Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation

Strasser, Michael; Monecke, Katrin; Schnellmann, Michael; Anselmetti, Flavio (2013). Lake sediments as natural seismographs: A compiled record of Late Quaternary earthquakes in Central Switzerland and its implication for Alpine deformation. Sedimentology, 60(1), pp. 319-341. Blackwell Science 10.1111/sed.12003

[img] Text
anselmetti_Strasser.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (11MB) | Request a copy

Central Switzerland lies tectonically in an intraplate area and recurrence rates of strong earthquakes exceed the time span covered by historic chronicles. However, many lakes are present in the area that act as natural seismographs: their continuous, datable and high-resolution sediment succession allows extension of the earthquake catalogue to pre-historic times. This study reviews and compiles available data sets and results from more than 10 years of lacustrine palaeoseismological research in lakes of northern and Central Switzerland. The concept of using lacustrine mass-movement event stratigraphy to identify palaeo-earthquakes is showcased by presenting new data and results from Lake Zurich. The Late Glacial to Holocene mass-movement units in this lake document a complex history of varying tectonic and environmental impacts. Results include sedimentary evidence of three major and three minor, simultaneously triggered basin-wide lateral slope failure events interpreted as the fingerprints of palaeoseismic activity. A refined earthquake catalogue, which includes results from previous lake studies, reveals a non-uniform temporal distribution of earthquakes in northern and Central Switzerland. A higher frequency of earthquakes in the Late Glacial and Late Holocene period documents two different phases of neotectonic activity; they are interpreted to be related to isostatic post-glacial rebound and relatively recent (re-)activation of seismogenic zones, respectively. Magnitudes and epicentre reconstructions for the largest identified earthquakes provide evidence for two possible earthquake sources: (i) a source area in the region of the Alpine or Sub-Alpine Front due to release of accumulated north-west/south-east compressional stress related to an active basal thrust beneath the Aar massif; and (ii) a source area beneath the Alpine foreland due to reactivation of deep-seated strike-slip faults. Such activity has been repeatedly observed instrumentally, for example, during the most recent magnitude 4.2 and 3.5 earthquakes of February 2012, near Zug. The combined lacustrine record from northern and Central Switzerland indicates that at least one of these potential sources has been capable of producing magnitude 6.2 to 6.7 events in the past.

Item Type:

Journal Article (Original Article)


08 Faculty of Science > Institute of Geological Sciences
08 Faculty of Science > Institute of Geological Sciences > Quaternary Geology

UniBE Contributor:

Anselmetti, Flavio


500 Science > 550 Earth sciences & geology




Blackwell Science




Flavio Anselmetti

Date Deposited:

08 Aug 2014 17:09

Last Modified:

16 Feb 2022 14:40

Publisher DOI:





Actions (login required)

Edit item Edit item
Provide Feedback