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ABSTRACT  

The accurate electron density and the linear optical properties of L-histidinium hydrogen 

oxalate are discussed in this paper. Two high resolution single crystal X-ray diffraction 

experiments were performed and compared with density functional calculations in the solid 

state as well as in the gas phase. The crystal packing and the hydrogen bond network are 

accurately investigated using topological analysis based on Quantum Theory of Atoms in 

Molecules, Hirshfeld surface analysis and electrostatic potential mapping.  
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The refractive indices are computed from couple perturbed Kohn-Sham calculations and 

measured experimentally. Moreover, distributed atomic polarizabilities are used to analyze 

the origin of the linear susceptibility in the crystal, in order to separate molecular and 

intermolecular causes. The optical properties are also correlated with the electron density 

distribution.  

This compound also offers the possibility to test the electron density building block approach 

for material science and different refinement schemes for accurate positions and displacement 

parameters of hydrogen atoms, in the absence of neutron diffraction data.    

 

KEYWORDS electron density, X-ray diffraction, amino acid salts, optical indicatrix, 

molecular polarizability  

1. Introduction 

The hydrogen bond (HB) X-H···Y is the most important inter-molecular interaction, in 

which an electropositive H atom “intercedes between two electronegative groups X and Y and 

brings them closer together”.1 Depending on the nature of X and Y, the bond can be stronger 

or weaker, with more or less covalent character.2 This flexibility is the reason of the large 

interest received by the HB, an essential component of the structure and function of biological 

molecules3 as well as of many inorganic materials.4 In HB species, the hydrogen atom might 

be subjected to dynamic phenomena that are crucial for the (bio)material properties; among 

these, the most important is the proton transfer, which can be induced by changing the 

thermodynamic conditions.5 More efforts are nowadays devoted to material science oriented 

research on HB crystal species. In this respect, the determination of the accurate electron 

distribution is fundamental to fully appreciate the nature of the chemical bonding6 and the 

contribution of the HB to the genesis of material properties.  



3 

 

Within a project on the determination of electron density in building blocks7 of metal 

organic frameworks8, in particular metal bio-organic frameworks (M-Bio-F),9 we are studying 

hydrogen bonded networks formed by amino acids in co-crystals or salts, precursors of the M-

Bio-F's. During this research we came across an interesting species: L-histidinium hydrogen 

oxalate (1), first characterized at ambient conditions by Prabu et al.10 1 has attracted our 

attention because of its molecular and supramolecular arrangement. In fact, the imidazole ring 

assumes a staggered conformation between the α-amino and the α-carboxyl groups, which 

forces alternate segregation of layers formed by L-histidinium helices and hydrogen oxalate 

chains. The structure is characterized by several hydrogen bonds, three of them are 

particularly important: 1) O-H…O between hydrogen-oxalates (originating the hydrogen 

oxalate chains); 2) N-H…O between two L-histidinium ions through imidazole nitrogen and 

carboxylic oxygen (which produce the L-histidinium helices, further reinforced by weaker N-

H...O bonds through the ammonium group); 3) N-H…O between the ammonium group of L-

histidinium and the hydrogen oxalate (which links the chain and the helices). Interestingly, the 

two shorter bonds are the homo-ionic, i.e. the inter-anionic O-H...O and the inter-cationic N-

H....O. There are no short interactions linking two hydrogen oxalate chains or two L-

histidinium helices, so that the alternating layers in the crystal are only weakly bound. 

Apart from interesting HB pattern, L-histidinium hydrogen oxalate belongs to the family of 

amino acids salts, which are attracting interest for their linear and non-linear optical properties 

and their potential applications as functional materials.11 Recently, there was much progress 

in the preparation of large size crystals and the applications of these organic materials which 

possess large (hyper)polarizabilities and could bring a variety of linear and non-linear optical 

properties. In the present work, we discuss the correlation between the atomic and electronic 

structures and the linear optical properties, investigated both theoretically and experimentally. 

In particular, we discuss the role of the HB's for the specific optical properties, in view of the 
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electron density distribution, following our recent work.12 This paper also reports on the 

determination of optimal positions for the hydrogen atoms, even in the absence of neutron 

diffraction data, and their implication on the electron density refinements.  

 

2. Experimental Section 

2.1 Synthesis and crystallization 

By interaction of L-histidine with oxalic acid one could expect rather rich crystal chemistry. 

In fact, a systematic investigation allowed obtaining a number of unknown compounds on 

which we will report in a forthcoming paper. Species 1, however, was previously reported by 

Prabu et al.,10 who prepared crystals of L-histidinium hydrogen oxalate by slow diffusion of 

acetone into an aqueous solution. Instead, we obtained L-histidinium hydrogen oxalate by 

mixing aqueous solutions containing equimolar amount of L-histidine (Sigma Aldrich, purity 

99%) and oxalic acid (Fluka, purity 99%) at ambient temperature. Supersaturated solution 

was prepared and stirred thoroughly without any precipitate left.  The solution was left for 

slow evaporation at ambient temperature; transparent crystals of large size and high purity 

were obtained after one day. The crystal habit was plate-like shape with c perpendicular to the 

plate (Figure 2). The synthesis was repeated several times to check the reproducibility of the 

crystals. It is interesting that using the racemic reagent D,L-histidine, instead of the 

enantiomerically pure L-histidine, we observed spontaneous resolution of a racemate of L-

histidinium and D-histidinium hydrogen oxalates, with the same structure as 1, but if crystals 

were grown from a solution stirred above 50°C, an unprecedented racemate was observed, 

identified as a di-valent salt of D- or L-histidinium oxalate (C6H11N3O2
2+. C2O4

2-), hereinafter 

2. Further details of the complete crystal chemistry from histidine-oxalic acid mixture will be 

reported elsewhere.13  
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2.2 Data collection and Preliminary Refinements 

Suitable single crystals for X-ray diffraction analysis were carefully selected under a 

polarizing microscope and glued on a glass fiber. Single crystal X-ray diffraction experiment 

was performed on Agilent SuperNova (MoK Al-filtered microsource14), equipped with an 

EoS detector, a motorized kappa goniometer along with Oxford Cryosystem 700 cryostream 

for low temperature. Two independent data collections were performed at 100K and 110K on 

two different samples. 110K data collection was performed in  scan mode, a total of 2795 

frames using a frame width of 1o were collected with an exposure of 10 seconds / 30 seconds 

per frame, for 38 hours. 100K data collection was performed in   scan mode, a total of 3157 

frames using a frame width of 1o were collected with an exposure of 12 seconds / 40 seconds 

per frame, for 48 hours. All the data were integrated using CrysalisPRo15. Analytical 

absorption correction was applied to the crystals, upon accurate indexing of the faces.  

The quality of the crystals was good enough for full experimental determination of the 

electron density distribution, ρ(r). The X-ray diffraction data were collected up to a resolution 

of 0.5 Å or better (0.45 Å for the data collection at 100 K). The coordinates of the known 

structure were used for initial least squares refinements using SHELX9716, carried out to 

determine accurately positions and anisotropical thermal parameters for non-hydrogen atoms 

(using higher order data only). The crystal data and data collection details are given in Table 

1. The final positional and equivalent isotropic thermal parameters of the non-hydrogen atoms 

are reported in supporting information file. 

 

2.3 Multipole refinement 

Multipolar refinements were carried out using the Hansen and Coppens formalism17 

implemented in the XD200618: 
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The electron density in the asymmetric unit is expanded in pseudo-atomic contribution and 

each of them is then split into ρc(r) and ρv(r) (core and valence electron densities), with 

possibility to expand or contract the electronic shells (through the κ and κ' parameters), to 

deviate from neutrality (through the population Pval; whereas Pcore is kept frozen) or to 

distribute the density aspherically (through spherical harmonics, Υlm± and relative populations 

Plm±). The radial part of the density functions is taken from atomic wave functions: the core 

and spherical valence functions are Volkov-Macchi ZORA atomic wave functions18, 19, while 

the radial functions of the deformation part are simple Slater functions with energy – 

optimized exponents.20 Each atom was assigned a finite multipole expansion, expanded at 

octapolar level for C, N and O and at the dipole level for H atoms (only dipole directed 

towards the X-H bond was included). A radial scaling for the spherical density was refined for 

each atom-type together with a scaling for the radial function for the deformation density (κ 

and κ’ were constrained to be equal to avoid divergence).  

It is known that non centrosymmetric structures might produce bias in the multipolar 

expansion, due to the lack of information about the phase of each structure factor which is 

instead limited to 0 or π in the centrosymmetric case.21 As it was demonstrated by Roversi,22 

the problem arises from "over-parameterization" as some linear combinations of the odd-

multipoles should be invariant, depending on the crystal class. In class 222, this is limited to 

one combination of octupolar functions in the global framework of the cell, namely the xyz 

octupole in Cartesian form, or Y32- using the spherical coordinate notation as in equation 2. 

Applying the appropriate constraint is difficult with XD2006 that adopts the local coordinate 
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system approach, on the other hand very useful for exportability of the multipoles, instead of a 

global unit cell framework. It should be considered, however, that for the building block 

restrained refinements (see discussion below) the problem does not hold, because multipoles 

are constrained to values calculated theoretically for the ions in isolation. The rather close 

similarity of those results with the free unconstrained refinements guarantees that the problem 

has not affected these results. Moreover, as pointed out by Roversi,22 the problem should be 

more consistent in smaller systems (fewer atoms per asymmetric unit) in higher non 

centrosymmetric crystal class symmetries.  

A Fourier peak search of the residual density resulted in peaks ranging from -0.21 to 0.26 e/ 

Å3 for 110K data set and -0.29 to 0.31 e/ Å3 for 100K data set in both refinements. These 

residuals are calculated from all the data with positive intensity collected up to a resolution of 

0.5 Å for both the data sets. The highest peak is located at 0.7 Å from C(6) of imidazole ring 

of L-histidinium molecule (110K data set); 0.6 Å from C(1) of carboxylic group of L-

histidinium molecule (100K data set).  Residual density maps are shown in Figure 1. The 

observed residuals (based on all collected data) are low and without systematic features. For 

the 100K data set, the residual density is more pronounced in the plane of the hydrogen 

oxalate, although this depends mainly on the higher resolution level which therefore includes 

a larger number of weaker reflections in the refinement and the Fourier summation.  

Interestingly the Meindl-Henn plots23 and the normal distribution of residual density shows 

that the models are substantially unaffected from systematic effects, see Supporting 

Information. 
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Table 1: Crystal data and structure refinement parameters for L-histidinium Oxalate 

L-histidinium Hydrogen-oxalate L- or D-histidinium Oxalate
Compound label 1 2 

Chemical Formula C6H10N3O2
+. C2O4H- C6H11N3O2

2+. C2O4
2- 

Formula Weight 245.2 245.2 
Crystal System Orthorhombic Orthorhombic 
Space Group P212121 P212121 

Z 4 4 
Dataset name 100K 110K 2 

T/K 100 110 253 
a/Å 5.5237(1) 5.5303(1) 6.6800(2) 
b/Å 6.7090(2) 6.7229(1) 9.2116(2) 
c/Å 26.8532(5) 26.8851(4) 16.3534(4) 

V/Å3 995.14 (4) 999.58(3) 1006.28(4) 
Density  (g/cm3) 1.62 1.63 1.62 

Data Collection  
Resolution (Å) 0.45 0.5 0.75 

Absorption  (mm-1) 0.142 0.141 0.140 
Crystal dimensions (mm) 0.1x0.2x0.2 0.13x0.2x0.3 0.04 x 0.06 x 0.28 

Total reflections 58629 67298 10953 
unique reflections 11590 8431 3553 

Rint 0.0375 0.0405 0.0390 
R 0.0273 0.0239 0.0340 

Spherical Atom Refinement  
R1 (I > 2 (I) ) 0.0397 0.0373 0.0414 

R1 (all data) 0.0431 0.0390 0.0514 
wR2 0.1018 0.0961 0.0939 
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 a b 

   

 c d 

Figure 1: Residual density maps for the planes containing the hydrogen oxalate and the 

imidazole ring of L-histidinium for the 110K data (a, b) and 100K data (c, d)  in charge 

constraint refinement conditions. Positive (blue) and negative (red) contour lines are drawn at 

step width of 0.1 e/ Å3. All the measured structure factors are used for these maps. 
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2.4 Theoretical calculations 

Periodic Density Functional Theory (PDFT) calculations were performed using 

CRYSTAL0924, optimizing the crystal structure by minimizing the electronic energy of the 

unit cell, without including thermal energy and entropy, therefore at T = 0 K. The functional 

adopted was B3LYP25 and the basis set was Pople-type 6-31G(2d,2p), which is one of the 

largest basis set that can be used in these kinds of calculations.  

Optical properties of the periodic system were calculated on the optimized geometry using 

Couple Perturbed Kohn-Sham theory, see Table 2. Using a rough approximation, the 

refractive index of a molecular crystal could be derived from the first order isotropic 

molecular polarizability through the Clausius-Mossoti equation.26 However, the situation is 

quite more complicated: first of all molecules (or molecular ions as in this case) are in general 

quite anisotropic; moreover there is a mutual interaction between molecules in aggregation, in 

part due to short range effect like hydrogen bonding, in part due to long range electrostatic 

interactions (induced polarization). In order to understand the effect of neighbouring 

molecules on atomic and molecular polarizabilities of L-histidinium hydrogen oxalate, we 

have calculated polarizability tensors for the two ions in isolation as well as in the first 

coordination sphere of hydrogen bonded neighbours of the crystal structure. Thanks to the 

approach we have recently proposed,12 we can calculate distributed atomic polarizabilities 

from gas phase single point calculations, using the experimental geometries of 100K model. 

Wave functions were calculated in the absence and in the presence of an applied electric field 

of magnitude 0.001 a.u. at the B3LYP/6-311++G(2d,2p) level of theory, using Gaussian09.27 

The corresponding charge densities were partitioned in keeping with the ideas of QTAIM 

using the AIMAll package.28 Atomic and molecular polarizability tensors were then 

calculated using PolaBer,12 which performs numerical derivatives of the electric dipole 

moment with respect to the applied field. This allows reconstructing a more sensible 
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molecular polarizability (i.e. of the molecule in the crystal environment) to be used for 

understanding the actual origin of the crystal linear susceptibility and therefore to justify the 

computed or observed refractive indices.  

 

2.5 Measurement of the refractive indices 

Refractive indices for the crystals of L-histidinium hydrogenoxalate were experimentally 

determined by the central illumination method (Becke line method).29 This method is based 

on the observation of so called Becke lines movement. The Becke bright halo lines are created 

near the junction between the crystal and the liquid as a result of refraction at the lens-like 

edge of the crystal. The lines are especially profound when there is a large difference of 

refractive indices between the two media. Becke lines movement can be observed when the 

image is thrown slightly out of focus. When the refractive index of crystal is near to that of 

the liquid, the crystal becomes almost transparent with Becke lines faint and usually coloured. 

The observed colours (Becke line dispersion staining)30 are the result of refractive index 

dispersion. Because the dispersion is typically lower for the crystal than for the liquid, it is not 

possible to get a match of refractive indices for all the wavelengths of light simultaneously. 

When the white light is used the refractive index match is usually done for the yellow light 

(nD where D = 589 nm). At this point, the Becke line observation shows yellow-orange line 

moving into the crystal and a blue line moving into the liquid, as the stage of the microscope 

is lowered against the objective. 

The accurate determination of refractive indices of the L-histidinium oxalate crystals (Figure 

2) were done in the polarized light with the usage of Axio Scope.A1 microscope (Carl Zeiss 

Microimaging GmbH). Crystals were immersed in liquid of known refractive index on a glass 

slide under the coverslip. The prepared sample was then moved under the polarizing 
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microscope and viewed through the 20x objective. Several immersion liquids were tested to 

determine three refractive indices in different orientation of the crystal.  

 

Figure 2: Crystals of 1 in two orientations against the vibration direction of plane polarized 

light marked with arrows. 

 

The matches for the three refractive indices of the examined crystals were done using a 

mixture of xylen isomers (nD= 1.496, T=298K) and a mixture of bromoform (nD=1.598, 

T=298K) with methylene iodide (nD = 1.742, T=298K).  The usage of appropriate liquids 

allowed determining the refractive indices of the crystals. Because of the natural crystal habit, 

it is very difficult to measure the nc refractive index and the value is an approximate one. The 

values of the refractive indices are present in Table 2. They are compared with theoretical 

values which are calculated using density functional theory and assuming no oscillation of the 

electric field (thus λ = ∞). 

Table 2: Refractive indices along the crystallographic 

 Experiment PDFT ( B3LYP) 

a  1.63 1.58 

b  1.50 1.45 

c  1.60 1.63 
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3. Results and discussion 

The discussion is structured as it follows: first we analyse in details the molecular and 

supramolecular structures; then we illustrate the theoretical breakdown of the crystal linear 

susceptibility in order to directly correlate the atomic and molecular polarizabilities with the 

crystal properties; finally, we analyse the features of the accurate electron density distribution 

(calculated or experimental) and empirially correllate them with the crystal properties.  

3.1 Crystal Structure description  

The atomic numbering scheme of 1 is shown in Figure 3. The asymmetric unit contains one 

L-histidinium and one hydrogen-oxalate. The solid state theoretical calculations and the 

experimental measures confirm that the oxalic acid is a semi-oxalate or hydrogen-oxalate 

mono-anion and that the L-histidine is monocationic with protonated amino and imidazole 

groups and a negatively charged carboxylate group. As anticipated the ions aggregate into 

chains, that form alternating layers, stacked along the longest crystallographic axis c (see 

Figure 4a). The L-histidinium layer is made of helical columns generated by the 21 screw axes 

parallel to a, as shown in black in Figure 4b. The hydrogen-oxalate ions form chains parallel 

to a  and stacked in layers along b.  

One of the interesting features of 1 is that it possesses very short hydrogen bonds 

interconnecting the ions. In particular, the two strongest HBs are the inter-chain O-H...O- 

(2.5052(5) Å) that links hydrogen oxalates and the +N-H....O- (2.6089(7) Å) that links 

imidazole and carboxylate groups of two L-histidinium, see Table 4. A medium-strong +N – 

H …O- type hydrogen bond (2.7982(7) Å) is present between the ammonium group (NH3
+) of 

the L-histidinium cation and one oxygen of the hydrogen oxalate. Weaker hydrogen bonds 

connect the hydrogen oxalate (acting as acceptor) and the ammonium or the imidazole groups 

of L-histidinium (donor).  
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Figure 3: Atomic numbering scheme for L-histidinium hydrogen-oxalate  

 

  

 a b 

Figure 4: a) L-histidine hydrogen-oxalate showing the alternating layers along the longest 

crystallographic axis (c axis); b) histidine layer showing along a .  
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Table 3: Hydrogen bonding parameters in the L-histidinium hydrogen-oxalate from the 

charge-constrained model with theoretical position of H atoms. Distances are in Å, angles in 

°. Estimated standard deviations are given in parentheses (computed only for D...A).   

Donor - H....Acceptor D - H H...A D...A D - H...A

N-H...O 
Ammonium 

N(1)-H(1A)....O(2)a 1.03 2.00 2.9280(6) 148 

N(1)-H(1B)....O(6)b 1.03 1.83 2.7982(7) 156 

N(1)-H(1C)....O(5)c 1.04 1.91 2.8915(7) 155 

N-H...O 
imidazole 

N(2)-H(2)....O(3)d 1.03 2.06 2.8681(6) 134 

N(2)-H(2)....O(5)d 1.03 2.10 2.9975(6) 145 

N(3)-H(3)....O(1)e 1.07 1.54 2.6089(7) 176 

O-H...O 
Hydrogen 

oxalate 
O(4)-H(4)....O(5)a 1.04 1.47 2.5052(5) 175 

Symmetry operations to generate HB acceptor atoms: 
a 1+x,y,z            

b 2-x, ½+y, ½-z            

c x,y,z            

d x, 1+y, z            

e ½+x, ½-y, -z         
 

3.2 Visualization of intermolecular interactions through Hirshfeld Surfaces 

The Hirshfeld Surfaces (HS)31 of the L-histidinium and the hydrogen oxalate ions in 1 have 

been generated and the normalised contact distance dnorm were plotted on top of them, using 

CrystalExplorer32 (Figure 5a and 5b). The HS analysis is interesting because it visualizes the 

area of influence of an intermolecular interaction. For example, the red regions on the 

surfaces in Figures 5a and 5b highlight the hydrogen bond sites of the L-histidinium cation 

and the hydrogen oxalate anion, respectively. In fact these regions address a very short 

contact with an atom inside the surface and a nearby ion (shown in the picture outside the 

surfaces).  
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Figure 5. Left: Hirshfeld surface of L-histidinium in 1 with dnorm plotted from -0.83(red) to 

1.1(blue) Å (a negative value indicates a contact shorter than the sum of Van der Waals radii). 

The volume inside the L-histidinium Hirshfeld surface is 172 Å3. Right: Hirshfeld surface of 

hydrogen oxalate in 1 with dnorm plotted from -0.89(red) to 0.73(blue) Å. The volume inside 

the hydrogen oxalate Hirshfeld Surface is 70 Å3. 

 

This area of influence can be quantified by partitioning the HS in terms of the closest internal 

and external atoms, thus measuring the portion of a surface "belonging" to a given 

intermolecular contact (some examples are shown in the supporting information file). From 

the histograms in Figure 6, we can visualize the relative contribution of each interaction type 

on L-histidinium and hydrogen oxalate. It is not surprising that the hydrogen bond is the 

dominating interaction in the entire structure (more than 50% for L-histidinium and more than 

70% for hydrogen-oxalate), although other close contacts also play a role, including a large 

proportion of non-directional H…H contacts between L-histidinium cations (27%), due to the 

side chain of the amino acid. Some H...H contacts also involve the proton of the hydrogen 

oxalate, which is however largely dominated by O…H contacts (67%). 
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Figure 6: Breakdown of the close contacts on the Hirshfeld surfaces of the L-histidinium (top) 

and the hydrogen oxalate (bottom).  

 

   

Figure 7. Left: Fingerprint plot of L-histidinium molecule in L-histidinium hydrogen oxalate. 

Close contacts are :1 is O…H, 2 is N…H, 3 is H…H, 4 is H…O, 5 is C…H and 6 is H…C. 

Right: Fingerprint plot of hydrogen oxalate molecule in L-histidinium hydrogen oxalate. 

Close contacts are: 1 is C…O, 2 is O…C, 3 is O…O, 4 is O…H, 5 is H…O and 6 is H…H  
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The intermolecular contacts can be represented also in the fingerprint scatter plots,33 see 

Figure 7, where di is the closest internal distance from a given point on the HS and de is the 

closest external contact. The fingerprint plot is divided into different regions based on the 

close contacts. The hydrogen bonding features in the closest environment of L-histidinium 

cation are labelled as 1 and 2, whereas for hydrogen oxalate anion as 4 and 5.  

3. 3 Optical indicatrix 

The refractive index measurement confirmed that the crystal is biaxial (i.e. it has two distinct 

optic axes as necessary for orthorhombic lattices) with a negative optic sign, Figure 8. In 

orthorhombic systems the axes of the optical indicatrix and the crystallographic axes coincide. 

 

Figure 8: Left: reaction to the gypsum plate showing biaxial interference figure characteristic 

for the crystals of negative optical character34. Right: interference figure of the crystal plate 

oriented parallel to the optic axis plane29. 

By comparing the crystal habit - structure relationship (see Figure 9) and the optical measures, 

it is concluded that the smallest refractive index coincides with b (see Table 2). The other two 

indices (along a and c) are larger and more similar. The couple-perturbed Kohn-Sham 

calculations indicate a different order (nc > na) with respect to experiment. It should be 

considered that these calculations are carried out at zero frequency (i.e. without including 

oscillation of the applied electric field) and therefore they underestimate the refractive indices, 



19 

 

measured instead at a finite frequency. In fact, theoretical na and nb are 0.05 smaller than the 

experimental values, in keeping with many simulations. However, the theoretical nc is 

apparently larger, but it is sensible to assume that the experimental determination is actually 

underestimated, probably because of the complicated measure along this direction, as 

anticipated in the experimental section.   

The refractive indices provide important information on the intermolecular bonding in a 

crystal, because they depend on the interaction of photons with matter. The anisotropy of the 

optic indicatrix depends on the non homogeneous way in which the ions are arranged in the 

structure and linked to each other; this is particularly cogent for the dominating intermolecular 

interactions, like the hydrogen bonds. Indeed, this crystal is extremely birefringent (Δnmax = 

0.14, from experiment; 0.18 from theory): along the fast direction (smaller n) there is a 

smaller resistance against the electric field of the incoming photons, which means there is less 

electron density to be polarized. The fastest direction is along b, i.e. perpendicular to the O-

H...O- HB of the hydrogen oxalate chain (lying in the ac plane) and to the +N-H....O- of the L-

histidinium helices (mainly elongated along c). Instead, along b no strong HBs are active.  

 

Figure 9: Crystal morphology of 1 in relation to the crystal structure. Hydrogen oxalate is red, 

L-histidinium is green; hydrogen atoms are omitted for clarity. 
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3.4 Ion polarizabilities and correlation with the optical indicatrix 

Electric dipole (hyper)polarizabilities (, , , …) of atoms and molecules determine the 

electronic and optical responses of materials. For example, the refraction of light or the 

Raman scattering depend on the first order dipole polarizability, the second order tensor 26 

(measured in the unit of a volume). In a crystalline solid, the properties are regulated by the 

electric susceptibilities ((1), (2), (3)), which could be considered as the periodic extension of 

the (hyper)polarizabilities, although susceptibilities are more precisely polarizabilities per unit 

of volume, therefore dimensionless.  

In principle, in a molecular crystal, the electric susceptibilities could be obtained through 

summation of the molecular polarizabilities, taking into account mutual influence of all the 

molecules in a lattice within classical electrostatics (a local field effect).35 However, one 

should take into account also the intermolecular electronic transitions that require proper 

quantum mechanical treatment. A simple oriented-gas model based on the additivity 

hypothesis is widely used for predicting the susceptibilities of molecular based materials. In 

this model, the perturbation of intermolecular interactions is neglected and 

(hyper)polarizabilities are added up taking into account the molecular orientation.36 Doubts 

were casted on the validity of this model37 and nowadays it is quite established that 

intermolecular interactions, especially hydrogen bonds, break the additive scheme at least 

when dealing with non-linear susceptibilities ((2), (3), …).38 On the other hand, the first 

order polarizability  is mainly due to intra-molecular chemical bond effects rather than 

intermolecular interactions and the additivity hypothesis is more valid.38 Recent works 

showed the importance of local field corrections to match the experimental refractive index.39 

Similarly to the charge distribution, one would prefer to analyse atomic i rather than the 

molecular , especially because this allows to appreciate the role of each atom or functional 
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group in a molecule. In this respect, there have been some proposals to calculate distributed 

atomic polarizabilities, i.e. to breakdown the total molecular polarizability into atomic 

contributions.40 Recently, some of us developed a methodology to calculate and visualize 

atomic i tensors, tested for many compounds, including some amino acids.12 The 

polarizability is calculated for each atom from the numerical derivation of the atomic dipole 

moment with respect to the electric field. This requires an atomic partitioning of the electron 

density, for example using the QTAIM41. In order to avoid the well-known problems due to 

origin dependence, the method suggested by Keith42 was adopted: the atomic dipole is 

partitioned into a polarization term (the dipole calculated inside an atomic domain) and a 

charge translation term (the dipole generated by distributing the atomic charges at bond 

critical point sites). Noteworthy, the method can be safely used also for non-neutral 

molecules, the additivity to a molecular polarizability is always perfect (if the electron density 

partitioning is exact) and the exportability is in general very good.12 Within this approach, the 

atomic polarizability tensors are visualized as ellipsoids in the same three-dimensional real 

space as the molecule, assuming 1 Å3 ≡ 1 Å, although normally a scaling factor is necessary 

to reduce the size of polarizability ellipsoids for visualization purposes.  

Here, we report the results of distributed atomic polarizabilities calculated for the ions of 

species 1, focusing on the intra- and inter-molecular factors which mainly affect the 's, see 

Figure 10. In general, the atomic polarizabilities are larger along the bond directions, 

especially toward atoms with high polarizabilities and connected through stronger bonds. This 

is a simple "cooperative" effect that could be justified also with classical electrostatics, but it 

can be calculated with precision only using proper quantum mechanical treatment. In fact, the 

polarizability ellipsoids of oxygen atoms are elongated along the C–O bonds in the 

carboxylate or carboxylic groups. For hydroxyl oxygens, however, there is a small rotation 

due to the O-H bond. H has a very small polarizability (prolated along the X-H bond 
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direction) due to its low electron population and therefore it has only a minimal influence on 

its neighbours. The sp2 hybridized carbon atoms are normally associated with oblate 

ellipsoids, to better account for their trigonal coordination. In the imidazole ring, atomic 

polarizabilities are spread over the plane of the ring: N(2) and N(3) are more polarizable than 

the C atoms, as expected. 

With our approach it is possible to analyse the behaviour of the two ions in aggregation, by 

calculating the atomic polarizabilities in all the dimers produced by the stronger HBs of 1 (see 

Figure 10c-e). From Figure 10c, we see that O5c (the HB acceptor in a hydrogen oxalate 

dimer) slightly modifies the orientation and stretching of its polarizability tensor, due to the 

hydrogen bond. In general the whole anion changes the shape of the polarizability tensor 

which becomes larger in the HB direction. However, the isotropic polarizability (calculated as 

the arithmetical average of the diagonal tensor components) does not change significantly. For 

example, in a hydrogen oxalate dimer the two anions have iso = 49.4 (HB donor) and 48.8 

Bohr3 (HB acceptor), whereas for the isolated hydrogen oxalate iso = 48.3 Bohr3. On the 

contrary, the anisotropy of the tensor is much more affected: 11/33 (the ratio between the 

largest and smallest components) is 2.05 for an isolated anion but 2.45 for the HB acceptor 

anion in a dimer and 2.40 for the central anion of a trimer (acting both as acceptor and donor, 

not shown in the figure). This means that the hydrogen oxalate chain motif in 1 should 

produce a larger crystal polarizability (hence susceptibility) along the direction of the chain 

(a) for two reasons: a) the chains elongate along the direction of larger component of the 

anion polarizability; b) the HB increases by ca.20% the anisotropy of the polarizability in the 

same direction. The second important direction is c because the molecular plane of all 

hydrogen oxalates is in fact parallel to ac (thus many C=O bonds have components also along 

c). In fact, a hypothetical breakdown of the crystal susceptibility shows that the hydrogen 

oxalate anions would give a large anisotropy. 11= 0.45, 22= 0.22 and 33= 0.41 are 
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calculated after summation of the polarizabilities of the four gas phase anions as oriented in 

the unit cell. This is further increased if we use the polarizabilties of hydrogen oxalates 

computed for the anion embedded in a chain (11= 0.50, 22= 0.21 and 33= 0.37). 

On the other hand, the L-histidinium is itself more isotropic (11/33 = 1.36 in isolation) than 

hydrogen oxalate. Moreover, it is not oriented to maximize the polarizability along any 

specific crystallographic direction. Therefore, the contribution to the crystal susceptibility is 

overall rather isotropic (11 = 0.70, 22 = 0.64 and 33 = 0.67 using the polarizabilities 

calculated for the isolated cation and summing up the four cations in the cell). The isotropic 

molecular polarizability of L-histidinium is not much affected by the hydrogen bond (Figure 

10d): iso = 92.6 and 86.5 Bohr3, for the hydrogen bond donor and acceptor molecules, 

compared to iso = 89.8 Bohr3 for the isolated cation. However, the strong HB that connects 

the two cations is highly directional (almost parallel to c). If we calculate the contribution to 

crystal susceptibility using a cation perturbed by two other cations in the L-histidinium 

helices, then 33 would be quite enhanced (11= 0.67, 22= 0.61 and 33= 0.79). 

The combined effects of L-histidinium and hydrogen oxalate produce the larger 11 and 33 

components (11= 1.17, 22= 0.82 and 33= 1.16, from which one would calculate na=1.47, 

nb=1.35, nc=1.47). If we then consider the Lorentz correction for the lattice effects on the 

local field34 (i.e. increased polarizability due to induced electric moments of all molecules in 

the crystal), the refractive indices become na=1.62, nb=1.43, nc=1.61, which are quite close to 

those calculated ab initio from couple-perturbed Kohn-Sham theory (see Table 2), although na 

results larger, as from the experiment determination. The perturbation of the crystal packing 

on the isolated anions is also evident from the enhancement of the molecular dipole moments, 

a feature typically observed in crystals, although the extent is often debated43. Here this 

comparison is a bit problematic because, talking about ions, the two dipole moments would be 
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origin dependent. Anyway, based on the multipolar refinements described in the next section 

and using the center of mass as reference (for the geometries of the ions as in the crystal), an 

enhancement is observed for both ions: from 4.4 to 6.1 Debye for hydrogenoxalate and from 

13.3 to 15.5 Debye for L-histidinium. This is in agreement with an enhancement of the two 

polarizabilities as well.   

Further adjustment of the molecular polarizabilities are possible taking into account also the 

HB between the cation and the anion (Figure 10e), which are however weaker than the two 

homo-ionic ones. The molecular iso for the hydrogen oxalate (HB acceptor) is 45.8 Bohr3, i.e 

smaller than the isolated anion, whereas iso for L-histidinium (93.5 Bohr3) is larger than in 

isolation, in keeping with a small charge transfer from the anion to the cation. The anisotropy 

of the hydrogen oxalate is also increased by this interaction (11/33 = 2.57), which reduces 

the polarizability component along the direction perpendicular to the main plane of the 

molecule (i.e. in the direction of the b axis).  

With this analysis we can conclude that the measured or calculated crystal refractive indices 

reflect mainly the specific orientation of the molecular polarizabilities of the ions, especially 

of the hydrogen oxalates. The perturbation of the HBs is not large, but anyway contributes to 

stretch the polarizability tensors in the ac plane. Both features, molecular and intermolecular, 

are in keeping with larger na and nc and smaller nb refractive indices (see Table 2) and 

therefore with the significant birefringence of 1.  

An interesting comparison is possible with species 2, the unprecedented polymorphic form of 

histidinium oxalate. Although it was not possible to measure more accurate data and the 

refractive indices, Kohn-Sham calculations predict an even higher birefringence in that 

species, n = 0.19. 2 and 1 have the same orthorhombic P212121 space group, but the packing 

of 2 is completely different with dianionic oxalates surrounded only by histidinium dications 

(Figure 11). In this case, the oxalate anion, the carboxylic and the imidazole group of 
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histidinium (i.e. the three sources of polarizability) define planes which are almost parallel 

whose normal direction is almost parallel to a, which is therefore associated with a pretty 

smaller refractive index. An additional feature is favouring a large anisotropy: the high 

polarizability of a di-anion like oxalate, compared to hydrogen oxalate mono-anion. Further 

study on this material and the complete crystal chemistry of histidine oxalate salts is in due 

course and will be reported in another paper.13 

 

Figure 10: Atomic polarizability ellipsoids for (a) isolated hydrogen oxalate anion, (b) 

isolated L-histidinium cation, (c) hydrogen oxalate dimer bounded by O4–H4…O5 hydrogen 

bond, (d) L-histidinium dimer bounded by N3–H3…O1 and (e) L-histidinium hydrogen 

oxalate bounded by N1–H1B…O6. The scaling factor of polarizabilities is 0.4 Å-2. 
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Figure 11: The crystal packing of C6H11N3O2
2+. C2O4

2- (2).  Histidinium is plotted in green 

and oxalate in red. At variance from 1, this structure is not characterized by homo-ionic 

chains or helixes. 
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3. 5 Electron density modelling 

3.5.1 General features  

The accurate electron density distribution of D,L-histidine from X-ray diffraction was 

reported by Coppens et al.44. It crystallizes, of course, in zwitterionic configuration with 

molecules packed in layers and linked head to tail through strong imidazole-carboxylate and 

ammonium-imidazole hydrogen bonds. The electron density of L-histidine instead has not 

been investigated experimentally, so far.  

The L-histidinium hydrogen oxalate is a crystalline salt which offers flexibility of the 

molecular design as discussed earlier. The concept of building blocks can be tested for the 

molecular cation and anion (although they are not the same building blocks of the M-

BioMOF's materials we will investigate): their electron densities can be calculated in isolation 

and expanded in atomic distributed multipoles, following the Hansen and Coppens model17 

and checking how this model is different from a refinement of the relaxed molecular densities 

(i.e. mutually perturbed and exchanging electrons). Thus, several electron density refinements 

were tested against the measured X-ray diffraction data: 1) building block model: electron 

density multipoles are rigidly imported from theoretical calculations of the two ions in 

isolation; 2) charge constrained model: the two ions are forced to +1 and -1 charge, although 

allowed to mutually polarize their electron densities; 3) charge transfer model, where both 

mutual induction and charge transfer are allowed. A summary of the refinements' results are 

presented in Table 5.  

Crucial parameters for each model are the positions of H atoms,I which were constrained to 

meaningful X-H distances for each refinement, see table 5. Average neutron diffraction values 

were taken from the refinements of similar species in similar hydrogen bonding networks. 

                                                 
I Neutron diffraction beamtime was requested for this compound, but it was not awarded, so 
we cannot use accurate positioning of the H atoms. 
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Solid state NMR data are also available for 145. A model using the X-H distances of the 

geometry optimization using PDFT calculations on 1 was also tested as well as a free 

refinement of H positions, a procedure that however may lead to unreasonable results. Apart 

from electron density parameters of H, the choice affects also the refined atomic displacement 

parameters. An alternative model was also tested: the anisotropic parameters for H atoms 

were calculated using the rigid body approximation of each ion and including internal motion 

from experimental X-H stretching using the software SHADE46 and then keeping these 

parameters rigid during the refinement. This treatment is somewhat similar to the refinement 

proposed by Koritsanszky et al.47 for potassium hydrogen-tartrate. From the table 5, it can be 

observed that the refined Uiso's of Hydrogens are sometime problematic (negative or anyway 

quite close to 0). Models with X-H distances reset to theoretically predicted values reduce 

these problems in most cases. Otherwise, the SHADE model is an excellent alternative 

because it avoids Uiso refinement. Upon comparison of dataset at the same resolution level, 

the close similarity between all the agreement indices of various models confirms that the X-

ray data are not able to address one model as better. Therefore, the model constructed with 

theoretical X-H distance and Uij from SHADE could be evaluated as the most accurate 

(although having slightly higher R-factors) because using less parameters in the refinement 

(thus reducing the correlation) and more information from external source. On the other hand, 

the model with X-H from neutron averages would be the most straightforward because it 

requests the least additional information, which is easily available from databases. It is 

interesting that all these models for H positions (apart from the free X-H refinement) 

reproduce a very similar electron density distribution, within the experimental error, as also 

evident from the calculation of the properties.  

Another interesting comparison is that between the various constraints on the ion charges. The 

agreement indices of a charge constrained or a charge transfer model are very similar for the 
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100K dataset (whereas for the 110K dataset they are more dissimilar). This means that in 

general it cannot be easily assessed whether a charge transfer from the anion to the cation 

occurs or not and even minor differences in the data correction procedures might easily affect 

this value. On the other hand, using rigid building blocks a significant deviation is observed, 

which implies that apart from charge transfer the mutual perturbation of the ions is, at least in 

this strongly bonded salt, quite significant and well observable. 

 

Table 5: XD refinements with different positioning of hydrogen atoms (based on all data with 

I > 0). Shaded cells indicate the problem of Uiso for one or more Hydrogen atoms 

H positions 

100K (dmin = 0.45 Å) 100K (truncated at dmin =0.5 Å) 110K (dmin = 0.5 Å) 
Charge 
Constraint  

Charge Transfer 
Charge 
Constraint  

Charge Transfer 
Charge 
Constraint  

Charge Transfer 

 Uiso 
< 0 

R(F) 
 Uiso  
< 0 

R(F) 
 Uiso  
< 0 

R(F) 
 Uiso  
< 0 

R(F) 
 Uiso  
< 0 

R(F) 
 Uiso 
< 0 

R(F) 

Neutron 
averages(a)  

0.0341 
 

0.0341 
 

0.0277 
H(3) 
H(4) 

0.0277 
H(1B)
H(3) 

0.0279 
 

0.0272 

NMR(b) 
 

0.0341 
 

0.0341 
 

0.0277 
H(3) 
H(4) 

0.277 
H(1B)
H(3) 

0.0279 
 

0.0272 

Refined X-H (c) H(4) 0.0338 H(4) 0.0338 H(4) 0.0273 
H(3) 
H(4) 

0.0273 
 

0.0270 
 

0.0269 

PDFT(d)  0.0341  0.0341  0.0278 H(3) 0.0277 
H(1B)
H(3) 

0.0280  0.0273 

PDFT+ 
SHADE(e)  

0.0343  0.0343  0.0279  0.0279  0.0283  0.0274 

Theoretical 
multipoles+ 
neutron 
averages(f) 

 0.0382    0.0323    0.0326   

 
a. frozen X-H distances from average neutron data for histidinium48 and for hydrogen 
oxalate49 
b. frozen X-H distances from NMR data45 for histidinium and from neutron data49 for 
hydrogen oxalate. 
c. X-H distances freely refined.  
d. frozen X-H distances from periodic density functional calculations. 
e. X-H distances as in d); ADP’s of Hydrogen’s calculated with SHADE46. 
f. X-H distances as in model a); multipoles rigidly taken from theoretical calculations of 
the two isolated ions (building block approach). 
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3.5.2 Charges of the ions in the crystal 

The charges calculated from the quantum theory of atoms in molecules (QTAIM41) or from 

monopole coefficients of the multipolar expansion are reported in Tables 6 and 7, for all the 

investigated models. There is a clear dependence on the dataset: for example, the 110K data 

predict larger charge transfer between the ions (L-histidinium is less positive and hydrogen 

oxalate is less negative than their formal +1 and -1). From the 100K data, we learn that the 

resolution is only marginally relevant, as charges calculated from dmin = 0.45 Å or dmin = 0.5 

Å models are very similar.  

If the H atoms are fixed using external information (neutron diffraction, NMR, PDFT) the 

charges are quite similar, whereas if they are freely refined the molecular charges decrease. 

Albeit the agreement indices are slightly smaller, the refinement of H positions is not 

recommended, given the high correlation among the parameters (dipole functions and 

coordinates), which in this case produces significantly shorter, and unrealistic, X-H distances.  

The QTAIM charges of the constrained models adhere to +1 and -1, in keeping with the fact 

that they normally mimic the sum of atomic monopoles (but not true for each individual 

atomic charge). The most interesting data is the QTAIM charge from the direct integration of 

the PDFT electron density, which gives 0.85 for the two ions. If this density is expanded in 

multipoles, using equation (2), we note that the computed charges are higher in absolute 

value, even if a flexible charge transfer model is refined. This means that the close similarity 

between QTAIM charges from the charge transfer 100 K multipolar model and from the 

direct integration of PDFT density is likely just incidental. The fluctuation observed in the 

various models refined from experimental data is an indication of the "actual" experimental 

uncertainty. We may conclude that even in the presence of strong hydrogen bonding, the least 
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biased (and therefore more exportable) multipolar model is the charge constrained where ions 

are rigidly treated, in keeping with the discussion in the previous paragraph. 

 

Table 6: Charges of L-histidinium (Hist) and hydrogen oxalate (Oxal) ions from QTAIM or 

from monopole coefficients of the charge transfer multipole expansion for different models of 

H positioning. The slight difference between absolute QTAIM charges is due to precision of 

the numerical integration within atomic basins.  

 
Model 

H position 

100K (dmin = 0.45 Å) 100K (dmin = 0.50 Å) 110K (dmin = 0.50 Å) 

QTAIM Multipole QTAIM Multipole QTAIM Multipole 

Hist Oxal Hist Oxal Hist Oxal Hist Oxal Hist Oxal Hist Oxal 

Neutron 
average  

0.86 -0.82 0.82 -0.83 0.87 -0.84 0.84 -0.84 0.72 -0.71 0.68 -0.68 

NMR  0.86 -0.83 0.83 -0.83 0.87 -0.84 0.84 -0.84 0.72 -0.71 0.69 -0.69 

X-H 
Refinement 

0.78 -0.76 0.76 -0.76 0.79 -0.77 0.77 -0.77 0.66 -0.64 0.62 -0.62 

Theoretical  0.85 -0.83 0.83 -0.83 0.86 -0.84 0.84 -0.84 0.71 -0.70 0.68 -0.68 

Theoretical 
+SHADE  

0.83 -0.80 0.82 -0.82 0.84 -0.81 0.82 -0.82 0.69 -0.67 0.66 -0.66 
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Table 7: QTAIM or multipole charges of L-histidinium and hydrogen oxalate ions from 

charge constraint model using theoretically predicted H position. For sake of comparison, the 

periodic B3LYP charges from primary density or from multipolar fitting are also given.  

Model 
QTAIM Multipole 

Hist Oxal Hist Oxal 

Experimental Dataset 
Charge constrained model 

100K (dmin = 0.45 Å) 1.02 -0.99 1.00 -1.00 

100K (dmin = 0.50 Å) 1.02 -1.00 1.00 -1.00 

110K (dmin = 0.50 Å) 1.04 -1.02 1.00 -1.00 

Periodic  
DFT calculations 

primary density 0.85 -0.85 - - 

charge constrained model 1.03 -1.00 1.00 -1.00 

charge transfer model 0.97 -0.94 0.93 -0.94 

 

 

3.5.3 QTAIM Analysis of Hydrogen Bonding 

A full QTAIM analysis was carried out on all experimental and theoretical electron density 

models of 1. The properties at the bond critical points of the most relevant HBs are listed in 

Table 8. All models are qualitatively in agreement: when comparing with PDFT calculations 

we must consider that the optimized geometry is associated with shorter HBs, mainly due to 

neglecting the zero point vibration effects. Therefore, the theoretical density predicts in 

general stronger interactions, with the only exception of H(2)...O(5), which is predicted 

longer. The substantial equivalence between a charge constrained or a charge transfer 

refinement tells us that there is no special improvement from a more flexible model. It is 

interesting that the two stronger HBs, O(4)-H(4)...O(5) (interconnecting two hydrogen 

oxalates) and N(3)-H(3)...O(1) (interconnecting two L-histidinium cations) are associated not 

only with the larger electron density, but also with a negative energy density, especially in the 

theoretical PDFT results, which is a clear sign of incipient covalency of the bonds50. 
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Noteworthy, the vectors interconnecting donor and acceptor groups of these two HBs have 

components only along a and c. As discussed in section 3.4, for the generation of linear 

susceptibility the role of HB is mainly that of "organizing" the atomic/molecular 

polarizabilities, which accumulate in the ac plane. The HB also contributes to a slight 

enhancement of the atomic polarizabilities along the HB direction and we can correlate this 

effect with the augmented bonding electron density. Using the criterion of Espinosa et al.6r to 

evaluate the contribution to the binding energy from the potential energy density at the critical 

points, we calculate a stabilization of ca. 20 and 25 Kcal/mol for the inter-cation and inter-

anion HBs, respectively (or even 30 Kcal/mol using the theoretical density). This gives an 

idea of the HB energy necessary to perturb the molecular polarizabilities. Noteworthy, while 

higher electron density in the inter-anionic O-H....O bonds could be anticipated based on the 

crystal packing and geometries, the stronger influence of the inter-cationic Nimidazole-H....O 

and the lower influence of the interactions between anion and cation is less predictable and it 

could be quantified only from very accurate electron density measures or calculations. 
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Table 8: Topological analysis of intermolecular interactions at bond critical points (bcp): (r) 

is given in eÅ-3, 2(r) in eÅ-5. d1 and d2 are distances between bcp and atom 1, 2 (Å), R1-2 is 

their summation.  ellipticity (dimensionless); G and H are the kinetic and total energy 

densities (in hartreeÅ-3). CC is a charge constrained model, CT a charge transfer model. 

Interaction Model Dataset (r) 2(r) R1-2 d1 d2  G H 

H(1A)...O(2)a 

CC 100K 0.130 1.87 2.02 0.73 1.29 0.02 0.11 0.02 
CC 110K 0.106 1.95 2.04 0.75 1.30 0.18 0.11 0.03 
CT 100K 0.129 1.97 2.02 0.74 1.28 0.05 0.12 0.02 
CT 110K 0.105 1.95 2.05 0.75 1.30 0.20 0.11 0.03 

PDFT opt geom  0.155 1.73 2.03 0.77 1.26 0.03 0.12 0.00 

H(1B)...O(6)b 

CC 100K 0.181 2.70 1.82 0.64 1.19 0.09 0.17 0.02 
CC 110K 0.156 3.15 1.84 0.64 1.21 0.13 0.18 0.04 
CT 100K 0.187 3.01 1.83 0.63 1.19 0.06 0.19 0.02 
CT 110K 0.153 3.16 1.85 0.64 1.21 0.13 0.18 0.04 

PDFT opt geom  0.229 2.41 1.87 0.68 1.19  0.05 0.18 -0.01 

H(1C)...O(5)c 

CC 100K 0.159 2.26 1.93 0.67 1.26 0.04 0.14 0.02 
CC 110K 0.129 2.47 1.95 0.68 1.27 0.12 0.14 0.03 
CT 100K 0.154 2.37 1.93 0.68 1.25 0.03 0.15 0.02 
CT 110K 0.126 2.46 1.92 0.69 1.27 0.14 0.14 0.03 

PDFT opt geom  0.263 2.80 1.80 0.64 1.16 0.01 0.22 -0.02 

H(2)...O(3)d 

CC 100K 0.159 1.98 2.09 0.84 1.25 0.11 0.13 0.01 
CC 110K 0.111 1.66 2.11 0.80 1.31 0.08 0.10 0.02 
CT 100K 0.124 1.70 2.12 0.82 1.30 0.07 0.10 0.01 
CT 110K 0.117 1.72 2.09 0.80 1.30 0.04 0.10 0.02 

PDFT opt geom  0.229 2.43 1.86 0.67 1.19 0.02 0.18 -0.01 

H(2)...O(5)d 

CC 100K 0.155 1.94 2.09 0.82 1.27 0.05 0.13 0.01 
CC 110K 0.091 1.53 2.14 0.78 1.35 0.08 0.09 0.02 
CT 100K 0.112 1.66 2.10 0.78 1.32 0.04 0.10 0.02 
CT 110K 0.098 1.60 2.12 0.79 1.34 0.03 0.09 0.02 

PDFT opt geom  0.081 1.01 2.35 0.97 1.39 0.07 0.06 0.01 

H(3)...O(1)e 

CC 100K 0.340 4.17 1.55 0.45 1.09 0.03 0.33 -0.04 
CC 110K 0.325 4.56 1.54 0.46 1.08 0.04 0.34 -0.02 
CT 100K 0.391 4.70 1.55 0.48 1.07 0.04 0.39 -0.06 
CT 110K 0.349 4.33 1.54 0.47 1.07 0.04 0.34 -0.04 

PDFT opt geom  0.466 3.90 1.57 0.51 1.06 0.03 0.41 -0.13 

H(4)...O(5)a 

CC 100K 0.508 5.38 1.47 0.45 1.02 0.02 0.51 -0.13 
CC 110K 0.422 5.17 1.47 0.41 1.06 0.01 0.43 -0.07 
CT 100K 0.439 6.12 1.47 0.44 1.03 0.03 0.49 -0.06 
CT 110K 0.426 5.12 1.47 0.41 1.05 0.01 0.43 -0.07 

PDFT opt geom  0.560 3.69 1.49 0.46 1.03 0.02 0.48 -0.22 
Symmetry a) 1+x, y, z b) 2-x, ½+y, ½-z c) x, y, z d) x, 1+y, z e) ½+x, 3/2-y, -z 

 

3.5.4 Electrostatic potential 

Electrostatic potential for the L-histidinium and hydrogen oxalate ions was calculated from 

the experimental charge density51 in both data sets for different refinement conditions and 

visualised with MOLISO,52 see the plots Figures 12 and 13. The electrostatic potential is 
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important for the study of intermolecular interactions, as it plays a key role in process of 

molecular recognition and it is also fundamental for the evaluation of intermolecular 

interaction energy and the lattice energy.  

What is especially interesting here is the zwitterionic nature of L-histidinium. In fact, beside it 

is a cation, it preserves a typical bivalent nature of all neutral zwitterionic amino acids. Of 

course, the region of positive potential is more extended, but the carboxylate remains slightly 

negative (or almost zero), regardless the kind of refinement. The same holds true for the 

hydrogen oxalate, where the negative potential dominates the external region of the anion but 

at the proton site, where it is positive. The potential is higher, in absolute values, for the 

charge constrained models but the distribution of charged regions is almost identical. The two 

different data sets also offer a possibility to appreciate the experimental uncertainty.   
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Figure 12: The electrostatic potential of L-histidinium plotted on a charge density isosurface 

at 0.5 e Å-3 for: a) 110 K data, charge constraint model; b) 110 K data, charge transfer model; 

c) 100K data, charge constraint model d) 100K data, charge transfer model. The same colour 

gradient scheme (0.0 eÅ-1 red; 2.80 eÅ-3 blue) is used for all plots.  
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Figure 13: The electrostatic potential of Hydrogen oxalate plotted on a charge density 

isosurface at 0.5 e Å-3 for: a) 110 K data, charge constraint model; b) 110 K data, charge 

transfer model; c) 100K data, charge constraint model d) 100K data, charge transfer model. 

The same colour gradient scheme (-0.5 eÅ-1 red; 2.0 eÅ-3 blue) is used for all plots. 
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4. Conclusions 

We have analysed the accurate electron density distribution of L-histidinium hydrogen 

oxalate which belongs to the family of organic salts of amino acids, known for their optical 

properties and therefore potentially interesting materials. In particular, our purpose was to 

correlate the measured or calculated refractive indices with the main features of the electron 

density distribution, focusing on the role of stronger intermolecular interactions.  

Using the analysis of the Hirshfeld surfaces, we have shown that the hydrogen bonds have 

the largest area of influence over the two ions, even though L-histidinium has a relatively 

large side chain which produces also other kinds of (weaker) contacts. The orientation of the 

strongest hydrogen bonds (i.e. shortest and associated with the largest electron density) is 

fundamental to explain the particular anisotropy of the optical indicatrix of 1: the smallest 

refractive index, in fact, coincides with the direction lacking of strong HBs. However, the HB 

itself is not dramatically affecting the polarizabilities of the two ions, rather its function is to 

organize in space the molecular polarizabilities, by packing the molecules in such a way that 

they eventually produce a rather large anisotropy. In fact, while the polarizabilities of the HB 

donor or acceptor atoms are only marginally perturbed even by the strongest HBs, their 

orientation is determined by the way in which the ions are arranged in the network. In 1, a and 

c are directions along which the atomic tensors of the most polarizable atoms (the oxygen 

atoms) are larger. Therefore, these two directions are significantly slower (higher refractive 

indices) than b, along which the atomic/molecular polarizability tensors have their smallest 

components. 

This study also allowed testing different models of the accurate electron density 

distribution. The two independent experimental measures, the solid state and the gas phase 

calculations were compared and used to scrutinize the results. In particular, we have shown 

that periodic calculations return accurate positions for H atoms that produce the more sensible 
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modelling against experimental X-ray diffracted intensities, similar to those obtainable from 

neutron diffraction or spectroscopic methods. Moreover, the comparison of electrostatic 

potential surfaces and topological QTAIM analysis showed that treating the ions as rigidly 

charged is a sufficiently good approximation. This is very important because it means that a 

rigid treatment of the molecular electronic charge would anyway enable the evaluation of the 

intermolecular interactions, in particular if a crystal structure is modelled with sets of 

multipoles calculated for the isolated ions.    

In the future, we plan to extend this kind of analysis to non-linear optical properties in 

similar salts or in metal-biomolecular frameworks, based on amino acid and oxalate building 

blocks. Moreover, we will report on the mechanical properties of 1, by means of theoretical 

and experimental crystal structure determinations under pressure.13 
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Synopsis 

The correlation between accurate electron density distribution in the hydrogenoxalate salt of 

L-histidinium and the linear optical property are discussed. The distributed atomic 

polarizabilities and the "building block" approaches are used to rationalize the 

atomic/molecular origin of the refraction in this species. 

 


	1

