman 27.29→ 27.64 27.57→ 27.70 27.18→ 27.50 28.08→ 28.16 27.34→ 27.79
Couple 27.33→ 27.46 27.58→ 27.65 27.48→ 27.60 28.24→ 28.05 27.41→ 27.58
Finger Print 25.55→ 25.33 25.54→ 25.30 25.30→ 25.22 25.89→ 25.50 25.30→ 25.30

Hill 27.87→ 27.90 28.08→ 28.11 27.99→ 28.04 28.65→ 28.38 28.00→ 28.07
House 31.38→ 31.28 30.75→ 30.99 30.65→ 30.90 31.19→ 31.16 31.10→ 31.19
Lena 30.03→ 30.21 30.10→ 30.22 29.86→ 30.12 30.83→ 30.53 29.91→ 30.16
Man 27.58→ 27.70 27.83→ 27.90 27.65→ 27.79 28.48→ 28.28 27.64→ 27.83
Montage 29.50→ 30.33 30.02→ 30.68 29.52→ 30.42 30.40→ 30.84 29.43→ 30.50
Pepper 27.94→ 28.23 28.10→ 28.23 27.70→ 28.02 28.54→ 28.72 27.86→ 28.25

σ = 40

Table 8.1: psnr (dB) improvement of grayscale images with ddf (first out of two sets of
methods). With the exception of high-quality methods like saist or bm3d-sapca, and low-noise
scenarios, ddf consistently removes artifacts and improves psnr values.

82

G r a y s c a l e N L B N L M P L O W K - S V D K - L L D

Barbara 34.80→ 34.67 33.14→ 33.12 33.79→ 34.16 34.43→ 34.56 33.11→ 33.34
Boats 33.87→ 33.80 32.89→ 32.88 32.97→ 33.31 33.63→ 33.78 33.00→ 33.33
Cameraman 34.39→ 34.31 33.40→ 33.52 33.17→ 33.61 33.75→ 33.98 32.81→ 33.18
Couple 33.97→ 33.97 32.88→ 32.89 33.12→ 33.51 33.54→ 33.79 33.10→ 33.47
Finger Print 32.41→ 32.21 30.98→ 30.77 31.03→ 31.63 32.39→ 32.50 31.65→ 31.70
Hill 33.70→ 33.68 32.81→ 32.79 32.62→ 32.98 33.36→ 33.55 32.78→ 33.02
House 36.26→ 36.25 34.90→ 35.13 36.22→ 36.58 35.95→ 36.27 35.24→ 35.59
Lena 35.73→ 35.74 34.29→ 34.45 35.30→ 35.57 35.48→ 35.70 35.26→ 35.43
Man 34.11→ 34.09 33.07→ 33.09 32.95→ 33.42 33.59→ 33.87 33.18→ 33.56
Montage 37.20→ 37.39 35.23→ 35.61 36.12→ 36.99 36.08→ 36.78 35.43→ 36.44
Pepper 34.80→ 34.77 33.44→ 33.53 33.56→ 34.16 34.24→ 34.51 33.85→ 34.20

σ = 10

G r a y s c a l e N L B N L M P L O W K - S V D K - L L D

Barbara 30.25→ 30.30 28.95→ 29.44 30.20→ 30.45 29.56→ 30.12 27.69→ 28.26
Boats 29.67→ 29.77 28.63→ 29.11 29.53→ 29.76 29.31→ 29.64 29.26→ 29.65
Cameraman 29.45→ 29.65 28.70→ 29.13 28.65→ 29.23 28.90→ 29.50 28.42→ 29.08
Couple 29.38→ 29.57 28.27→ 28.88 29.35→ 29.64 28.89→ 29.38 29.14→ 29.49
Finger Print 27.53→ 27.33 26.12→ 26.12 27.05→ 27.13 27.25→ 27.50 26.97→ 26.97
Hill 29.62→ 29.76 28.67→ 29.21 29.60→ 29.75 29.22→ 29.52 29.25→ 29.54
House 32.40→ 32.57 31.18→ 31.91 32.72→ 33.03 32.07→ 32.76 31.49→ 32.35
Lena 31.79→ 31.93 30.41→ 31.13 31.90→ 32.13 31.35→ 31.84 31.42→ 31.90
Man 29.62→ 29.76 28.60→ 29.13 29.33→ 29.62 29.11→ 29.49 29.27→ 29.63
Montage 31.97→ 32.53 30.70→ 31.71 30.95→ 32.71 31.16→ 32.30 30.52→ 31.82
Pepper 30.12→ 30.31 28.69→ 29.46 29.63→ 30.23 29.70→ 30.30 29.56→ 30.20

σ = 25

G r a y s c a l e N L B N L M P L O W K - S V D K - L L D

Barbara 28.07→ 28.26 26.65→ 27.76 28.10→ 28.37 26.89→ 27.60 24.84→ 25.87
Boats 27.39→ 27.61 26.27→ 27.15 27.63→ 27.86 27.06→ 27.44 26.33→ 27.23
Cameraman 27.17→ 27.53 26.49→ 27.12 26.66→ 27.32 26.76→ 27.46 25.58→ 26.63
Couple 27.18→ 27.46 25.66→ 26.80 27.32→ 27.58 26.39→ 26.91 26.19→ 27.01
Finger Print 25.39→ 25.27 24.07→ 24.64 25.20→ 25.12 24.69→ 25.04 24.00→ 24.28
Hill 27.75→ 27.95 26.45→ 27.53 27.89→ 28.04 27.21→ 27.58 26.53→ 27.43
House 30.26→ 30.67 28.83→ 30.18 30.55→ 31.05 29.58→ 30.50 27.44→ 29.04
Lena 29.81→ 30.09 28.23→ 29.53 29.86→ 30.20 29.05→ 29.73 27.63→ 29.02
Man 27.51→ 27.74 26.35→ 27.34 27.52→ 27.80 27.04→ 27.47 26.42→ 27.34
Montage 29.11→ 30.07 27.67→ 29.48 27.90→ 30.06 28.64→ 29.93 26.71→ 28.40
Pepper 27.69→ 28.10 25.73→ 27.27 27.50→ 28.09 27.40→ 28.03 26.15→ 27.23

σ = 40

Table 8.2: psnr (dB) improvement of grayscale images with ddf (second out of two sets of
methods). For this set of methods, except for nlb at low noise sigma, ddf consistently removes
artifacts and improves psnr values.

83

C o l o r B M 3 D N L B N L M P L O W

Baboon 25.95→ 26.10 26.53→ 26.44 25.65→ 25.98 24.22→ 24.96
F-16 32.77→ 33.00 33.03→ 33.00 31.31→ 32.21 30.97→ 32.23
House 33.02→ 32.81 32.65→ 32.59 31.39→ 31.99 31.91→ 32.53
Kodak 1 29.12→ 29.14 29.29→ 29.32 27.49→ 28.43 25.68→ 26.60
Kodak 2 32.44→ 32.26 32.28→ 32.30 30.69→ 31.49 29.86→ 31.21
Kodak 3 34.56→ 34.51 34.49→ 34.50 32.33→ 33.39 30.46→ 32.51
Kodak 12 33.76→ 33.52 33.37→ 33.28 31.62→ 32.36 30.02→ 31.92
Lena 32.27→ 32.27 32.25→ 32.22 30.88→ 31.53 31.00→ 31.73
Pepper 31.22→ 31.27 31.23→ 31.23 30.28→ 30.83 30.37→ 31.00
Lake 28.68→ 28.87 29.10→ 29.08 28.29→ 28.58 27.60→ 28.27
Tiffany 32.31→ 32.41 32.37→ 32.53 31.13→ 31.91 31.51→ 32.08

σ = 25

C o l o r B M 3 D N L B N L M P L O W

Baboon 23.87→ 24.07 24.50→ 24.47 23.22→ 23.91 22.56→ 23.17
F-16 30.24→ 30.84 30.87→ 30.94 28.61→ 30.07 29.05→ 30.37
House 30.59→ 31.00 30.85→ 30.99 29.05→ 30.43 30.04→ 30.91
Kodak 1 26.59→ 26.68 26.84→ 26.97 24.76→ 25.67 24.32→ 25.29
Kodak 2 30.30→ 30.41 30.24→ 30.37 28.36→ 29.54 28.22→ 29.75
Kodak 3 31.59→ 31.88 32.08→ 32.13 29.96→ 31.03 28.46→ 30.69
Kodak 12 31.32→ 31.38 31.26→ 31.20 29.41→ 30.49 28.04→ 30.29
Lena 30.11→ 30.47 30.48→ 30.54 28.90→ 29.85 29.26→ 30.15
Pepper 29.32→ 29.77 29.65→ 29.76 28.19→ 29.34 28.72→ 29.64
Lake 26.88→ 27.22 27.43→ 27.44 26.04→ 26.63 26.03→ 26.74
Tiffany 30.24→ 30.50 30.40→ 30.68 28.71→ 30.00 29.84→ 30.44

σ = 40

Table 8.3: psnr (dB) improvement of color images before and after post-processing with ddf.
With the exception of bm3d for low-noise scenarios, ddf consistently removes artifacts and
improves psnr values.

84

JP
EG

(2
1

.6
3

dB
)

JP
EG
→

D
D

F
(2

2.
15

dB
)

Er
ro

r
D

iff
er

en
ce

D
D

F
-

SA
-D

C
T

Er
ro

r
D

iff
er

en
ce

D
D

F
-

JP
EG

JP
EG

(3
0

.4
1

dB
)

JP
EG
→

D
D

F
(3

1.
84

dB
)

A
rt

if
ac

ts
(8
×

)
Er

ro
r

D
iff

er
en

ce
D

D
F

-
JP

EG

Fi
gu

re
8.

3:
d

d
f

re
m

ov
es

j
p

e
g

bl
oc

k
ar

ti
fa

ct
s.

T
he

j
p

e
g

co
m

pr
es

si
on

is
se

tt
o

m
a

t
l

a
b

qu
al

it
y

Q
=

10
.T

he
ar

ti
fa

ct
s

im
ag

e
is

th
e

di
ffe

re
nc

e
im

ag
e

be
tw

ee
n

be
fo

re
an

d
af

te
r

pr
oc

es
si

ng
w

ith
d

d
f
.I

n
th

e
er

ro
r

di
ffe

re
nc

e
im

ag
es

,r
ed

an
d

bl
ue

m
ar

k
w

he
re

th
e

er
ro

r
in

cr
ea

se
d

an
d

de
cr

ea
se

d
re

sp
ec

tiv
el

y.

85

G
r

a
y

s
c

a
le

JP
E

G
B

F
D

D
F

S
A

-D
C

T
JP

E
G

B
F

D
D

F
S

A
-D

C
T

JP
E

G
B

F
D

D
F

S
A

-D
C

T

Ba
rb

ar
a

3
0
.1

6
2

9
.6

5
31

.0
9

3
0

.7
2

2
8

.2
5

2
7

.8
3

29
.2

6
2

8
.9

0
2

5
.7

0
2

5
.1

5
26

.9
5

2
6
.5

4

Bo
at

s
3

1
.8

3
3

0
.2

5
3

2
.4

8
32

.5
4

3
0

.4
9

2
8

.8
8

3
1

.2
3

31
.2

8
2

8
.1

3
2

6
.3

4
2

9
.0

9
29

.1
4

C
am

er
am

an
2

9
.9

3
2

9
.9

6
30

.7
0

3
0

.6
9

2
8

.5
9

2
8

.6
2

2
9

.3
7

29
.3

9
2

6
.4

7
2

6
.2

0
2

7
.3

3
27

.4
8

C
ou

pl
e

3
1
.7

5
3

0
.0

2
3

2
.3

9
32

.4
4

3
0

.4
1

2
8

.5
5

3
1

.1
8

31
.2

4
2

8
.0

5
2

5
.8

1
2

8
.9

8
29

.0
4

Fi
ng

er
Pr

in
t

3
1
.1

6
2

9
.6

1
3

1
.7

1
32

.0
5

2
9

.4
9

2
7

.6
1

3
0

.2
0

30
.5

4
2

6
.5

7
2

3
.6

1
2

7
.5

2
27

.8
0

H
ill

3
2
.0

4
3

0
.2

7
32

.5
5

3
2

.5
3

3
0

.8
2

2
8

.9
5

31
.4

5
3

1
.4

2
2

8
.6

1
2

6
.5

5
29

.4
3

2
9
.4

0

H
ou

se
3

4
.2

0
3

3
.1

8
35

.1
9

3
5

.0
7

3
3

.0
2

3
1

.9
2

3
4

.0
9

34
.1

0
3

0
.5

6
2

8
.8

2
3

1
.9

3
32

.0
9

Le
na

3
4
.2

8
3

2
.4

2
3

5
.0

9
35

.1
2

3
2

.9
6

3
1

.1
9

3
4

.0
1

34
.0

4
3

0
.4

1
2

8
.6

6
31

.8
4

31
.8

4
M

an
3

1
.8

0
3

0
.3

3
3

2
.5

0
32

.5
5

3
0

.5
5

2
9

.0
0

3
1

.3
4

31
.3

9
2

8
.2

7
2

6
.6

2
2

9
.2

5
29

.3
0

M
on

ta
ge

3
2
.7

6
3

3
.1

8
3

4
.1

3
34

.1
5

3
1

.2
4

3
1

.5
3

3
2

.6
1

32
.6

3
2

8
.5

6
2

8
.5

1
3

0
.0

4
30

.1
4

Pe
pp

er
3

1
.6

3
3

0
.9

1
3

2
.6

4
32

.7
4

3
0

.2
9

2
9

.5
0

3
1

.3
8

31
.5

2
2

7
.8

2
2

6
.6

9
2

9
.1

0
29

.3
0

Q
=

30
Q

=
20

Q
=

10

C
o

lo
r

JP
E

G
B

F
D

D
F

S
A

-D
C

T
JP

E
G

B
F

D
D

F
S

A
-D

C
T

JP
E

G
B

F
D

D
F

S
A

-D
C

T

Ba
bo

on
2

3
.8

5
2

4
.0

8
24

.1
8

2
4

.0
7

2
3

.0
7

2
3

.2
7

23
.4

4
2

3
.3

8
2

1
.6

3
2

1
.7

4
22

.1
5

2
2
.1

3

F-
1

6
3

0
.0

6
3

0
.9

9
31

.2
0

3
1

.0
8

2
8

.9
0

2
9

.9
2

30
.1

7
3

0
.1

2
2

6
.8

7
2

8
.0

1
28

.3
3

2
8
.3

0

H
ou

se
2

8
.9

6
29

.9
1

2
9

.8
5

2
9

.7
8

2
7

.8
7

28
.8

3
2

8
.8

1
2

8
.7

7
2

6
.2

5
2

7
.2

2
2

7
.4

8
27

.5
3

K
od

ak
1

2
8
.2

1
2

8
.3

4
2

8
.7

7
28

.8
3

2
6

.9
4

2
7

.0
5

2
7

.5
7

27
.6

3
2

4
.7

7
2

4
.5

6
2

5
.4

8
25

.5
2

K
od

ak
2

3
1
.3

7
3

1
.1

5
31

.9
9

3
1

.8
3

3
0

.0
1

2
9

.9
1

30
.7

0
3

0
.6

4
2

7
.8

5
2

7
.8

4
28

.6
7

2
8
.6

3

K
od

ak
3

3
2
.8

6
3

3
.2

1
34

.0
0

34
.0

0
3

1
.4

4
3

1
.9

6
32

.6
8

32
.6

8
2

8
.5

6
2

9
.1

0
2

9
.8

1
29

.8
5

K
od

ak
1

2
3

2
.8

1
3

2
.6

0
33

.6
2

3
3

.6
1

3
1

.3
3

3
1

.3
9

32
.3

0
3

2
.2

6
2

8
.7

1
2

9
.1

8
29

.8
1

2
9
.7

6

La
ke

2
6
.8

4
2

7
.4

3
27

.5
7

2
7

.3
8

2
6

.0
7

2
6

.7
6

26
.9

2
2

6
.7

9
2

4
.3

9
2

5
.0

2
25

.3
7

2
5
.3

4

Le
na

3
0
.9

1
3

1
.2

0
31

.8
7

3
1

.7
9

2
9

.8
3

3
0

.2
9

31
.0

1
3

1
.0

0
2

7
.5

3
2

8
.2

0
2

9
.0

0
29

.0
6

Pe
pp

er
2

8
.4

0
2

9
.0

1
29

.1
9

2
9

.1
4

2
7

.5
7

2
8

.3
2

28
.5

4
28

.5
4

2
5
.7

7
2

6
.7

2
2

7
.0

3
27

.1
2

Ti
ff

an
y

2
9
.2

1
2

9
.5

0
29

.8
0

2
9

.6
4

2
8

.4
0

2
8

.7
4

29
.1

1
2

9
.0

0
2

6
.8

3
2

7
.3

7
27

.7
9

2
7
.7

8

Q
=

30
Q

=
20

Q
=

10

Ta
bl

e
8.

4:
p

s
n

r
(d

B)
co

m
pa

ri
so

n
of

j
p

e
g

de
bl

oc
ki

ng
w

ith
d

d
f
.F

or
gr

ay
sc

al
e

im
ag

es
,d

d
f

ap
pr

oa
ch

es
s
a

-d
c

t
in

qu
al

ity
.F

or
co

lo
r

im
ag

es
,t

he
ir

re
su

lts
ar

e
si

m
ila

r.

86

9
Implementation

Life as we know it would be very different without the fft.

Charles van Loan

In this chapter, we give executable implementations of the algorithms described
in the previous chapters using matlab. Expressing our algorithms using
matlab results in concise code as presented in this chapter. Not all operations
are efficient, so we give hints for optimization.

9.1 Border Handling

Our filter uses pixels from its neighborhood. However, near the border of
the image, the neighborhood pixels are not available. There are two choices,
either adapt the filter to not access pixels outside the defined image range, or
to enlarge the image with synthesized pixels. An example for the first case
is sa -dct, which by design adapts the shape to its environment by reducing
the filter size near the border of the image. For ddf, we can achieve a similar
effect using the bilateral filter, by padding with extreme values, which produce
bilateral weights close to 0 for pixels outside the image.

An easier way than adapting the filter to handle borders is to use padding
strategies. A common strategy is to use symmetric padding, which works
well in most cases. For some images, symmetric padding may introduce wave
artifacts due to correlated noise near the boundary. In this case, padding with a
large value works better. Another common strategy which does not suffer from
correlated pixels is circular padding, but its use is limited to cyclic textures.
The least useful padding strategy is to repeat the border pixels, as this biases
filtered values towards the border pixel values. In matlab, we simply choose
between the three padding options:

87

xp = padarray(x, [r r], ’symmetric’);
xp = padarray(x, [r r], ’circular’);
xp = padarray(x, [r r], realmax);

The value realmax stands for the largest positive floating point number. Com-
mon padding strategies can be optimized. Instead of circular padding, mat-
lab’s circshift operation can be used to avoid explicit padding. In lower-level
languages like C or cuda, we can implement padding strategies by on-the-fly
calculation of indices.

9.2 Color Images

When processing color and more generally multi-spectral images, we need to
consider the correlation between the channels. The channels of pixels in smooth
or detail regions are more correlated than the channels of pixels in noisy regions
and across edges. If the channels are not decorrelated, all the channels are
filtered similarly, resulting in loss of detail.

A common pre-processing step is to transform the rgb image into a yuv

color space, where the luminance Y and chromaticity components U and V
are separated. The bm3d authors conclude that an opponent color transform
across the channels works better than other yuv alternatives like YCbCr [52].
The opponent color transform performed on a rgb color image is essentially
a 3-point discrete cosine transform (dct) applied to the channels of every pixel.
For hyperspectral images, a n-point dct can be used, where n is the number of
wavelengths.

In matlab, we can either use the dct function, or multiply with the dct

matrix, given by the dctmtx function. Using the matrix has the advantage that,
for single channel grayscale images, it reduces to 1, requiring no special case
handling. The dct matrix is

MRGB→YUV =

1√
3

1√
3

1√
3

1√
2

0 − 1√
2

1√
6
− 2√

6
1√
6

 . (9.1)

After processing, the image needs to be transformed back to its original color
space. The matlab template for multi-channel based denoising looks like this:

88

[height width depth] = size(y, 3);
s = [height * width, depth];
M = dctmtx(depth)’;
y = reshape(reshape(y, s) * M, size(y));
x = denoise(y);
x = reshape(reshape(x, s) / M, size(y));

We calculate the bilateral weights not per channel but per pixel, exactly like the
the original bilateral filter [10], which sums the squared norms of the different
channels. Note that this step is unaffected by the dct, again due to its unitarity.
By combining the channels, edges are reliably detected to avoid color aberration.
In the frequency domain, we exploit the decorrelated channels and calculate
the frequecy range kernels for every channel independently.

Besides the mentioned changes, in matlab we only need to replace scalar
operations with bsxfun. The fft2 function extends transparently to multiple
channels.

9.3 Block Processing

Dual-domain filtering processes for every pixel yp its neighborhood yq ∈ Np
and produces an output pixel xp. To implement this framework in matlab,
we have at least three choices. We can explicitly loop over all pixels or use the
built-in commands nlfilter or blockproc.

Manually writing the loop has the greatest flexibility, but is verbose. While
nlfilter has a concise syntax, it still requires manual addition and removal
of padding and can only handle single channel images. On the other hand
blockproc is more complex to use, but also more powerful. It adds and re-
moves padding, transparently handles higher dimensions, and most importantly
supports parallel processing. Moreover, it allows large images to be processed
on the disk. Most code examples in this thesis use blockproc. One example
using nlfilter is given for artifact removal. The following three templates for
block processing are equivalent and can be interchanged. Using a loop:

xp= padarray(x, [r r], ’symmetric’);
n = zeros(size(x));
parfor p = 1:numel{x}, [i j] = ind2sub(size(x), p);

b = xp(i:i+2*r, j:j+2*r);
n(p) = DDF(b, ...);

end

89

Using nlfilter:

f = @(x) DDF(x, ...);
xp= padarray(x, [r r], ’symmetric’);
n = nlfilter(xp, 2*[r r] + 1, f);
n = n(1+r:end-r, 1+r:end-r);

Using blockproc:

f = @(b) DDF(b.data, ...);
n = blockproc(x, [1 1], f, ...
’BorderSize’, [r r], ’PadMethod’, ’symmetric’, ...
’TrimBorder’, 0, ’UseParallel’, 1);

9.4 FFT

matlab uses the fastest Fourier transform in the west (fftw) as its fft imple-
mentation. For small kernels, the overhead of the fft outweighs the gain of the
fast algorithm and standard matrix multiplication with the dft matrix (dftmtx)
can be faster. Alternatively, constraining the filter kernel sizes to powers of two
accelerates the fft implementation significantly.

9.4.1 Array Shifting

The standard fft implementation of matlab requires shifting of the data,
such that the central pixel is the first in the matrix. Unfortunately, the matlab

documentation is unclear about the usage of the commands fftshift and
ifftshift. As a consequence, many people use it wrong, or they are just
lucky when they get the correct result. fftshift moves the origin to the
center and ifftshift moves the center to the origin. For even array sizes,
they have identical behaviour, but for odd sizes, they differ. The correct usage
of the commands is: fftshift(fft(ifftshift(x))). In our case, we can
save the last fftshift, since averaging over the Fourier coefficients is order
independent.

For color images and higher dimensions, we want to shift in the first two
dimensions, but not in the others and ifftshift needs to be replaced by the
more general circshift and ifftshift(x) becomes circshift(x, -[r r]).

90

9.4.2 Array Indexing

Further acceleration can be gained by using array indexing maps for reading,
shifting, and flipping. We can precompute the three indexing maps as follows:

[dy dx] = ndgrid(-r:r);
index = reshape(1:numel(dx), size(dx));

read = (r+dy) + (r+dx) * (height + 2*r);
shift = ifftshift(index);
flip = ifftshift(rot90(fftshift(index), 2));

The value height is the height of the image in pixels. To read a patch from a
padded image, the map read needs to be added to the linear index of the center
pixel.

9.5 MATLAB Code

In this section, we present all algorithms for grayscale images as matlab

code. For convenience, the ddf is also given in the unguided and the color
variants. Adaptations of the other algorithms to handle color is straightforward
by applying the template from Section 9.2.

91

9.5.1 Dual-Domain Filter

function E = DDF_unguided(y, r, a, A, k, K)

d = y - y(1+r, 1+r);
k = k(abs(d).^2);
e = a * sum(sum(d .* k)) / sum(k(:));

D = fft2(ifftshift((d - e) .* k));
K = K(abs(D).^2 / sum(k(:).^2));
E = A * sum(sum(D .* K)) / numel(K);

end

Algorithm 9.1: matlab code of unguided ddf for grayscale images.

function E = DDF(z, r, flip, a, A, k, K)

d = z - z(1+r, 1+r); % (4.1)
k = k(real(d).^2); % (4.2)
e = a * sum(sum(d .* k)) / sum(k(:)); % (4.3)

D = fft2(ifftshift((d - e) .* k)); % (4.4)
K = K(abs((D + conj(D(flip)))/2).^2 / sum(k(:).^2)); % (4.5)
E = A * sum(sum(D .* K)) / numel(K); % (4.6)

end

Algorithm 9.2: matlab code of guided ddf for grayscale images. This version
of ddf is used by the following code examples.

function E = DDF_color(z, r, flip, a, A, k, K)

d = bsxfun(@minus, z, z(1+r, 1+r, :));
k = k(sum(real(d).^2, 3));
e = a * sum(sum(bsxfun(@times, d, k))) / sum(k(:));

D = fft2(circshift(bsxfun(@times, ...
bsxfun(@minus, d, e), k), -[r r]));

K = K(abs((D + conj(D(flip)))/2).^2 / sum(k(:).^2));
E = A * sum(sum(D .* K)) / numel(k);

end

Algorithm 9.3: matlab code of guided ddf for color images.

92

9.5.2 Dual-Domain Image Denoising

function x = DDID(y, sigma2)

r = 15;
sigma_s = 7; % (5.7)
gamma_r = [100 8.7 0.7]; % (5.5)
gamma_f = [4.0 0.4 0.8]; % (5.6)

[dy dx] = ndgrid(-r:r);
h = exp(- (dx.^2 + dy.^2) / (2 * sigma_s^2));
flip = circshift(reshape(numel(dx):-1:1, size(dx)), [1 1]);

x = (1 + 1i) * y;
for i=1:3

k = @(d2) exp(- d2 ./ (gamma_r(i) * sigma2)) .* h; % (5.3)
K = @(D2) 1 - exp(- gamma_f(i) * sigma2 ./ D2); % (5.4)

f = @(b) DDF(b.data, r, flip, 1, 1, k, K); % (5.2)
x = (1 + 1i) * imag(x) - imag(blockproc(x, [1 1], f, ...

’BorderSize’, [r r], ’PadMethod’, ’symmetric’, ...
’TrimBorder’, 0, ’UseParallel’, 1)); % (5.1)

end
x = real(x);

end

Algorithm 9.4: matlab code of ddid.

93

9.5.3 Progressive Image Denoising

function x = PID(y, sigma2)

N = 30; % sec 6.4
r = 15;
sigma_s = 7;
gamma_r = 988.5;
gamma_s = 2/9;
alpha = 1.533;
lambda = log(alpha) * 0.567;
[dy dx] = ndgrid(-r:r);
r2 = dx.^2 + dy.^2;
flip = circshift(reshape(numel(dx):-1:1, size(dx)), [1 1]);

x = y;
for i=1:N

T = gamma_r * sigma2 * alpha^(-i); % (6.6)
S = gamma_s * sigma_s^2 * alpha^(i/2); % (6.7)
k = @(d2) exp(- d2 / T) .* exp(- r2 / S); % (6.4)
K = @(D2) exp(- D2 / sigma2); % (6.5)

f = @(b) DDF(b.data, r, flip, 0, lambda, k, K);
x = x - real(blockproc(x, [1 1], f, ... % (6.3)
’BorderSize’, [r r], ’PadMethod’, ’symmetric’, ...
’TrimBorder’, 0, ’UseParallel’, 1));

end

% last guided DDID step
r = 31; % sec 6.4
sigma_s = 16;
gamma_r = 0.6;
gamma_f = 2.16;
[dy dx] = ndgrid(-r:r);
r2 = dx.^2 + dy.^2;
flip = circshift(reshape(numel(dx):-1:1, size(dx)), [1 1]);

k = @(d2) exp(- d2 / (gamma_r * sigma2)) .* exp(- r2 / (2 * sigma_s^2));
K = @(D2) exp(- D2 / (gamma_f * sigma2));

f = @(b) DDF(b.data, r, flip, 1, 1, k, K);
x = y - imag(blockproc(x + 1i * y, [1 1], f, ...
’BorderSize’, [r r], ’PadMethod’, ’symmetric’, ...
’TrimBorder’, 0, ’UseParallel’, 1));

end

Algorithm 9.5: matlab code of pid.

94

9.5.4 Dual-Domain Image Denoising Improved

function x = DDID2(y, sigma2)

N = 8; % (7.5)
sigma_s = 13; % (7.6)
gamma_r = 5.3 / N; % (7.7)
gamma_f = 13 / N; % (7.8)
alpha = exp(15); % (7.9)

x = (1 + 1i) * y;
for n = N:-1:1, t = (n - 1) / N;

S = 2 * sigma_s^2 * alpha^(-t/2); % (7.2)
T = gamma_r * sigma2 * alpha^t; % (7.3)
V = gamma_f * sigma2; % (7.4)

r = max(4, round(2 * sqrt(S/2))); % (7.10)
[dy dx] = ndgrid(-r:r);
flip = circshift(reshape(numel(dx):-1:1, size(dx)), [1 1]);

a = cos(t * pi/2); % (7.13)
h = exp(- (dx.^2 + dy.^2) / S);
k = @(d2) cos(min(pi/2, sqrt(d2/(T*n)))).^n .* h; % (7.11)
K = @(D2) cos(min(pi/2, sqrt(D2/(V*n)))).^n; % (7.12)

f = @(b) DDF(b.data, r, flip, a, a, k, K);
x = (1 + 1i) * y - imag(blockproc(x, [1 1], f, ... % (7.1)
’BorderSize’, [r r], ’PadMethod’, ’symmetric’, ...
’TrimBorder’, 0, ’UseParallel’, 1));

end
x = real(x);

end

Algorithm 9.6: matlab code of ddid2.

95

9.5.5 Artifact Removal

function x = deart(g, y, sigma2, r, sigma_s, gamma_r, gamma_f)

[dy dx] = ndgrid(-r:r);
h = exp(- (dx.^2 + dy.^2) / (2 * sigma_s^2));
flip = circshift(reshape(numel(h):-1:1, size(h)), [1 1]);

k = @(d2) h .* exp(- d2 / (gamma_r * sigma2)); % (8.2)
K = @(d2) max(0, 1 - d2 / (gamma_f * sigma2)); % (8.3)

z = padarray(g + 1i * y, [r r], ’symmetric’);
f = @(b) DDF(b, r, flip, 1, 1, k, k); % (8.1)
n = nlfilter(z, size(h), f);
x = y - imag(n(1+r:end-r, 1+r:end-r)); % (5.1)

end

Algorithm 9.7: matlab code for artifact removal.

9.6 CUDA Optimizations

To exploit the parallel structure of ddf, we implemented ddid and pid in
cuda. As a stopover, we first ported ddid first to C, using fftw. Without the
overhead of matlab, the execution time is halved. Multi-core parallelization
was done using OpenMP and we observed linear scalability.

9.6.1 Unordered Sande-Tukey F F T

In cuda there exists an fft implementation called cufft. However, it is
designed for transforming a single large array. We need for ddf a per-pixel or
per-thread fft implementation. The most popular fft variant is the in-place
radix-2 Cooley-Tukey fft or decimation in time (dit) algorithm, consisting of a
reordering step followed by a butterfly. However, for our purposes, we used the
Sande-Tukey-fft [53] or decimation in frequency (dif) algorithm. The dif variant
differs from dit in that it has the reordering stage of the Fourier coefficients
after the butterfly. Since we are only interested in the central pixel of the ifft,
we can calculate it by summing over all the coefficients, which is invariant with
respect to the position of the coefficients. Dropping the reordering gives us
a few percent performance boost. This optimization extends transparently to
higher dimensions since changing the order in one dimension does not affect
the other. For computing the twiddling factors, we use the faster cospif and
sinpif functions. Algorithm 9.8 gives the resulting code.

96

__device__ void st_fft(cuComplex * f, int n)
{

for (int m = n/2; m > 0; m >>= 1)
for (int r = 0 ; r < n; r += m*2)
for (int j = 0 ; j < m; j ++)
{

cuComplex a = f[r + j];
cuComplex b = f[r + j + m];
f[r + j] = cuCaddf(a, b);
f[r + j + m] = cuCmulf(cuCsubf(a, b),

make_cuFloatComplex(cospif(-(float) j/m), sinpif(-(float) j/m)));
}

}

Algorithm 9.8: cuda code of unordered Sande-Tukey-fft. n must be a power
of two.

9.6.2 Minimize Memory Access

On gpus, memory access is orders of magnitudes slower than arithmetric
and logical operations. It is therefore important to limit reading and writing
to memory, even at the cost of redundant computation. One possible gpu

optimization is to apply the shift theorem to replace shifting by point-wise
multiplication. This is particularly attractive, since shifting by n

2 positions in the
even case reduce to flipping signs in the real and imaginary part of the Fourier
coefficients.

97

98

10
Results

It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.

Richard Feynman

In this chapter, we use the implementations from Chapter 9 and evaluate them.
First we analyze the robustness and optimality of the chosen parameters in Sec-
tion 10.1. Then, we describe the evaluation process in Section 10.2. Section 10.3
contains the comparisons of denoised images and psnr tables. Finally, we
compare performance numbers of the denoising methods in Section 10.4.

10.1 Parameter Study

The parameter values of our algorithms were empirically found. In this section,
we analyze the influence of the parameters on the denoising quality. For
this analysis, we use the Cameraman image. Many methods specify distinct
parameter sets for different noise sigma. Our parameters, on the other hand,
are fixed. Since our algorithms produce good results for different noise levels,
we fixed the noise sigma to σ = 25 for this analysis. For every method and
parameter, we change one parameter. Except for the number of iterations N, we
use either a power or a factor 0.6 ≤ β ≤ 1.4 to perturb the parameters.

In Figure 10.1, we plot the psnr values as functions of iteration number n
or perturbation value β. Every row corresponds to a method, ddid, pid, and
ddid2. The columns are the individual parameters of the methods, grouped
according to correspondence across methods where applicable. With the excep-
tion of the last parameters γ f and A, the parameters are robust against change.
Figure 10.2 shows that the parameters are optimal with tolerance in the order
of 0.01 dB.

99

The number of iterations N needs to be large enough to get good denoising
results. The spatial parameters σs and γs are surprisingly unimportant. This
is somewhat counter-intuitive, as the common belief is that it is connected to
the noise variance. Our methods achieve good results for small and large noise
(σ = {10, 25, 40}), without changing any parameters. The parameter controlling
the range γr is not very important either. Again, this is counter-intuitive, as
this is one of the parameters tweaked most for bilateral filtering. We suspect
the robustness is due to the inverse proportional scales of the spatial and range
gaussians.

The frequency range parameter γ f of ddid and ddid2 and the gradient
descent factor A of pid have large influence on the psnr. This is not surprising,
since they have strong correlation with the noise estimation. Small values mean
that the noise will be underestimated and consequently the image will contain
residual noise. Conversely, large values mean that the noise is overestimated
and the image will loose details.

The plots also confirm our experience, that these parameters were the ones
required tuning the most. We show in Table 10.1 the resulting images when the
frequency range parameter γ f or the gradient descent factor A is changed.

100

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 σ

s

DDID

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 γ

r

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 γ

f

 2
7

 2
8

 2
9

 3
0

 4
 8

 1
5

 3
0

 6
0

NN

PID

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

βα
β

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

sq
rt

(β
)

γ
s

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 γ

r

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 A

 2
7

 2
8

 2
9

 3
0

 1
 5

 8
 1

1
 1

5

NN

DDID2

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

βα
β

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 σ

m

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 γ

r

 2
7

 2
8

 2
9

 3
0 0

.6
 0

.8
 1

 1
.2

 1
.4

β

β
 γ

f

Fi
gu

re
10

.1
:

Pl
ot

s
of

p
s

n
r

(d
B)

ag
ai

ns
tp

ar
am

et
er

ch
an

ge
at

10
×

fin
er

sc
al

e.
O

ur
al

go
ri

th
m

s
ar

e
ro

bu
st

w
ith

re
sp

ec
tt

o
ch

an
ge

s
of

m
os

tp
ar

am
et

er
s.

Th
e

m
os

ti
nfl

ue
nt

ia
lp

ar
am

et
er

s
ar

e
γ

f
an

d
A

,w
hi

ch
co

nt
ro

lt
he

no
is

e
es

tim
at

io
n

di
re

ct
ly

.

101

10.2 Evaluation Process

In this section, we describe our evaluation method. For image denoising, we
evaluate the denoising quality with a threefold loop over every image, noise
sigma, and method. In every iteration, we load the original image x, add white
Gaussian noise n with the noise sigma σ to it, denoise using the method, save the
image x̂ and calculate the psnr value. The saved images are either compared
directly, or derived images like differences of the images and difference of the
squared errors are used for visualization.

For artifact removal, we use the denoised image as the guide g to ddf and
the noisy image y as input. For jpeg deblocking, we have only a single image,
so we have g = y, and we feed this image to ddf.

10.2.1 Benchmark Images

Most of the natural images are from the bm3d test images. They are shown
in Figure 10.3 and Figure 10.4. We also used synthetic images as shown in
Figure 10.5.

We used the following grayscale images

• sipi images [54]: Barabara, Boats, Cameraman, Couple, Finger Print, Hill, House,
Lena, Man, Pepper
• bm3d [55]: Montage
• csf chart (see Section 10.2.2): csf soft, csf hard,

and the following rgb color images for benchmark

• sipi images [54]: Baboon, F-16, House, Lake, Lena, Pepper, Tiffany
• Kodak: Kodak 1, Kodak 2, Kodak 3, Kodak 12
• Artworks by Charis Tsevis [56]: Nikon, Basketball
• Logo Open Stock [57]: Organics.

10.2.2 C S F Chart

We use the csf chart function described by Pelli [58].

f (x, y) =
1
2
(
1 + 10−y sin 10x) (10.1)

We bound the signal bandwidth by Nyquist frequency by constraining x ∈[
0, W(πw)

log 10

]
, where W(·) is the Lambert W function and w the width of the image

102

 29.3

 29.4

 29.5

 29.6

 0.6 0.8 1 1.2 1.4

β

β σs

D
D

ID

 29.3

 29.4

 29.5

 29.6

 0.6 0.8 1 1.2 1.4

β

β γr

 29.5

 29.6

 29.7

 29.8

 0.6 0.8 1 1.2 1.4

β

α
β

P
ID

 29.5

 29.6

 29.7

 29.8

 0.6 0.8 1 1.2 1.4

β

sqrt(β) γs

 29.5

 29.6

 29.7

 29.8

 0.6 0.8 1 1.2 1.4

β

β γr

 29.5

 29.6

 29.7

 29.8

 0.6 0.8 1 1.2 1.4

β

α
β

D
D

ID
2

 29.5

 29.6

 29.7

 29.8

 0.6 0.8 1 1.2 1.4

β

β σm

 29.5

 29.6

 29.7

 29.8

 0.6 0.8 1 1.2 1.4

β

β γr

Figure 10.2: Plots of psnr (dB) against parameter change. The values chosen for the less
influential parameters are close to the optimal value. Changing them has little impact on the
psnr, in the order of 0.1 dB.

103

ddid pid ddid 2

β
=

0.
6

β
=

0.
8

β
=

1.
0

β
=

1.
2

Table 10.1: The images with small frequency domain parameters are too noisy, the images with
large frequency domain parameters are too blurry.

104

Barbara Boats Cameraman

Couple Finger Print Hill

House Lena Man

Montage Pepper

Figure 10.3: The grayscale bm3d test images are from sipi. The only exception is Montage,
which is from the authors of bm3d and contains synthetic elements.

105

Baboon F-16 House

Kodak 1 Kodak 2 Kodak 3

Kodak 12 Lake Lena

Pepper Tiffany

Figure 10.4: The bm3d test images are mostly from sipi. The others are from Kodak.

106

csf soft csf hard

Organics Nikon Basketball

Figure 10.5: Synthetic images for benchmark in grayscale and color. Organics is from Logo
Open Stock. Nikon and Basketball are from the artist Charis Tsevis. csf soft and csf hard
we created using Pulli’s formula.

107

in pixels. We allow the contrast to decrease to 10−3 with y ∈ [0, 3]. For our
version with steps, we use

f (x, y) =
1
2
(
1 + 10−y sgn (sin 10x)

)
. (10.2)

Algorithm 10.1 gives a matlab implementation for producing csf charts.
function image = CSF(w, h, hard)

s = lambertw(pi * w) / log(10);

[x y] = meshgrid(linspace(0, s, w), linspace(3, 0, h));

if hard, image = 0.5 * (1 + (10.^(-y) .* sign(sin(10.^x))));
else image = 0.5 * (1 + (10.^(-y) .* sin(10.^x)));
end

end

Algorithm 10.1: matlab code for generating csf charts. The parameters w
and h define the image size and the parameter hard chooses between sinusoidal
and rectangular waves.

10.2.3 Noise Generation

For grayscale images, we choose σ ∈ {10, 25, 40}. For color images, we choose
σ ∈ {25, 40}. Note that the noise sigma is given assuming the image is scaled
between 0 and 255. We use the same scale for the noise sigma, as it is common
in the literature.

We use the seed value 0 to initialize the normally distributed random value
generator randn of matlab used to generate the white Gaussian noise:

randn(’seed’, 0);
n = randn(size(x)) * sigma;
y = x + n;

Exceptions are the algorithms that are implemented in pure C (nlb, nlm, tv),
as the noise is generated differently.

10.2.4 Image Denoising Methods

We run our algorithms against the state-of-the-art methods listed in Table 10.2.
Most of the implementations can be found on Xin Li’s website on reproducible
research in computational science [77].

108

10.3 Images and Tables

In this section, we first compare the denoising progress of our proposed methods.
Then, we present comparisons between our methods and other state-of-the-art
methods.

Figure 10.6, Figure 10.7, and Figure 10.8 give visual comparison of the
denoising progress for ddid, pid, and ddid2. Figure 10.9 plots the psnr

and mse curves over the denoising progress for Cameraman. The curves for
denoising other images look similar. Both the image series and the plots suggest
that relatively, pid denoises faster and more steadily than ddid2.

Figure 7.3 and Figure 7.4 compare denoising results of a natural image.
Figure 7.5 and Figure 7.6 compare denoising results of a synthetic image. In
both cases, pid and ddid2 produce numerically and visually the best results.

Finally, Table 10.3, Table 10.4, and Table 10.5 compare the psnr values of
the images denoised by the various methods. Our methods are competitive for
denoising grayscale images and have the best psnr values for color images.
Figure 10.10 gives a graphical representation of the tables.

Name Paper Code Color Language

ddid2 [4] yes matlab

pid [3] yes matlab, cuda

ddid [2] [59] yes matlab, C, cuda

bm3d [26] [55] yes matlab + C
bm3d -sapca [31] [55] no matlab

foe [60] [61] yes matlab

iskr [19] [62] no matlab

k -lld [50] [63] no matlab

k -svd [33, 64] [65, 66] yes matlab, C
lssc [34] [67] no matlab + C
mlp [35] [68] no matlab

nlb [27, 69] [70] yes C
nlm [20, 71] [72] yes C
plow [28] [73] yes matlab + C
saist [29] [74] no matlab

tv [18, 75] [76] yes C

Table 10.2: These are the implementations of image denoising methods we considered for
comparison.

109

D
D

ID
It

er
at

io
n

0

1
6
.1

0
dB

D
D

ID
It

er
at

io
n

1

2
6

.8
0

dB
D

D
ID

It
er

at
io

n
2

2
9

.5
3

dB
D

D
ID

It
er

at
io

n
3

3
2
.6

5
dB

D
D

ID
It

er
at

io
n

0

1
6
.1

0
dB

D
D

ID
It

er
at

io
n

1

2
6

.2
3

dB
D

D
ID

It
er

at
io

n
2

2
8

.4
2

dB
D

D
ID

It
er

at
io

n
3

3
0

.0
2

dB

Fi
gu

re
10

.6
:

D
en

oi
si

ng
pr

og
re

ss
of

d
d

i
d

.T
he

no
is

e
si

gm
a

is
σ
=

40
.

110

PI
D

It
er

at
io

n
0

1
6
.1

0
dB

PI
D

It
er

at
io

n
1

0

2
2
.8

6
dB

PI
D

It
er

at
io

n
2

0

3
0

.2
2

dB
PI

D
It

er
at

io
n

3
0

3
1

.3
2

dB
PI

D
Fi

na
l

3
3
.7

4
dB

D
D

ID
2

It
er

at
io

n
0

1
6
.1

0
dB

D
D

ID
2

It
er

at
io

n
2

1
6

.7
1

dB
D

D
ID

2
It

er
at

io
n

4

1
9

.7
1

dB
D

D
ID

2
It

er
at

io
n

6

2
5

.9
3

dB
D

D
ID

2
It

er
at

io
n

8

3
3
.3

3
dB

Fi
gu

re
10

.7
:

de
no

is
in

g
pr

og
re

ss
of

p
i
d

an
d

d
d

i
d

2.
Th

e
no

is
e

si
gm

a
is

σ
=

40
.T

he
im

ag
e

PI
D

It
er

at
io

n
3
0

is
us

ed
as

an
or

ac
le

to
pr

od
uc

e
th

e
fin

al
im

ag
e

w
ith

a
si

ng
le

d
d

i
d

st
ep

.

111

PI
D

It
er

at
io

n
0

1
6
.1

0
dB

PI
D

It
er

at
io

n
1

0

2
2

.6
7

dB
PI

D
It

er
at

io
n

2
0

2
8

.7
7

dB
PI

D
It

er
at

io
n

3
0

2
9

.3
1

dB
PI

D
Fi

na
l

3
0
.4

9
dB

D
D

ID
2

It
er

at
io

n
0

1
6
.1

0
dB

D
D

ID
2

It
er

at
io

n
2

1
7

.8
6

dB
D

D
ID

2
It

er
at

io
n

4

1
9

.6
8

dB
D

D
ID

2
It

er
at

io
n

6

2
5

.5
7

dB
D

D
ID

2
It

er
at

io
n

8

3
0
.3

7
dB

Fi
gu

re
10

.8
:

D
en

oi
si

ng
pr

og
re

ss
of

p
i
d

an
d

d
d

i
d

2.
Th

e
no

is
e

si
gm

a
is

σ
=

40
.T

he
im

ag
e

PI
D

It
er

at
io

n
3
0

is
us

ed
as

an
or

ac
le

to
pr

od
uc

e
th

e
fin

al
im

ag
e

w
ith

a
si

ng
le

d
d

i
d

st
ep

.

112

 20

 22

 24

 26

 28

 30

 0 1 2 3

Iterations

DDID PSNR (dB)

 0

 0.005

 0.01

 0 1 2 3

Iterations

DDID MSE

 20

 22

 24

 26

 28

 30

 0 10 20 30

Iterations

PID PSNR (dB)

 0

 0.005

 0.01

 0 10 20 30

Iterations

PID MSE

 20

 22

 24

 26

 28

 30

 0 1 2 3 4 5 6 7 8

Iterations

DDID2 PSNR (dB)

 0

 0.005

 0.01

 0 1 2 3 4 5 6 7 8

Iterations

DDID2 MSE

Figure 10.9: Quality improvement over iterations for cameraman. The curves for pid and
ddid2 are qualitatively different.

113

G
r

a
y

s
c

a
le

D
D

ID
2

P
ID

D
D

ID
S

A
P

C
A

S
A

IS
T

B
M

3
D

M
L

P
L

S
S

C
N

L
B

K
-S

V
D

N
L

M
P

L
O

W
K

L
L

D
F

O
E

T
V

IS
K

R

Ba
rb

ar
a

3
4
.6

6
3

4
.5

5
3

4
.6

7
3

5
.1

0
35

.1
9

3
4

.9
8

3
4

.0
7

3
4
.9

9
3

4
.4

4
3

4
.4

4
3

3
.1

8
3

3
.8

0
3

3
.1

3
3

2
.8

7
2

9
.8

0
2

7
.9

9

Bo
at

s
3

3
.8

3
3

3
.7

7
3

3
.7

4
34

.1
0

3
3
.9

3
3

3
.9

2
3

3
.8

1
3

4
.0

3
3

3
.5

7
3

3
.6

5
3

2
.8

9
3

2
.9

8
3

3
.0

1
3

3
.0

9
3

1
.2

4
2

7
.5

3

C
am

er
am

an
3

4
.2

1
3

4
.1

4
3

4
.0

5
34

.5
9

3
4
.2

3
3

4
.1

8
3

4
.1

8
3

4
.2

4
3

4
.0

4
3

3
.7

6
3

3
.4

3
3

3
.1

7
3

2
.8

2
3

3
.5

9
3

1
.2

0
2

6
.0

1

C
ou

pl
e

3
3
.9

8
3

3
.9

1
3

3
.8

8
34

.1
7

3
4
.0

0
3

4
.0

4
3

3
.9

1
3

4
.0

1
3

3
.6

9
3

3
.5

5
3

2
.8

8
3

3
.1

3
3

3
.1

1
3

3
.2

5
3

0
.9

7
2

7
.9

9

Fi
ng

er
Pr

in
t

3
1
.8

5
3

1
.7

8
3

1
.8

4
3

2
.6

4
32

.6
8

3
2
.4

6
3

2
.5

7
3

2
.5

7
3

2
.1

0
3

2
.4

0
3

1
.0

0
3

1
.0

4
3

1
.6

6
3

2
.0

3
2

9
.1

4
2

5
.9

9

H
ill

3
3
.6

5
3

3
.6

0
3

3
.5

6
33

.8
3

3
3
.7

0
3

3
.6

2
3

3
.5

9
3

3
.6

7
3

3
.5

2
3

3
.3

7
3

2
.8

6
3

2
.6

3
3

2
.7

9
3

2
.5

8
3

1
.3

8
2

7
.9

9

H
ou

se
3

6
.6

6
3

6
.6

0
3

6
.5

0
37

.0
1

3
6
.8

1
3

6
.7

1
3

5
.9

8
3

6
.9

5
3

5
.9

3
3

5
.9

7
3

4
.9

5
3

6
.2

4
3

5
.2

6
3

5
.1

2
3

3
.1

7
2

9
.8

8

Le
na

3
5
.9

2
3

5
.8

1
3

5
.8

1
36

.0
7

3
5
.8

5
3

5
.9

3
3

5
.8

5
3

5
.8

5
3

5
.3

6
3

5
.5

0
3

4
.3

4
3

5
.3

2
3

5
.2

7
3

5
.0

4
3

2
.8

1
3

0
.7

3

M
an

3
4
.1

2
3

4
.0

3
3

4
.0

2
34

.2
5

3
4

.1
3

3
3
.9

8
3

4
.1

1
3

4
.1

0
3

3
.8

8
3

3
.6

0
3

3
.0

9
3

2
.9

6
3

3
.1

9
3

3
.1

8
3

1
.5

3
2

7
.3

5

M
on

ta
ge

3
7
.7

1
3

7
.4

3
3

7
.5

1
37

.8
5

3
7
.1

9
3

7
.3

5
3

6
.5

1
3

7
.2

6
3

6
.9

1
3

6
.1

0
3

5
.3

2
3

6
.1

4
3

5
.4

4
3

6
.2

6
3

3
.1

4
2

7
.7

2

Pe
pp

er
3

4
.7

5
3

4
.6

7
3

4
.5

8
34

.9
4

3
4
.7

9
3

4
.6

8
3

4
.7

2
3

4
.8

0
3

4
.4

6
3

4
.2

5
3

3
.5

0
3

3
.5

7
3

3
.8

6
3

4
.2

5
3

1
.9

4
2

6
.2

6

σ
=

10

Ta
bl

e
10

.3
:

p
s
n

r
(d

B)
va

lu
es

fo
r

de
no

is
in

g
gr

ay
sc

al
e

im
ag

es
w

ith
no

is
e

si
gm

a
σ
=

10
.d

d
i
d

2
ca

n
co

m
pe

te
w

ith
th

e
be

st
gr

ay
sc

al
e

de
no

is
er

s
m

l
p
,b

m
3
d

,b
m

3
d

-s
a

p
c

a
,a

nd
s
a

i
s
t
.

114

G
r

a
y

s
c

a
le

D
D

ID
2

P
ID

D
D

ID
S

A
P

C
A

S
A

IS
T

B
M

3
D

M
L

P
L

S
S

C
N

L
B

K
-S

V
D

N
L

M
P

L
O

W
K

L
L

D
F

O
E

T
V

IS
K

R

Ba
rb

ar
a

3
0
.8

2
3

0
.5

6
3

0
.8

0
3

1
.0

0
31

.2
3

3
0
.7

2
2

9
.5

5
3

0
.4

9
3

0
.1

3
2

9
.5

7
2

8
.9

8
3

0
.2

1
2

7
.6

9
2

6
.2

5
2

4
.9

1
2

8
.2

6

Bo
at

s
2

9
.8

8
2

9
.8

0
2

9
.7

9
30

.0
3

2
9
.9

7
2

9
.9

1
2

9
.9

7
2

9
.9

0
2

9
.5

4
2

9
.3

2
2

8
.5

6
2

9
.5

4
2

9
.2

6
2

7
.6

8
2

7
.0

5
2

8
.5

6

C
am

er
am

an
2

9
.6

9
2

9
.6

8
2

9
.4

7
29

.8
1

2
9
.4

1
2

9
.4

5
2

9
.6

1
2

9
.5

0
2

9
.3

5
2

8
.9

1
2

8
.7

6
2

8
.6

6
2

8
.4

2
2

6
.7

6
2

6
.0

9
2

7
.1

2

C
ou

pl
e

2
9
.6

7
2

9
.6

5
2

9
.5

6
29

.8
2

2
9
.7

4
2

9
.7

2
2

9
.7

4
2

9
.6

7
2

9
.2

4
2

8
.8

9
2

8
.2

6
2

9
.3

6
2

9
.1

5
2

7
.4

9
2

6
.6

3
2

8
.4

2

Fi
ng

er
Pr

in
t

2
7
.3

4
2

7
.1

5
2

7
.3

2
2

7
.8

1
27

.9
3

2
7
.7

0
2

7
.6

5
2

7
.6

2
2

7
.4

7
2

7
.2

6
2

6
.1

7
2

7
.0

5
2

6
.9

7
2

5
.0

9
2

3
.8

4
2

6
.0

5

H
ill

2
9
.8

0
2

9
.7

7
2

9
.7

1
29

.9
6

2
9
.9

0
2

9
.8

5
2

9
.8

8
2

9
.8

3
2

9
.5

5
2

9
.2

3
2

8
.6

3
2

9
.6

1
2

9
.2

5
2

7
.9

4
2

7
.6

6
2

8
.6

3

H
ou

se
3

2
.9

0
3

2
.8

4
3

2
.6

6
3

2
.9

6
33

.1
7

3
2
.8

6
3

2
.5

7
3

3
.1

3
3

2
.2

6
3

2
.0

8
3

1
.2

9
3

2
.7

3
3

1
.4

9
2

8
.8

3
2

9
.4

9
3

1
.2

0

Le
na

32
.2

7
3

2
.1

2
3

2
.1

4
3

2
.2

3
3

2
.2

6
3

2
.0

8
3

2
.2

6
3

1
.8

6
3

1
.6

6
3

1
.3

6
3

0
.4

7
3

1
.9

1
3

1
.4

3
2

9
.3

7
2

9
.0

5
3

1
.3

2

M
an

2
9
.7

1
2

9
.6

8
2

9
.6

2
2

9
.8

1
2

9
.7

5
2

9
.6

2
29

.8
9

2
9
.7

0
2

9
.5

2
2

9
.1

1
2

8
.5

8
2

9
.3

4
2

9
.2

8
2

7
.7

4
2

7
.6

0
2

8
.4

6

M
on

ta
ge

33
.0

8
3

2
.7

6
3

2
.6

1
3

2
.9

7
3

2
.3

5
3

2
.3

7
3

2
.0

4
3

2
.2

5
3

1
.7

7
3

1
.1

6
3

0
.6

3
3

0
.9

6
3

0
.4

8
2

8
.4

3
2

7
.0

8
2

8
.7

6

Pe
pp

er
30

.4
6

3
0
.3

7
3

0
.2

9
3

0
.4

3
3

0
.4

0
3

0
.1

6
3

0
.3

1
3

0
.2

3
3

0
.0

1
2

9
.7

1
2

8
.8

3
2

9
.6

4
2

9
.5

6
2

7
.4

9
2

6
.9

9
2

8
.1

0

σ
=

25

G
r

a
y

s
c

a
le

D
D

ID
2

P
ID

D
D

ID
S

A
P

C
A

S
A

IS
T

B
M

3
D

M
L

P
L

S
S

C
N

L
B

K
-S

V
D

N
L

M
P

L
O

W
K

L
L

D
F

O
E

T
V

IS
K

R

Ba
rb

ar
a

2
8
.5

9
2

8
.3

8
2

8
.5

1
28

.6
8

2
8
.6

2
2

7
.9

9
n/

a
2

8
.1

7
2

7
.9

6
2

6
.8

9
2

6
.7

2
2

8
.1

0
2

4
.8

4
1

8
.9

8
2

3
.0

0
2

2
.9

8

Bo
at

s
2

7
.7

5
2

7
.7

1
2

7
.6

5
27

.9
2

2
7
.6

2
2

7
.7

4
n/

a
2

7
.7

7
2

7
.3

5
2

7
.0

6
2

6
.2

2
2

7
.6

3
2

6
.3

3
1

9
.1

8
2

4
.7

0
2

3
.4

6

C
am

er
am

an
2

7
.5

5
27

.6
0

2
7
.3

2
2

7
.5

7
2

7
.2

9
2

7
.1

8
n/

a
2

7
.3

4
2

7
.1

8
2

6
.7

6
2

6
.5

1
2

6
.6

6
2

5
.5

7
1

9
.2

0
2

3
.1

3
2

2
.9

8

C
ou

pl
e

2
7

.3
9

2
7
.4

0
2

7
.3

0
27

.5
8

2
7
.3

3
2

7
.4

8
n/

a
2

7
.4

1
2

7
.0

3
2

6
.3

9
2

5
.7

0
2

7
.3

3
2

6
.1

9
1

9
.1

5
2

4
.4

0
2

3
.2

3

Fi
ng

er
Pr

in
t

2
5

.1
5

2
4
.9

8
2

5
.0

4
2

5
.5

4
25

.5
5

2
5
.3

0
n/

a
2

5
.3

0
2

5
.3

6
2

4
.7

0
2

4
.1

1
2

5
.2

1
2

4
.0

0
1

8
.8

2
2

0
.8

7
2

0
.7

7

H
ill

2
7
.9

3
2

7
.9

2
2

7
.8

3
28

.0
8

2
7
.8

7
2

7
.9

9
n/

a
2

8
.0

0
2

7
.6

7
2

7
.2

1
2

6
.4

3
2

7
.8

9
2

6
.5

4
1

9
.2

1
2

5
.5

2
2

3
.9

6

H
ou

se
3

0
.6

3
3

0
.7

6
3

0
.4

1
3

0
.7

5
31

.3
8

3
0

.6
5

n/
a

3
1
.1

0
3

0
.2

7
2

9
.5

9
2

8
.8

0
3

0
.5

5
2

7
.4

3
1

9
.0

7
2

6
.8

2
2

4
.3

8

Le
na

30
.2

2
3

0
.1

4
3

0
.0

7
3

0
.1

0
3

0
.0

3
2

9
.8

6
n/

a
2

9
.9

1
2

9
.7

0
2

9
.0

5
2

8
.1

6
2

9
.8

6
2

7
.6

4
1

9
.2

7
2

6
.7

1
2

4
.8

9

M
an

2
7
.6

7
2

7
.6

6
2

7
.6

0
27

.8
3

2
7
.5

8
2

7
.6

5
n/

a
2

7
.6

4
2

7
.4

1
2

7
.0

5
2

6
.3

0
2

7
.5

2
2

6
.4

2
1

9
.2

0
2

5
.4

5
2

3
.8

1

M
on

ta
ge

30
.2

6
3

0
.2

5
2

9
.8

2
3

0
.0

2
2

9
.5

0
2

9
.5

2
n/

a
2

9
.4

3
2

8
.9

7
2

8
.6

3
2

7
.4

4
2

7
.9

0
2

6
.6

2
1

9
.5

0
2

2
.8

0
2

4
.5

9

Pe
pp

er
28

.1
0

28
.1

0
2

7
.9

4
28

.1
0

2
7
.9

4
2

7
.7

0
n/

a
2

7
.8

6
2

7
.5

6
2

7
.4

0
2

5
.6

5
2

7
.5

0
2

6
.1

5
1

9
.0

8
2

3
.7

9
2

3
.3

8

σ
=

40

Ta
bl

e
10

.4
:

p
s
n

r
(d

B
)

va
lu

es
fo

r
de

no
is

in
g

gr
ay

sc
al

e
im

ag
es

.
d

d
i
d

2
ca

n
co

m
pe

te
w

it
h

th
e

be
st

gr
ay

sc
al

e
de

no
is

er
s

m
l
p
,b

m
3
d

,
b
m

3
d

-s
a

p
c

a
,a

nd
s
a

i
s
t
.

115

C o l o r D D I D 2 P I D D D I D B M 3 D N L B K - S V D N L M P L O W

Baboon 26.29 26.12 26.17 25.95 26.50 25.86 25.63 24.22

F-16 33.06 33.02 32.88 32.78 32.91 32.32 31.33 30.98

House 32.88 32.90 32.69 33.03 32.59 32.08 31.47 31.92

Kodak 1 29.29 29.18 29.09 29.13 29.25 28.88 27.55 25.68

Kodak 2 32.49 32.40 32.29 32.44 32.25 31.97 30.72 29.86

Kodak 3 34.72 34.70 34.55 34.54 34.43 33.20 32.43 30.46

Kodak 12 33.64 33.55 33.46 33.76 33.39 32.72 31.68 30.00

Lake 28.99 28.93 28.85 28.68 29.05 28.73 28.28 27.60

Lena 32.45 32.41 32.30 32.27 32.19 31.69 30.88 31.01

Pepper 31.40 31.36 31.25 31.20 31.19 30.74 30.32 30.35

Tiffany 32.65 32.61 32.49 32.23 32.17 31.66 31.12 31.42

σ = 25

C o l o r D D I D 2 P I D D D I D B M 3 D N L B K - S V D N L M P L O W

Baboon 24.33 24.29 24.19 23.87 24.45 23.79 23.22 22.56

F-16 31.07 31.09 30.84 30.25 30.77 29.78 28.65 29.05

House 31.25 31.35 30.93 30.60 30.82 29.94 29.15 30.05

Kodak 1 26.97 26.91 26.77 26.59 26.79 26.45 24.79 24.32

Kodak 2 30.66 30.60 30.46 30.30 30.25 29.69 28.39 28.22

Kodak 3 32.42 32.46 32.22 31.57 32.03 30.55 30.01 28.45

Kodak 12 31.69 31.65 31.46 31.31 31.31 30.40 29.46 28.02

Lake 27.39 27.36 27.23 26.88 27.35 26.92 26.03 26.02

Lena 30.87 30.87 30.68 30.11 30.42 29.66 28.87 29.26

Pepper 30.05 30.04 29.88 29.27 29.63 29.05 28.23 28.68

Tiffany 30.93 30.95 30.73 30.13 30.25 29.81 28.76 29.73

σ = 40

Table 10.5: psnr (dB) values for denoising color images. ddid2 and pid have the highest
psnr values.

116

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Lake
Peppers

Lena
H

ouse

Baboon

K
odak Im

age 2

F16
K
odak Im

age 12

K
odak Im

age 3

Tiffany

K
odak Im

age 1

Color Relative PSNR (σ = 25)

DDID2
PID

DDID
BM3D

NLB
K-SVD

NLM
PLOW

TV
 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

Lake
Lena

Baboon

H
ouse

Peppers

K
odak Im

age 2

K
odak Im

age 12

K
odak Im

age 3

K
odak Im

age 1

F16
Tiffany

Color Relative PSNR (σ = 40)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

H
ill

M
an

C
ouple

Peppers

C
am

eram
an

Boats

Lena
Barbara

H
ouse

M
ontage

Finger Print

Grayscale Relative PSNR (σ = 10)

DDID2
PID

DDID
BM3D-SAPCA

SAIST
BM3D

MLP
LSSC
NLB

 0.95

 0.96

 0.97

 0.98

 0.99

 1

M
an

H
ill

Peppers

Boats

C
am

eram
an

C
ouple

Lena
H

ouse

Finger Print

M
ontage

Barbara

Grayscale Relative PSNR (σ = 25)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

M
an

H
ill

Lena
C
ouple

Boats

C
am

eram
an

Peppers

Finger Print

Barbara

H
ouse

M
ontage

Grayscale Relative PSNR (σ = 40)

Figure 10.10: Graphical comparison of image denoising methods. In Y-direction, we measure
the relative psnr values compared to the best psnr value obtained considering all denoising
methods. In X-direction, we order the images according to increasing variance in relative
psnr values. For grayscale images, we compare the best 9 methods, and for color images, we
compare all methods supporting color. For grayscale images with low noise-contamination,
bm3d -sapca has the best numerical results. For higher noise-contamination, pid and
ddid2 can beat bm3d -sapca for some images. For color images, especially with high
noise-contamination, pid and ddid2 perform best.

117

10.4 Performance

Here we present a performance comparison between different methods. It is
difficult to have a fair comparison, as some implementations are written in
matlab and some in native C. We therefore separated the results into two
categories, the first uses only matlab, while the second may also use native C
code. We also include numbers for our cuda implementations of ddid and
pid. For matlab implementations, we restricted the use of cores by calling
matlabpool close and maxNumCompThreads(1). For native implementations,
we called taskset -c 0 to bind a process to a single core. The test system
has dual quad-core Intel Xeon 2.67 GHz cpus and runs Linux. The gpu is an
nvidia Titan.

For benchmark, we denoise Cameraman, which has an image size of 256× 256
pixels. The noise sigma is σ = 25. The measurements for pure matlab

implementations are shown in Table 10.6. The results for native implementations
are shown in Table 10.7.

Method 1 Core 8 Cores

ddid2 281 41

pid 814 113

ddid 95 14

bm3d-sapca 219

foe 215

iskr 207

k-lld 663

k-svd 249

mlp 27

saist 474

Table 10.6: Speed comparison of matlab implementations in seconds. Our algorithms are
easy to parallelize and scale almost linearly.

118

Method 1 Core 8 Cores GPU

pid <3

ddid 40 5 1

bm3d <2

lssc 1546

nlb <2

nlm 5

plow 873

Table 10.7: Speed comparison of native implementations in seconds. Our algorithms are easy
to port to gpu and we observe great speedup.

119

120

11
Conclusions

You wanna know how I did it?
I never saved anything for the swim back.

Vincent, Gattaca

In this work, we have shown that significant progress can be made in a classic
field. Our methodology has led us to the discovery of a new class of image
denoising methods which produce high-quality results. Our image denoising
methods pid and ddid2 are highly competitive for natural and grayscale
images with state-of-the-art algorithms. For synthetic images and color images,
our methods exceed and redefine the state-of-the-art.

Our algorithms are surprisingly simple thanks to the discovery of the ddf,
which is not based on patches. The ddf complements bilateral filtering with
frequency domain filtering and gives control over the filtering process in two
domains. In both domains, robust noise estimators can be freely chosen. We
have demonstrated that the ddf can stand on its own feet for removal of
artifacts like residual noise and compression artifacts. The simplicity and
quality of ddf suggest that it has the potential to become a universal tool for
image enhancement and restoration like the bilateral filter.

The ddf has allowed us to gain two key insights about the image denoising
process. First, denoising should be considered as robust noise estimation in
multiple domains. This is a departure from the traditional denoising model,
where the original image is estimated directly. The common wavelet based
filtering paradigm is limited to three basic kernel functions. With ddf, the
robust noise estimation model invites exploration of numerous estimators from
robust statistics. Second, denoising is an iterated physical process. pid and
ddid2 have demonstrated that the scales and shapes of the robust kernels
smoothly change over time. With these insights, we are at least two steps closer
to understand what denoising is. The ddf can serve as a primitive for further

121

experiments, allowing us to expect even better understanding of the denoising
process.

11.1 Future

With our final words, we risk an outlook into the future. Better image denoising
quality impacts any image processing system, like it is found in digital cameras.
Today, state-of-the-art denoising methods are still too slow for integration into
consumer products. Digital images are getting larger by the mega-pixels and
consumers demand interactive performance, yet many methods take minutes
to process even a small test image. Simpler methods have the advantage that
analytical tricks can lead to performance improvements. The introduction of
the bilateral filter to image processing has spurred many innovative works,
successfully accelerating the method [13, 78, 79]. For ddf, we hope for a
repetition of this phenomenon.

The universality of denoising algorithms promises adaptations to many
problems by small modifications. For example, a small change in Equation 4.8
makes our ddf formulation become agnostic of dimensionality of the signal. We
expect therefore that our denoising and deartifact algorithms are also applicable
to volumetric datasets and video. We also expect that adaptations can be made
for cases where the awgn assumptions do not hold. For example, Rousselle et
al. have demonstrated the adaptation of nlm to non-homogeneous noise with
unknown distributions [80].

Image denoising is a starting point for many related problems. Super-
resolution, inpainting, deblurring, demosaicking, detail enhancement, and
segmentation are related to image denoising.

While our research has been empirical, eventually the goal is to have a
better theoretical handle to improve parametrization of ddf and our denoising
algorithms. For this, we ask for the helpful response of the community.

122

References

[1] F. J. Anscombe, “The transformation of poisson, binomial and negative-
binomial data,” Biometrika, vol. 35, no. 3/4, pp. 246–254, 1948.

[2] C. Knaus and M. Zwicker, “Dual-domain image denoising,” in Proceedings
of the IEEE International Conference on Image Processing. IEEE, 2013.

[3] , “Progressive image denoising,” Image Processing, IEEE Transactions
on (under review).

[4] , “Dual-domain filtering,” 2014.

[5] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” Image Processing,
IEEE Transactions on, vol. 13, no. 4, pp. 600–612, 2004.

[6] A. Horé and D. Ziou, “Is there a relationship between peak-signal-to-noise
ratio and structural similarity index measure?” Image Processing, IET, vol. 7,
no. 1, pp. 12–24, 2013.

[7] R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, “Hdr-vdp-2: a cali-
brated visual metric for visibility and quality predictions in all luminance
conditions,” ACM Trans. Graph., vol. 30, no. 4, p. 40, 2011.

[8] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic
diffusion,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 12, no. 7, pp. 629–639, 1990.

[9] M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger, “Robust anisotropic
diffusion,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 421–432,
1998.

[10] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,”
in Computer Vision, 1998. Sixth International Conference on. IEEE, 1998, pp.
839–846.

123

[11] M. Elad, “On the origin of the bilateral filter and ways to improve it,” Image
Processing, IEEE Transactions on, vol. 11, no. 10, pp. 1141–1151, 2002.

[12] D. Barash, “A fundamental relationship between bilateral filtering, adaptive
smoothing, and the nonlinear diffusion equation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 6, pp. 844–847, 2002.

[13] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” ACM Transactions on Graphics (TOG), vol. 21, no. 3,
pp. 257–266, 2002.

[14] S. Paris, P. Kornprobst, and J. Tumblin, Bilateral filtering: Theory and applica-
tions. Now Publishers Inc, 2009, vol. 1.

[15] J. Wang, D. Xu, C. Lang, and B. Li, “An adaptive tone mapping method
for displaying high dynamic range images.” J. Inf. Sci. Eng., vol. 26, no. 3,
pp. 977–990, 2010.

[16] B. Zhang and J. P. Allebach, “Adaptive bilateral filter for sharpness en-
hancement and noise removal,” Image Processing, IEEE Transactions on,
vol. 17, no. 5, pp. 664–678, 2008.

[17] M. Zhang and B. K. Gunturk, “Compression artifact reduction with adap-
tive bilateral filtering,” in IS&T/SPIE Electronic Imaging. International
Society for Optics and Photonics, 2009, pp. 72 571A–72 571A.

[18] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp.
259–268, 1992.

[19] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image pro-
cessing and reconstruction,” Image Processing, IEEE Transactions on, vol. 16,
no. 2, pp. 349–366, 2007.

[20] A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms,
with a new one,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490–530,
2005.

[21] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[22] D. L. Donoho, “De-noising by soft-thresholding,” Information Theory, IEEE
Transactions on, vol. 41, no. 3, pp. 613–627, 1995.

124

[23] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image de-
noising using scale mixtures of gaussians in the wavelet domain,” Image
Processing, IEEE Transactions on, vol. 12, no. 11, pp. 1338–1351, 2003.

[24] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via
wavelet shrinkage,” Journal of the american statistical association, vol. 90, no.
432, pp. 1200–1224, 1995.

[25] A. Levin, B. Nadler, F. Durand, and W. T. Freeman, “Patch complexity,
finite pixel correlations and optimal denoising,” in Computer Vision–ECCV
2012. Springer, 2012, pp. 73–86.

[26] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-d transform-domain collaborative filtering,” IEEE Trans. on Image
Process., vol. 16, no. 8, pp. 2080 –2095, aug. 2007.

[27] M. Lebrun, A. Buades, and J. Morel, “A nonlocal bayesian image denoising
algorithm,” SIAM Journal on Imaging Sciences, vol. 6, no. 3, pp. 1665–1688,
2013.

[28] P. Chatterjee and P. Milanfar, “Patch-based near-optimal image denoising,”
Image Processing, IEEE Transactions on, vol. 21, no. 4, pp. 1635–1649, 2012.

[29] X. Li, W. Dong, and G. Shi, “Nonlocal image restoration with bilateral
variance estimation: a low-rank approach,” 2013.

[30] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “A non-local and
shape-adaptive transform-domain collaborative filtering,” in Proc. 2008 Int.
Workshop on Local and Non-Local Approximation in Image Processing, LNLA
2008, 2008.

[31] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian et al., “Bm3d image denoising
with shape-adaptive principal component analysis,” in SPARS’09, 2009.

[32] J. F. Murray and K. Kreutz-Delgado, “Learning sparse overcomplete codes
for images,” Journal of VLSI signal processing systems for signal, image and
video technology, vol. 45, no. 1-2, pp. 97–110, 2006.

[33] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for designing
overcomplete dictionaries for sparse representation,” Signal Processing, IEEE
Transactions on, vol. 54, no. 11, pp. 4311–4322, 2006.

125

[34] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 2009, pp. 2272–2279.

[35] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain
neural networks compete with bm3d?” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2392–2399.

[36] A. Levin and B. Nadler, “Natural image denoising: Optimality and inherent
bounds,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on. IEEE, 2011, pp. 2833–2840.

[37] P. Chatterjee and P. Milanfar, “Is denoising dead?” Image Processing, IEEE
Transactions on, vol. 19, no. 4, pp. 895–911, 2010.

[38] M. Elad and M. Aharon, “Image denoising via sparse and redundant rep-
resentations over learned dictionaries,” Image Processing, IEEE Transactions
on, vol. 15, no. 12, pp. 3736–3745, 2006.

[39] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama, “Digital photography with flash and no-flash image pairs,” in
ACM Trans. Graph., vol. 23. ACM, 2004, pp. 664–672.

[40] V. Nath, D. Hazarika, and A. Mahanta, “Blocking artifacts reduction us-
ing adaptive bilateral filtering,” in Signal Processing and Communications
(SPCOM), 2010 International Conference on. IEEE, 2010, pp. 1–5.

[41] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive dct for
high-quality deblocking of compressed color images,” in 14th Eur. Signal
Process. Conf., EUSIPCO, 2006.

[42] K. He, J. Sun, and X. Tang, “Guided image filtering,” Computer Vision–ECCV
2010, pp. 1–14, 2010.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numeri-
cal recipes in c: The art of scientific computing,” 1992.

[44] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using
MATLAB. Gatesmark Publishing Knoxville, 2009, vol. 2.

[45] M. Lebrun, “An Analysis and Implementation of the BM3D Image Denois-
ing Method,” Image Processing On Line, vol. 2012, 2012.

126

[46] H. Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage
filter in the wavelet domain and joint bilateral filter in the spatial domain,”
IEEE Trans. on Image Process., vol. 18, no. 10, pp. 2364 –2369, oct. 2009.

[47] S. Albrecht, I. Cumming, and J. Dudas, “The momentary fourier transfor-
mation derived from recursive matrix transformations,” in Digital Signal
Processing Proceedings, 1997. DSP 97., 1997 13th International Conference on,
vol. 1. IEEE, 1997, pp. 337–340.

[48] S. Z. Li, “Robustizing robust m-estimation using deterministic annealing,”
Pattern Recognition, vol. 29, no. 1, pp. 159–166, 1996.

[49] R. Frühwirth and W. Waltenberger, “Redescending m-estimators and deter-
ministic annealing, with applications to robust regression and tail index
estimation,” arXiv preprint arXiv:1006.3707, 2010.

[50] P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally
learned dictionaries,” Image Processing, IEEE Transactions on, vol. 18, no. 7,
pp. 1438–1451, 2009.

[51] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral vari-
ance estimation: A low-rank approach,” Image Processing, IEEE Transactions
on, vol. 22, no. 2, pp. 700–711, 2013.

[52] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Color image denoising
via sparse 3d collaborative filtering with grouping constraint in luminance-
chrominance space,” in Image Processing, 2007. ICIP 2007. IEEE International
Conference on, vol. 1. IEEE, 2007, pp. I–313.

[53] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun and
profit,” in Proceedings of the November 7-10, 1966, fall joint computer conference.
ACM, 1966, pp. 563–578.

[54] Signal and image processing institute. [Online]. Available: sipi.usc.edu/
database/

[55] Image and video denoising by sparse 3d transform-domain collaborative
filtering. [Online]. Available: www.cs.tut.fi/~foi/GCF-BM3D/

[56] Charis tsevis. [Online]. Available: www.tsevis.com

[57] Logo open stock. [Online]. Available: www.logoopenstock.com

127

sipi.usc.edu/database/
sipi.usc.edu/database/
www.cs.tut.fi/~foi/GCF-BM3D/
www.tsevis.com
www.logoopenstock.com

[58] D. G. Pelli, “Programming in postscript: Imaging on paper from a mathe-
matical description.” BYTE, vol. 12, no. 5, pp. 185–202, 1987.

[59] Claude knaus. [Online]. Available: http://knuth.unibe.ch/~knaus/

[60] S. Roth and M. J. Black, “Fields of experts: A framework for learning image
priors,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 2. IEEE, 2005, pp. 860–867.

[61] Stefan roth. [Online]. Available: http://www.gris.informatik.tu-darmstadt.
de/~sroth/research/software.html

[62] Hiroyuki takeda. [Online]. Available: http://users.soe.ucsc.edu/~htakeda/

[63] Clustering-based denoising with locally learned dictionaries (k-lld).
[Online]. Available: http://users.soe.ucsc.edu/~priyam/K-LLD/

[64] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” Image Processing, IEEE Transactions on, vol. 17, no. 1, pp. 53–69,
2008.

[65] Michael elad. [Online]. Available: http://www.cs.technion.ac.il/~elad/
software/

[66] An implementation and detailed analysis of the k-svd image denoising
algorithm. [Online]. Available: http://www.ipol.im/pub/art/2012/
llm-ksvd/

[67] Julien mairal. [Online]. Available: http://lear.inrialpes.fr/people/mairal/
software.php

[68] Image denoising with multi-layer perceptropns. [Online]. Available:
http://people.tuebingen.mpg.de/burger/neural_denoising/

[69] M. Lebrun, A. Buades, and J.-M. Morel, “Implementation of the "Non-Local
Bayes" (NL-Bayes) Image Denoising Algorithm,” Image Processing On Line,
vol. 2013, pp. 1–42, 2013.

[70] Implementation of the “non-local bayes” image denoising algorithm.
[Online]. Available: http://www.ipol.im/pub/art/2013/16/

[71] A. Buades, B. Coll, and J.-M. Morel, “Non-Local Means Denoising,” Image
Processing On Line, vol. 2011, 2011.

128

http://knuth.unibe.ch/~knaus/
http://www.gris.informatik.tu-darmstadt.de/~sroth/research/software.html
http://www.gris.informatik.tu-darmstadt.de/~sroth/research/software.html
http://users.soe.ucsc.edu/~htakeda/
http://users.soe.ucsc.edu/~priyam/K-LLD/
http://www.cs.technion.ac.il/~elad/software/
http://www.cs.technion.ac.il/~elad/software/
http://www.ipol.im/pub/art/2012/llm-ksvd/
http://www.ipol.im/pub/art/2012/llm-ksvd/
http://lear.inrialpes.fr/people/mairal/software.php
http://lear.inrialpes.fr/people/mairal/software.php
http://people.tuebingen.mpg.de/burger/neural_denoising/
http://www.ipol.im/pub/art/2013/16/

[72] Non-local means denoising. [Online]. Available: http://www.ipol.im/
pub/art/2011/bcm_nlm/

[73] Patch-based locally optimal wiener filtering for image denoising (plow).
[Online]. Available: http://users.soe.ucsc.edu/~priyam/PLOW/

[74] Nonlocal sparsity regularized image restoration: a low-rank approach.
[Online]. Available: http://www.csee.wvu.edu/~xinl/demo/saist.html

[75] P. Getreuer, “Total Variation Deconvolution using Split Bregman,” Image
Processing On Line, vol. 2012, 2012.

[76] Rudin-osher-fatemi total variation denoising using split berman. [Online].
Available: http://www.ipol.im/pub/art/2012/g-tvd/

[77] Reproducible research in computational science. [Online]. Available:
http://www.csee.wvu.edu/~xinl/source.html

[78] F. Porikli, “Constant time o(1) bilateral filtering,” in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp.
1–8.

[79] K. Narayan Chaudhury, D. Sage, and M. Unser, “Fast o(1) bilateral filtering
using trigonometric range kernels,” IEEE transactions on image processing,
vol. 20, no. 12, pp. 3376–3382, 2011.

[80] F. Rousselle, C. Knaus, and M. Zwicker, “Adaptive rendering with non-
local means filtering,” ACM Transactions on Graphics (TOG), vol. 31, no. 6, p.
195, 2012.

129

http://www.ipol.im/pub/art/2011/bcm_nlm/
http://www.ipol.im/pub/art/2011/bcm_nlm/
http://users.soe.ucsc.edu/~priyam/PLOW/
http://www.csee.wvu.edu/~xinl/demo/saist.html
http://www.ipol.im/pub/art/2012/g-tvd/
http://www.csee.wvu.edu/~xinl/source.html

130

132

Biography

Claude Knaus was a Ph.D. student and research assistant at the University of
Bern 2009 to 2013. His research interests are rendering and image denoising.
Before, he spent 10 years in the industry, including research and development
positions at Silicon Graphics Inc. and Object Technology Int. / IBM. He also
was involved with the Khronos Group in the specification of OpenGL ES and
OpenGL SC. He received his degree in computer science from eth Zurich in
1998.

133

	Introduction
	Image Denoising
	Contributions
	Overview

	Methodology
	Scientific Method
	Genetic Algorithm
	Metrics
	Mean Squared Error
	Peak Signal-to-Noise Ratio
	Structural Similarity Index
	Visual Assessment

	Related Works
	Energy Minimization
	Anisotropic Diffusion
	Bilateral Filtering
	Total Variation

	Kernel-based Methods
	Wavelet-based Methods
	Patch-based Methods
	Sparsity
	Alternative Patch-based Methods
	Theoretical Limits

	Discussion

	Dual-Domain Filter
	Noise Estimation in Spatial Domain
	Noise Estimation in Frequency Domain
	Guided Dual-Domain Filter
	Robust Noise Estimators
	Outlook

	Dual-Domain Image Denoising
	ddf Parametrization
	Discussion
	Results
	Conclusions

	Progressive Image Denoising
	Denoising as Gradient Descent
	Robust Noise Differential Estimation
	Shape Shifting Estimator
	Implementation
	Results
	Natural and Synthetic Images
	Alternative Robust Estimators
	Artifacts Study

	Conclusions

	Dual-Domain Image Denoising Revised
	Conclusions

	Artifact Removal
	Noise Artifact Removal
	JPEG Artifact Removal
	Conclusions

	Implementation
	Border Handling
	Color Images
	Block Processing
	FFT
	Array Shifting
	Array Indexing

	MATLAB Code
	Dual-Domain Filter
	Dual-Domain Image Denoising
	Progressive Image Denoising
	Dual-Domain Image Denoising Improved
	Artifact Removal

	CUDA Optimizations
	Unordered Sande-Tukey fft
	Minimize Memory Access

	Results
	Parameter Study
	Evaluation Process
	Benchmark Images
	csf Chart
	Noise Generation
	Image Denoising Methods

	Images and Tables
	Performance

	Conclusions
	Future

	References
	Biography

