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Abstract. A general introduction is given to the state of the art in modeling metal organic 
materials using transferable atomic multipoles. The method is based on the building block 
partitioning of the electron density, which is illustrated with some examples of the potential 
applications and with detailed discussion of the necessities and pitfalls. The interactions taking 
place between building blocks are summarized and used to discuss the properties that can be 
calculated. 

 

 

1. Introduction 

Metal organic materials, in particular metal organic frameworks [1] (MOF), have attracted the 

attention of material scientists and chemists in the past three decades, thanks especially to their tunable 

properties, the simple fabrication processes and the wide range of applications and functionalities [2].  

These materials are based on three kinds of building blocks (BB): organic ligands (usually called 

linkers), metallic centers (connectors) and extra-framework molecules or counter-ions (guests). The 

linkers are neutral or anionic species, the connectors are almost always metal cations, the guests are 

solvent or gas molecules absorbed or trapped in the pores or otherwise ions that balance the charge of 

the framework. Linkers and connectors define versatile structures characterized by very flexible 

dimensionality (1D chains, 2D layers or 3D frameworks) and by charge "diversity".  Figure 1 gives a 

schematic representation of a typical framework structure with all the building block types. 

One of the main issues in this research field is the design of materials having specific structural and 

functional features. This task implies, on one hand, the prediction of solid state structures, which is 

nowadays a huge branch of science [3]. On the other hand, understanding the origin of a given 

property is fundamental because it allows engineering new functional compounds, reducing the efforts 

of experimental screening. Therefore, the research in this direction necessarily involves studies on the 

electronic structure, that determines the molecular and supramolecular geometries as well as many 

properties (thermal, electric, electronic, magnetic, optic etc.).  

Modeling can be done at different levels, ranging from full quantum mechanical to semi-empirical 

methods based on parameterized descriptors and reducing the problem to semi-classical physics.  

The electron distribution of a material plays a very important role because it represents a bridge 

between physics and chemistry. In fact, the laws of quantum mechanics predict the average 
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distribution and flow of the electrons, respectively the position electron density (r) and the current 

density J(r), two quantities that allow chemists to understand the functions and the evolution of 

compounds [4].  

 

Figure 1. A typical metal organic frameworks, characterized by metal connectors (red, larger balls), 

the organic linkers (blue molecules bridging the metals) and the guests (green molecules in the 

cavities). This particular structure is Zn2(C2O4)3[C4H12N2], calculated from ab initio periodic Density 

Functional Theory, based on the experimental structure reported in ref [5]. The connector is Zn2+, the 

linker is oxalate (with two different coordination modes) and the counter-ion guest is piperazinium. 

 

The importance of electron density resides in its inherent, but hidden, correlation with energy [6] and 

the fact that it is an observable, at variance from the wave function. Therefore, not only (r) can be 

calculated from first principle quantum mechanics, but it can also be measured experimentally. The 

most adopted technique is the diffraction of X-rays from crystals, because the elastic X-ray scattering 

of a periodic structure is the Fourier transformation of its electron density [7].  

From the electron distribution, many features of a material become available. For example, the way in 

which the molecular bricks are held together can be revealed by an accurate analysis of (r). This is 

possible by studying the electric forces acting between molecules, under the assumption that only 

electrostatics is active, or by a quantum theory of atoms in molecules (QTAIM) [8] analysis, necessary 

if electron exchange is taking place between molecules and therefore a semi-classical reductionism 

cannot be straightforwardly adopted. 

Although the word material does not necessarily indicate compounds in the solid state, in practice this 

word is often associated with solids, either amorphous or crystalline. Moreover, given the enormous 

analytical potential of scattering techniques from periodic objects and the higher control of the 
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functionalities in three-dimensional ordered systems, scientists are often focused on crystalline 

materials. It is not surprising, in fact, that the crystal engineering has vigorously emerged in the last 

two decades as a new branch of science, reaching now a quite mature status.  

We revise in this commentary the state of the art on investigation of the binding between linkers and 

connectors in metal organic frameworks, as well as the intermolecular interactions occurring between 

the guests and the framework. We will describe a general approach for modeling the electron density 

of metal organic materials, based on a simplified and easily exported picture of these materials, to be 

used for the subsequent studies of their properties.  

 

2. Modeling 

Quantum mechanics is of course the most accurate and reliable theory to study the electronic 

structures of materials. However, the size of the problem may challenge the current computational 

resources, especially for metal organic frameworks, forcing the adoption of some approximations. 

Therefore, accurate but simpler and computationally less expensive descriptors are extremely useful. 

In analogy with other branches of science, for example drug design, electron density based descriptors 

are potential candidates to allow reliable characterization and simulations of materials. There are two 

reasons: 1) electron density partitioning is very practical, can be done in real space at relatively low 

costs and it can guarantee exportability; 2) electron density is itself a quantum mechanical observable, 

therefore it reflects, at least in part, the action of non classical forces on electrons. 

As mentioned above, X-Ray diffraction is still the elective technique for the experimental 

determination of the electron density distribution, although other methods are becoming popular, in 

combination with [9] or in alternative to [10] elastic scattering of X-rays. Many progresses occurred 

since the first observations of aspherical electron distributions of atoms in small molecular crystals, 

described by the so-called deformation densities [11]. Nowadays, ρ(r) is more easily obtained also in 

very large molecules, even containing heavier elements for which the more polarizable valence 

electrons are in defect compared to the almost imperturbable core electrons [12]. Among the possible 

models proposed in the literature, the multipolar expansion is by far the most adopted one. According 

with Stewart [13], the total electron density could be projected onto atom-centered electron density 

functions (pseudoatoms):  





nat

i
i

1

)()( rr   (1) 

Within the Hansen-Coppens formalism [14], the electron density of each pseudoatom is then expanded 

in three major components: the core density (typically a rigid and spherical term with frozen 

population), a spherical valence density (with variable population and a contraction/expansion 

flexibility) and a deformation valence density (with variable multipole coefficients and 

expansion/contraction flexibility): 
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The parameters Plm, Pvalence, κ and κ' are typically refined within a least square procedure, together 

with positional and thermal parameters, as it occurs in a normal crystal structure refinement. ylm are 

spherical harmonic functions. core, valence and Rl are radial density functions, normally taken from 

energy optimized atomic wave functions for isolated atoms [15]. The variables κ and κ' allow the 

radial flexibility, whereas the spherical harmonics functions guarantee the aspherical flexibility. A 

more detailed treatment of the core shells has been recently proposed [16]: 
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Here each electronic shell is independently refined, which is of course increasing enormously the 

number of variables.  

Noteworthy, pseudoatomic projection could be applied in direct space (i.e. in the real space 3 of the 

electron density) or in a transformed space (for example, the Fourier transformed space  of the 

scattering vectors). The latter is the way to refine a model against the measured X-ray intensities1 at 

Bragg positions. In fact, the X-ray structure factor F for a given scattering vector H is given by: 

rrHF rH de
V

i  2)(ρ)(  (4) 

where )(ρ r  is the thermally averaged electron density distribution (i.e. the correlation between the 

electron density and the Temperature dependent nuclear motion). In keeping with the atomic 

expansion, F(H) can be approximated as: 

rHHHHF  i
i

i
i eTf 2)()()(  (5) 

where fi is the atomic scattering factor and Ti is the atomic Debye-Waller factor for the thermal motion 

(also called temperature factor). The multipolar expansion implies a breakdown of fi into different 

contributions: 

)()()()(
max,0

,,,,,, HHHH 

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ll

lmilmivalenceivalenceicoreicoreii fPfPfPf  (6) 

where the fi's are the Fourier transformation of the radial and angular terms of equation (2). 

One of the most important advantages of the Hansen-Coppens formalism is the definition of a local 

coordinate system for each pseudoatom. In fact, while in most crystallographic applications there is no 

need to describe an atom in a reference system different from that of the unit cell, internal molecular 

coordinates are instead necessary especially for the "transferability" of electron density parameters 

                                                      
1 Or any other radiation that brings electron density information, for example electrons. 
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between chemically equivalent atoms. A given functional group shows a typical electron density 

distribution in all molecules in which it is contained. This similarity is however evident in the 

multipolar description only with respect to an internal coordinates system, which is rarely coincident 

with the unit cell basis, given that molecules normally crystallize with much lower symmetry than 

their point group.  

This modeling choice has, indirectly, anticipated the work which is characterizing most of the modern 

applications of charge density analysis: the exportability of multipolar parameters [17] from one atom 

of a given functional group to a chemically equivalent atom in a more complex system. This approach 

in fact requires that an individual functional group or an atom is defined with respect to a local 

coordinate system, which guarantees the exportability of the parameters and, in addition, it allows 

defining restraints or constraints to chemically equivalent atoms that are not crystallographically 

equivalent. 

So far, multipolar databases were used to study molecular crystals of biological interest [18,19]. The 

various approaches have dealt with the problem of correct classifications of atoms, based on chemical 

types. The invariant-atom (invariom) method is the most generalized [20], as it classifies atoms based 

on pure topological criteria. Other database methods, like ELMAM [21] and the UBDB [22] libraries, 

classify atoms based on more traditional chemical criteria. Interestingly, the databases could be created 

from experimental observations (i.e. from refinements of a number of proto-type molecular crystals, 

whose X-ray diffraction was accurately measured [17a]) or from theoretical calculations with fitting in 

direct [23] or reciprocal space [17b]. The hypothesis of transferable atoms in biomolecules was 

strongly supported also by Matta and Bader [24] using electron density partitioning, but without a 

parameterization in terms of atom projected multipoles. 

The studies that appeared in the literature so far had two main objectives: a) the accurate models of 

atomic scattering factors from databases of atomic multipoles allowed to improve the quality of 

structural refinements of medium or low resolution data collections on macromolecules, or even 

proteins [25]; b) the accurate electron density reconstructed from the databases enabled the low cost 

evaluation of properties of these molecules in crystalline environment, in particular electrostatic 

moments and interaction energies. A very recent publication compared the performances of the 

various approaches both in terms of refinement improvements and evaluation of electrostatic 

properties [26]. The inherent difficulty of the electron density breakdown into transferable multipoles 

for macromolecules is that the cut necessarily occurs at a covalent bond (for example a peptidic bond). 

The main implication is that total electron population may not be constant and requires re-

normalization. Nevertheless, the results in this direction are promising and more progresses are 

expected in due course. 
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Although the field of metal organic materials could be somewhat similar to that of macromolecules, 

similar kinds of models have not been proposed so far. Some electron density studies on MOFs have 

been reported [27], mainly focused on the analyses of chemical bonding features of these materials.  

Spackman [28] proposed an Hirshfeld's partitioning [29] to define molecular or fragments' volumes 

within a crystal. The Hirshfeld surface defines a volume containing at least 50% of the electron density 

of the molecule or fragment based on the simple summation of the electron densities of each atom in 

isolation. Although this method is not quantum mechanical, it became quite a popular tool for crystal 

engineering analysis, especially to characterize the binding properties of a molecule and the area of 

influence of a given intermolecular interaction [28b]. 

Correlation between electron density and material properties is more rarely carried out, especially in 

metal organic materials. This requires not only details of local bonds but also evaluation of non-local 

interactions and global propagation of the property.  

We summarize here the first application of an electron density breakdown into building blocks of 

molecular materials, a valid tool for rationalization of a given material property and careful analysis of 

its source in correlation with the crystal structure. The method is intentionally preserving the 

simplicity of the pseudoatom expansions. The total electron density is the sum of the building blocks 

densities:  





BBN

i
BBi

1
, )()( rr   (7) 

where NBB is the number of building blocks and )(, rBBi  is the electron density of a building block, 

obtained, for example, from a quantum mechanical calculation even at a high level of theory, given 

that in general it would not be so expensive. For the metal connectors, the BB density coincides with 

the electron density of the cation in isolation. Because building blocks are, normally, closed-shell 

molecules or ions, this approximation avoids breaking electron paired chemical bonds. It should not 

escape, however, that this approximation is implying no covalency between the linker and the 

connector, which is of course not true in general. In fact, the amount of shared character in metal-

ligand bonds is in general quite significant. However, it was noted already by Coppens et al. [30], that 

the overlap between metal and ligand orbitals is sufficiently small that the d-orbital electron 

population of a metal can be reconstructed form the coefficients of a multipolar expansion. This is 

possible only assuming no mixing of the metal orbitals through overlap with the ligand orbitals. 

Despite approximated, this assumption has always produced orbital populations from experiments that 

could match with sufficient accuracy those calculated from ab initio wave functions, where the mixing 

is implicitly assumed. 

For sake of simplicity, the building block density is described in terms of atom expanded multipoles, 

fitted in the reciprocal space  (although this approach could also take advantage from the recent 

progresses in direct space fitting): 
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The atomic densities j(r) are then expanded as in equations (2). 

The building block model maintains the exportability of the other databases approaches, using of 

course local coordinate systems which are easily defined. A database can be easily constructed by 

storing all symmetry independent atoms of a given building block, calculated from ab initio molecular 

orbital wave functions. A typical level of theory could be the Density Functional Theory, using an 

hybrid functional, which are normally returning more accurate description of the electron density 

distributions.  

In a recent work [31], we have examined the application of this method to an important class of 

compounds, like the Zn oxalate frameworks. The choice of Zn2+ cation is justified because this is a 

closed shell cation with a formal full occupancy of the 3d shell. Accurate calculations and 

measurements, however, showed that the cation is anyway slightly distorted from perfect sphericity 

[27a]. Within the QTAIM partitioning, one could see the effects of the partial covalency in the 

electron delocalization indexes [32], a measure of the amount of electron pairs shared by two atoms, 

which significantly deviates from 0 for all the Zn-O bonds. This implied some improvements to the 

model, like using densities of the cation calculated in a field of negative charges surrounding the metal 

with a given stereochemistry (thus distinguishing for example tetrahedral or octahedral coordination).    

Further improvement could be corrections of linkers density, including perturbation due to the field of 

the cations. This could be important in particular for anionic linkers, which are of course more 

polarizable. For example, the distributed atomic polarizabilities [33] are shown in Figure 2 for oxalic 

acid and the oxalate anion. Although having the same number of electrons, the isotropic polarizability 

of the anion is ca. 60% larger. The atomic polarizability tensors are in fact much more prolated. As a 

consequence, the anionic linker will be much polarized when coordinated to a cationic connector. 

 

The subtle problems connected with proper modelling of the building blocks are exemplified by the 

almost identical quality of the fit of a simple metal organic material like Zn(C2O4)(H2O)2, 

characterized by infinite chains of Zn-oxalates, with two water molecules coordinated at the apexes of 

the Zn octahedrons (see Figure). In fact, an hypothetical "neutral" model, i.e. refined preserving the 

electroneutrality of the building blocks, would fit the theoretical or experimental structure factors in 

quite a similar way as a chemically sensible charged-constrained refinement, i.e. preserving the formal 

charge of the linker and the connector (R1 = 0.0053 vs 0.0052, for neutral or charged model 

refinement, respectively)2. The reason for this similarity is due to the diffuse nature of the anionic 

                                                      
2 R1 = ||Fo|-|Fc||/|Fo| where Fo is the observed structure factor modulus and Fc the structure factor calculated 
with a given model. 
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electron cloud around the linker, easily fitted also by the external electronic shell of the metal (4s 

orbital).  

 

  

  

Figure 2. The distributed atomic polarizabilities in oxalate (left) and oxalic acid, calculated with 

Density Functional Theory (at B3LYP/6-311++G(2d,2p) level of theory). The atomic ellipsoids 

(measured in Å3) are plotted assuming a 0.3 Å : 1.0 Å3 scale. The plot shows the larger polarizability 

of the anion. 

 

Figure 3, illustrate the differences between the two models, showing the total electron density 

distribution and the electrostatic potential in a typical section of a Zn-oxalate honeycomb layer (a very 

common packing motif). If using a space partitioning of the electron density, based on the topological 

criteria of the QTAIM, then the saddle points between the Oxygens of the oxalate and the Zn caiton 

are the boundaries of linkers and connectors, resulting in a positively charged connector (ca. +1.4) and 

a negatively charged linker. On the other hand, if we use as boundaries the saddle points of the 

electrostatic potential (r) [34] 

 
 '

'

)'(
)( r

rr

r
r d

  (9) 

then, because of the Gauss theorem, the volumes defined within these surfaces are necessarily neutral. 

Thus the distinction between a chemically sensible charged model and a neutral model 

(mathematically compatible but less useful for a chemical interpretation) is a shift of the building 

block boundaries. Of course, a model in agreement with chemical intuition would be preferable for 

applicative purposes and it is therefore preferred, also because it would preserve the easier calculation 

of building blocks in the form of closed shell molecules or ions. The gap between the formal 2 charge 

and the actual 1.4 gives an idea of the approximation of the method and the degree of basis set 

superposition error. 
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Figure 3: The electron density (blue) and negative electrostatic potential (red, dashed) contours of a 

[Zn6(C2O4)12]12- unit, a fragment of a typical honeycomb layer of Zn-oxalates. Atoms are depicted as 

small spheres. The saddle between the Zn connector and the oxalate linker indicate the occurrence of a 

surface separating the two building blocks. If the electrostatic potential is used for this separation, the 

surface define a larger volume for Zn and smaller for the oxalate (as the building blocks must be 

neutral in this case). The electron density partitioning, instead, produce 1.4 electron charges. 

 

As discussed above, the building block is a rather simplified description of the charge density in a 

metal organic material, which has some undoubted advantages. In fact, apart for the very easy 

description, the exportability of the density, it is important to stress that calculations of extended solids 

could be reduced to simple additive terms, thus minimizing computational costs of functions and 

properties form this electron density distribution.   

Simplified models are necessary for predicting the structural features and/or the chemical and physical 

properties of a material. The recent trends of theoretical approaches to material design are in fact 

oriented towards the optimization of the properties. This means searching for compounds that fulfil 

specific structural requirements and guarantee optimized properties [35]. 

While the first principle treatment of inorganic materials is favoured by the smaller size of these 

systems, molecular organic or organometallic materials are definitely more complex. For this reason, 

simplified models for the molecular building blocks are extremely useful.  
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3. Forces between Building Blocks 

In order to predict structures and properties of a molecular material it is essential to evaluate the forces 

active between the building blocks. As anticipated above, MOFs are often characterized by a large 

charge flexibility which means that the role of the electrostatic interactions could be very important, 

but also quite tunable.  

The interaction between closed-shell units is in general partitioned in:  

a) The electrostatic interaction: it can be calculated exactly from )(, rBBi . The corresponding 

energy is given by: 
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At large distances, it can be simplified in atom expanded multipole moments, thanks to Buckingham 

formalism [36]: 
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with implicit summations (Einstein convention) over ,.... directions, a and b indexes run over all 

atoms belonging to A or B building blocks, μ and  are electric dipole and quadrupole moment 

components, whereas T…are the symmetrical interaction tensors (…(rab)-1, rab being the 

vector from the origin of a to b). The sum extends up to the higher multipole-multipole interaction and 

it generally converges for la + lb > 5 (l being the order of the multipolar expansion on center a and b, 

respectively). 

 

b) The induced polarization: depending on its electric dipole (hyper)polarizabilities, a building block 

is polarized by the field of the other BBs. This produces a permanent change to the electron 

distribution and therefore an additional electrostatic energy. The calculation of this term requires some 

approximation, because calculating the polarizability and the electric field at each point in space would 

be quite expensive. Therefore, one can calculate the average electric field produced by the Building 

Block B at the position of each atomic position of Building Block A and calculate the induction from 
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where E(r)'s are the electric fields produced by the building blocks and j's are the atomic 

polarizabilities. 

 

c) The exchange-repulsion: this is the most common name given to a local destabilization experienced 

by electrons, obeying to Fermi-Dirac statistics for Fermion particles that cannot occupy the same 

position in space, with the same spin. The energy of this interaction can be approximated with a 

potential, for example in the form of a r-12 function [39]: 
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or an exponential function  

   rccbbABE babarep )(exp   (14) 

These formula runs over each atom of the building blocks and the coefficients are taken from fittings 

to potentials derived from an electron gas model for each atom pair [37] or other more empirical 

formulations [38]. 

 

d) London forces: the non permanent induced polarizations produce a weaker extra stabilization 

(dispersion) between molecules. A precise calculation of these forces and the corresponding energies 

would require configuration interaction calculations, which are quite prohibitive. However, 

approximate force fields, like Lennard-Jones potentials [39], are able to reproduce the dispersive 

interaction between two building blocks A and B.  
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Again the summation runs over all atoms of each building blocks and the coefficients are obtained 

from fitting the potential against calculated atomic polarizabilities [37]. Following the original 

formulation by London [40], in fact, the dispersion energy could be calculated from the isotropic 

dipolar polarizabilities  and ionization energies of the two building blocks: 
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or otherwise as a summation of atom-atom pairwise interactions, if using distributed atomic 

polarizabilities [33]:   
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e) electrophilic-nucleophilic interactions (Hydrogen Bonding): in case of incipient covalent 

mechanisms between the building block, for example Hydrogen Bonding or more generally donor-

acceptor interactions [41], all the above approximations may require further corrections, typically 

based on some empirical correlation with the distance between the interacting atoms [42]. 

 

The sum of all the terms a)-e) is the interaction energy Eint between building blocks, which is useful to 

evaluate some properties of a material, for example accessible sites for guest molecules. 
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4. Properties 

As anticipated in the introduction, materials are researched for their ability to react upon some 

stimulus. These responses attribute a mono- or poly-functional behavior: some of them are directly 

calculated from the electron density distribution, for example the electric polarization; others comes 

from changes of the electron density upon some perturbation, like the electric susceptibilities; many 

transport properties, for example electric or thermal conductivity, are not directly correlated with the 

space averaged electron density distribution, although it is often observed that features of the chemical 

bonding could be fingerprints of these properties [43].  

The building block interactions summarized in the previous section can be useful to predict some 

properties of the porous metal organic compounds. For example, the ion exchange mainly depends on 

the interaction energies between the ionic guests and the frameworks, which could accelerate or 

decelerate the diffusion processes. More in general, the capacity of the framework to trap, select and 

perhaps react with some guests depends on the forces acting between the building blocks. With this 

concept in mind, we have developed an interaction energy mapping: a guest is used to sample the rigid 

framework in order to locate sites more adapted for binding. The function Eint(r;,,) is calculated as 

),,;(),,;(),,;(),,;(),,;(int  rrrrr repexdispindes EEEEE   (18) 

where r is the position vector of the guest center of mass and (,,) are the Eulerian angles of the 

main inertial axis with respect to the framework coordinate system. Ees, Edisp, Eind, Eex-rep, are the 

relative interaction energies calculated between the guest at coordinates (r,,,) and the rigid 3D 

framework or 2D layer structure. At each r, the guest is rigidly rotated until the (,,) coordinates are 

found which minimize the interaction energy. To reduce the computational costs, the following 

approximations are made: a) at large separation (above 10 Å) between a building block of the 

framework and the sampling guest, the total multipole moments of the building blocks are used to 

evaluate Ees via Buckingham approximation (11); b) for intermediate distances, the distributed atomic 

multipole moments are used in the Buckingham summation; c) for atom-atom distances within van der 

Waals radii, Ees is evaluated more accurately using the exact potential approach suggested by Volkov 

et al. [44], thus solving exactly equation (10).  

This procedure enables testing the hosting ability of a porous material. For example, the Solvent 

Accessible Volume (SAV), a quantity often used in crystal engineering, can be computed with higher 

accuracy. SAV is normally evaluated simulating atoms with hard spheres, thus neglecting the actual 

interactions between them. SAV can be instead determined using the interaction energy as a threshold 

to locate available sites (characterized by stabilizing energy) and unavailable sites (characterized by 

destabilizing energy). It is interesting that also this kind of approach is imported in material design 

from computational studies on proteins [45]. In addition, this interaction energy mapping could be 

useful to solve problems connected with disorder of guest molecules in channels or cavities of the host 

frameworks [46].  
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One example of this method is shown in Figure 4. A typical honeycomb charged layer of Zn-oxalate is 

sampled with a mono-protonated piperazinium cation, which is one of the extra-framework cation in 

some of these materials [5]. The comparison with the electrostatic potential map of the same 

framework is very instructive. In fact, (r) is also a sampling of the framework structure, though using 

a point charge, which therefore does not reveal the anisotropies of the guest (but only those of the 

host) and - more importantly- it neglects the energies produced by the other forces. As a result, the 

electrostatic potential is highly negative (i.e. stabilizing for a positive charge) close to the oxalate 

Oxygens that bear the most negative charge, but only weakly stabilizing at the center of the 

honeycomb hole. The Eint(r) map, instead, shows the more stabilizing region at the center of the pore, 

a result coming from the balance between electrostatic attraction and short range repulsion. This is in 

fact one of the sites found experimentally for the molecular extra-framework cations in these kind of 

structures, see Figure 4. Another region suitable for the cations is that in between the layers (not 

shown in the figure). 

 

    

Figure 4. Left: electrostatic potential (red contour negative potential; blue contours positive potential) 

in a model honeycomb layer of Zn oxalate; center: the interaction energy map of the honeycomb pore 

sampled by a mono-protonated piperazine (red contours stabilizing energy; blue contours destabilizing 

energy); right: the structure of C14H32N4O16Zn2 [5] a layered structure with water molecules, mono-

protonated piperazinium cations in the honeycomb holes and dications (not shown in the picture) in 

between the layers. Electrostatic potetnial and inetraction energy maps have been caclulated with a 

modified version of XD2006 [47] 

 

Another application of the building block approach is using their (hyper)polarizabilties to predict, at 

least approximately, the optical properties of crystal species. The first polarizability BB of a building 

block can be accurately calculated using ab initio quantum mechanics. As shown in Figure 2, a 

partitioning could be applied, based on the electron density, so that the atom-distributed 

polarizabilities i can be obtained [33]. In this way, 





Nat

i
iBB

1

αα  (19) 
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The additivity of the atomic polarizability is guaranteed if the electron density partitioning is exact 

(i.e. it reconstructs the total density) as for example QTAIM. The atomic partitioning is particularly 

important because it allows corrections for the perturbation effects due to other building blocks. For 

example, the polarizability of a building block within a secondary building unit (SBU)3 can be 

reconstructed by summation of the polarizabilities of all atoms belonging to that building block, but 

calculated in the entire SBU.  

The optical properties of a crystal depend on the susceptibilities that are correlated with the building 

block polarizabilities. For example, the linear susceptibility is given by 

 



BBN

j
jV 1

4
αχ


 (20) 

where V is the total volume of the unit cell and NBB is the number of building blocks in the unit cell. 

BB's are of course transformed from the coordinate system of the building block into the crystal 

coordinate system. A correction is necessary, however, in order to include the long range effects of a 

periodic distribution of polarizable building blocks, as suggested by Dunmur [48] and adopted by 

Spackman et al. [49]. This means that each BB polarizability should be corrected for the apparent 

enhancement, caused by the electric field of the induced dipole moments of all other building blocks 

in the crystal. This effect is explained by Dunmur [48] using classical electrostatics. Of course, if the 

building block polarizability was first calculated within a SBU, the effect of the first coordination 

sphere is already included at quantum mechanical level, thus the induced electric field perturbation 

should be computed including induced dipoles from the second coordination sphere on. This approach 

was used for evaluation and rationalization of linear optical properties in simple oxalate salts of amino 

acids [50], but could be adopted also for more interesting metal organic materials. The importance of 

this kind of studies is evident, if we consider that from linear or nonlinear susceptibilities all optical 

and electro-optical effects are derived. 

 

 

5. Conclusion 

We have shown in this brief commentary some potential applications of the electron density analysis 

of metal organic materials, in particular using the building block breakdown.  

Electron density partitioning provides suitable descriptors that could be easily exported from one 

species to another. Of course, there are two main requirements: a) the descriptors should accurately 

reconstruct the total electron density and the related properties; b) the computational costs of this 

treatment should be significantly smaller than those of a full quantum mechanical treatment of the 

entire system (which is of course inherently more accurate). For both points, distributed atomic 

multipoles or polarziabilties appear very adequate, because they can easily reproduce the major 

                                                      
3 A unit composed of by the first coordination of building blocks around a given connector or linker. 
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features of the building block electron density distribution or polarizability including perturbations 

caused by their assembly and, at the same time, they allow quite simplified and rapid calculations of 

the crystal properties.    

We envisage the usage of building the block approach to evaluate also mechanical properties of 

crystals, for example elastic constants, easily available from multipole moments [51]. Moreover, the 

highly reduced computational costs could stimulate more sophisticated molecular dynamic 

calculations that could enable evaluation of transport properties and adsorption properties. 

Within static mechanic calculations, the building block approach could be also adopted to extend the 

material design through property optimization [35], which means maximization or minimization of a 

given material property using structural and chemical variables.  
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