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Modern charge density studies: the entanglement of experiment and 

theory 

Abstract 

This tutorial review article is intended to provide a general guidance to a reader 

interested to learn about the methodologies to obtain accurate electron density 

mapping in molecules and crystalline solids, from theory or from experiment, and 

to carry out a sensible interpretation of the results, for chemical, biochemical or 

materials science applications. The review mainly focuses on X-ray diffraction 

techniques and refinement of experimental models, in particular multipolar 

models. Neutron diffraction, which was widely used in the past to fix accurate 

positions of atoms, is now used for more specific purposes. The review illustrates 

three principal analyses of the experimental or theoretical electron density, based 

on quantum chemical, semi-empirical or empirical interpretation schemes, such 

as the Quantum Theory of Atoms in Molecules, the semi-classical evaluation of 

interaction energies and the Hirshfeld analysis. In particular, it is shown that a 

simple topological analysis based on a partition of the electron density cannot 

alone reveal the whole nature of chemical bonding. More information based on 

the pair density is necessary.  A connection between quantum mechanics and 

observable quantities is given in order to provide the physical grounds to explain 

the observations and to justify the interpretations. 

Keywords: electron density; X-ray diffraction; multipolar model; ab initio 

calculations; polarized neutron diffraction 
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1. Introduction 

X-ray diffraction has always been deeply interconnected with quantum mechanics. It 

was in fact soon after Laue's experiment when P. Debye forecasted that this technique 

could reveal the electronic structure of atoms (1). Although this idea was taken with 

some scepticism (2) and could not be proven with sufficient accuracy until at least the 

1960's (3) the analysis of X-ray diffraction was anyway challenging quantum physics 

and chemistry, at least in two areas. One was the physics of light scattering, a new field 

that originated since the quantum mechanics era. Time has shown that more 

sophisticated calculations were necessary to explain properly the X-ray atomic 

scattering form factors of some heavier elements and that required relativistic and multi-

configuration calculations. The other challenge for theory was instead related to 

chemistry, because X-ray diffraction could reveal in details the geometry of a molecule, 

therefore giving insights into theories or models for the chemical bonding. As a matter 

of fact, an accurate molecular geometry is a quantum mechanical observation, no matter 

if it comes from a theoretical calculation or an experimental measurement. 

When later on it became possible to visualize detailed electron density maps (see 
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section 1.1), in the form of difference electron densities, theory was again challenged, as 

not only the precise geometry but also the accurate distribution was now investigated of 

even minor fractions of electrons around the atoms (localized in the bonding as well as 

in the non-bonding regions). Indeed, only accurate calculations could provide electron 

density maps able to explain the experimental findings. 

This entanglement of experiment and theory has continued also in the past two decades, 

when quantum chemical methods, thanks especially to the enormous progresses of the 

density functional theory (4), has undergone an impressive growth, being now able to 

describe with sufficient accuracy even very large and complicated chemical systems.  

It was in this period when theory and experiment became more closely matched at the 

level of accuracy of both and therefore the quality of the results obtained improved. In 

fact, on the experimental side the development of more brilliant X-ray sources (rotating 

anodes and third generation ‘high brightness’, ‘insertion device design’, synchrotrons) 

and more sensitive and rapid detectors (imaging plates and CCDs) allowed fair 

comparisons of improved experiments with theoretical methods.  

In more recent times, however, the amount of theoretical prior , which is beneficial in 

modelling of the experimental X-ray diffraction has risen. It is now the experiment 

which is challenged by theory. Some recent highly accurate experimental results 

showed that in fact theoretical predictions of even finer details could be confirmed by 

experimental observation only by using highly accurate data. Moreover, the number of 

studies that use a combined theoretical/experimental modelling is growing, opening the 

possibility to optimize so called "X-ray constrained molecular orbital wave functions" 

or to refine simultaneously the electron, spin and momentum density (see paragraph 

2.1.2.1). 
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The purpose of this tutorial review is to guide the reader through the methods to obtain 

electron charge densities, describing the most adopted models, and the interpretation 

schemes in order to gain some insight into the machinery of modelling techniques and 

the more sensible applications and interpretations of the experimental results. Already 

in the above, various technical terms are used and which must be explained to assist the 

newcomer to the field. That said there are books , admittedly with a research fields 

focus rather than for students or the newcomer to the field, that cover such material in 

yet more extensive detail; these are cited below in the appropriate places.  

 

1.1 Definitions and physical background 

Before starting the discussion of experimental and theoretical methods to obtain 

accurate electron density mapping, some basic definitions and a short survey of the 

physics are necessary.  

As we know, quantum mechanics has transformed the physical sciences from a 

deterministic into a probabilistic view. For small particles travelling at high speed, like 

electrons, it is impossible to simultaneously know their position and momentum (5). We 

can only know a probabilistic distribution of the electrons in molecules, which means an 

averaged probability to find any electron at a given position in space. In a system of N 

electrons and M nuclei the probability of finding any of its electrons at a position r1, 

regardless of the position of the others, is equal to (r1)dr1 where the corresponding 

probability is the one electron density1 (r): (6) 

                                                 

1 The one electron density is the probability to find any electron at the position r. A two electron 

density is the probability to find any electron pair at the position r. 
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Within the Schrödinger formalism, el is the stationary wave function describing the N 

electrons, at fixed nuclear space coordinates. In equation (1), we are within the Born-

Oppenheimer approximation (7), whereby the electrons and nuclei descriptions are 

assumed to be independent, and R denotes the ensemble of nuclear coordinates for the 

M nuclei in an arbitrary reference frame.  

A fundamental piece of information is lost if the one electron density only is known: the 

correlation among the N electrons, i.e. how the electrons mutually affect each other. 

Because of the probabilistic indeterminacy of positions, the electron correlation is also 

known in a probabilistic form, through more general quantities like the p-order density 

matrices: 
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where r and r are two sets of independent electron coordinates. The first order (p = 

1) and second order (p = 2) density matrices are certainly the most relevant for the 

interpretation of the chemical bonding. The one electron density of equation (1) is the 

trace of the first order density matrix (when r = r): 
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The off-diagonal terms show, at least in part, the mutual influence of electrons. 1 is 

normalized to the total number of electrons, whereas the second order matrix 2 
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is normalized to the total number of electron pairs and again the trace gives the two 

electron density (r1,r2), i.e. the averaged distribution of electron pairs in space. It is 

clear that most of the chemistry we know depends on these two quantities, the first and 

second order density matrices, which are quantum mechanical observables. 

In equations (1-4) we have not considered an additional variable, which is the spin of 

the electrons. It is important to be reminded that electrons are Fermions, therefore they 

obey Fermi-Dirac statistics, which means that two identical spin particles cannot occupy 

the same position in space (i.e. according to the fundamental Pauli Exclusion Principle 

(8)), but two opposite spin electrons tend to pair to lower their energy. It is important to 

recall as well that some multi-electronic systems may be characterized by a given 

number of unpaired electrons (arising from an odd number of electrons or from a more 

stable unpaired spin state), therefore producing an excess of electrons in a given spin. 

While this cannot be identified from eq (1), a more general formulation of the electron 

density would include the spin as coordinate by extending r in equations (1-4) to 

include x, a variable containing the three space coordinates and the spin coordinate. In 

this way the so-called spin density, i.e. the excess of electron density of one spin, is 

formally represented by: 
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where s are the electron spin coordinates. 

It is important to consider that the scattering of photons by electrons is closely 

connected with the density matrix (equation [2]). In fact, the coherent and elastic 

(Bragg) X-ray scattering depends entirely on the electron density, the trace of the 
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electron density matrix, whereas the incoherent and inelastic (Compton) scattering is 

produced by the off-diagonal terms. Therefore, the electron density matrix is in 

principle fully observable, in its diagonal and off-diagonal terms, if Bragg and Compton 

diffraction are both measured. Moreover, one should consider that a radiation beam of 

spin active particles, like polarized neutrons, can reveal the excess of electron spin, and 

hence the spin density.  

In this review, we will mainly focus on the one electron density, with only minor 

reference to the complete density matrix(es), the two electron density and the spin 

density. The reader is instead referred to some recent literature (9) to gain full insight 

into the techniques to obtain those functions and their potential applications in 

chemistry, physics and material science. 

At this point, the connection with crystallography is quite clear: the most powerful way 

to observe scattering is in fact the diffraction from the crystals, better from single 

crystals rather than by powder diffraction. As anticipated above, the Bragg X-ray 

scattering intensity distribution is described by the Fourier Transform (hereinafter FT) 

of the thermal averaged one electron density distribution in a unit cell,  

   )ρ()ρ()F( 2 rrrH rH FTde
V

i  (6)  

where F(H) is the structure factor, 
*** cbaH lkh  is the scattering vector in the 

reciprocal space, V is the unit cell volume and <(r)> is the  thermally averaged 

electron density distribution (i.e. the convolution between the electron density and the 

nuclear motion).  In principle, equation (6) could be Fourier inverted producing the 

electron density, as reconstructed from its sampling at discrete points of the reciprocal 

space (i.e. where Bragg scattering occurs for nλ=2dsinθ): 
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In practice, there are three main complications in making this ‘simple’ Fourier back 

transform: 1) the effective sampling of  the FT ρ(r) is quite limited, because we cannot 

measure an infinite number of reflections, but only a finite subset (due to geometrical 

limitations of the measuring apparatus, to the X-ray wavelength and to the actual 

intensities of the higher resolution reflections, which are weak); 2) under the kinematic 

approximation, whereby the scattered X-ray Bragg reflection wave does not interfere 

with the incident beam wave or other Bragg reflected beam waves, the phases of each 

Fhkl vector are not measurable but they are available only from an atomic model; this is 

particularly cogent for non-centrosymmetric structures where there is no special 

constraint on the phases (phases of centrosymmetric crystals being necessarily 0 or 

180˚); 3) the moduli of the structure factors are derived from the experimentally 

measured intensities, that are of course affected by measurement errors and which 

naturally propagate through all subsequent calculations.  

For these three reasons, we cannot expect to observe an accurate <(r)> from a direct 

Fourier transform of the structure factor amplitudes, derived from the measured Bragg 

reflection X-ray intensities. Moreover, the thermally averaged electron distribution is 

not the static electron density itself which cannot become available unless introducing a 

model describing the molecular motion. Therefore, as we will see in section 2, the best 

way to obtain electron density from experiment is refining a model using the scattered 

Bragg X-ray reflection intensities for optimizing the parameters.  

In general a FT, with suitable phases, of the measured structure factor amplitudes would 

provide an electron density integral or derivative (thermally averaged) property P, either 
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scalar or vectorial: 
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where c is a coefficient, H is the modulus of the scattering vector (=2 sin /). n = -2 for 

the electrostatic potential; n = -1 for the electric field; n = 0 for the electron density and 

the electric field gradient; n = +1 for the gradient of the electron density and n = +2 for 

the Hessian of the electron density and the Laplacian. It should be clear that the 

limitations due to finite diffraction resolution referred to above affect much more the 

reconstruction of properties with n ≥ 0, like the Laplacian of the electron density, and 

much less those with n < 0, like the electrostatic potential. However, ripples due to 

Fourier series termination effects would still affect the map of electric potential 

constructed with a FT. On the other hand, electron density deformation functions, i.e. 

calculated from the difference between two sets of structure factors (e.g. observed – 

calculated), would not suffer from the Fourier series termination problems because of 

mutual cancellation of the positive and negative ripples. This is why the deformation 

densities have been extremely popular, because they are obtainable using 

experimentally measured structure factor moduli, using a given model to compute the 

reference structure factors and the phases to obtain proper structure factor vectors. The 

most straightforward reference model is the so-called independent atom model (IAM, 

hereinafter), obtained as the simple superposition of atomic ground state spherical (or 

spherically averaged2) densities ρj, so that: 

                                                 

2 It is very important to recall that the electron densities of many atoms are not spherical in their 

ground state, for example most transition metals, but also main group p-block atoms. 
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Where rj is the position of atom j. Noteworthy, IAM is the standard model used to refine 

crystal structures from X-ray diffraction in conventional crystal structural analyses.  

There are several deformation densities in use and here we summarize the most 

important ones: 

(1) Residual Density: it is calculated through a Fourier summation 

  )(22

,,

10
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eeFF
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For each reflection hkl, F1 and φ1 are the structure factor modulus (amplitude)  and 

phase calculated with a given model, whereas F0 is the modulus of the observed 

structure factor. This density should return the unexplained features of the observation, 

which could be due to the limitations of the model or otherwise to systematic errors in 

the experiment. 

(2) X-X deformation density: using the same kind of Fourier summation as in equation 

(10), where F1 and φ1 are calculated from IAM high order refinement (i.e. using only 

data above a given resolution, typically better than 0.7 Å). Again, F0 are the observed 

X-ray diffraction structure factors. This deformation density should return the main 

features of the valence electron density, because a high order model is obviously 

neglecting the effects of the valence electrons (that do not scatter at high diffraction 

angle).  

(3) X-N deformation density: F1 and φ1 are calculated with IAM using positional and 

thermal parameters obtained from a neutron crystal structure refinement. F0 are the 
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observed X-ray structure factors. As before, this density should return the main 

distortions of the valence electron density from the spherically averaged distribution, 

because the neutron model returns very accurate nuclear positions and thermal 

parameters of the nuclei.  

(4) Model dynamic deformation density: here two models are compared through a 

Fourier summation: 

  )(2
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2120
101

)ρ( lzkyhxi
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ii eeFeF
V

  r  (11) 

Both models 0 and 1 provide phases and moduli of the structure factors. The aim of this 

density is to compare two models (defined below) within the limitation of the observed 

diffraction resolution (as only the measured reflections used to refine the two models 

are used) and through the smearing of the thermal motion (as both structure factors are 

computed using the refined atomic displacement parameters).  

(5) Static deformation density: this deformation density is not calculated in reciprocal 

space but in direct space.  

)(ρ)(ρ)ρ( 10 rrr   (12) 

The two densities come from two different models, for example two different levels of 

multipolar expansion (see section 2.1). If model 1 is the IAM and model 0 is a 

multipolar expansion, then this density should be quite similar to that of the 

experimental X-X deformation density. Many other static deformation densities could 

be computed, for example the theoretical multipolar densities (where theoretical can 

mean calculated for the molecule or for the crystal).  
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In figure 1, the main deformation densities for a hydrogen oxalate anion in L-

Histidinium Hydrogenoxalate (10) are shown. 

One of the main purposes of the residual density map is revealing the deficiencies of a 

given model or the impact of systematic errors of the experimental diffraction 

measurements. Thus, the residual density of an IAM model (very similar to the X-X or 

X-N deformation densities) should reveal the regions of space where electrons involved 

in a chemical bond are concentrated, given that this information is obviously absent in 

the ‘simple’ structural model. On the other hand, the residual map should appear 

featureless if the model is accurate enough (see section 2.1). The inspection of the 

residual electron densities might be particularly difficult in large molecules due either to 

computational limitations, although with current computing power this is less of a 

problem, or due to a too-large atomic thermal motion. Moreover, the noise 

accompanying a residual map could hide some more serious problems; while the 

residual density may not produce large peaks at some positions, it could anyway reveal 

some systematic effect. In these circumstances, a statistical analysis of the entire 

residual density in the unit cell is necessary. Meindl and Henn (11) proposed a statistical 

analysis to ascertain if only Gaussian noise affects the residual density, see Figure 2. 

Significant deviations from a Gaussian-type distribution would reveal serious 

systematic effects, likely due to uncorrected errors in the diffraction data. The remark 

by Jorgensen et al. (12) on the proper scaling and the effect of corrections to raw 

diffraction data should be taken into account.   
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Figure 1. The residual density map after multipole refinement (a), the X-X deformation 

density map (b), the model dynamic deformation density map (c) and the static 

deformation density map (d) of the hydrogen oxalate ion in L-Histidinium hydrogen 

oxalate (10), from experimental electron density modelling using data at 100 K, and at 

0.45 Å diffraction resolution. All data are included in these Fourier summations. 

Contours are drawn at  0.05 eÅ-3, with positive electron density contours shown as 

solid lines, negative electron density contours shown as dotted lines. 
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Figure 2. Henn-Meindl plots (11) of the distribution of residual electron density pixels 

for a multipolar fitting against (a) ab initio structure factors (not including thermal 

motion and experimental errors) and (b) experimental structure factor amplitudes with 

calculated phases for L-Histidinium hydrogen oxalate (10). Notably, in both cases a 

Gaussian distribution of the errors is observed, but the FWHM of the theoretical plot is 

ca. one order of magnitude smaller than the experimental (10-2 vs. 10-1 eÅ-3). The small 

FWHM spread in the theoretical plot is caused by the small differences between the 

quantum mechanical electron probability density and the multipolar reconstruction. The 

larger FWHM spread in the experimental plot reveals not only the limitations of the 

model but also the statistical distribution of experimental errors.  
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2. Electron density from experiment 

When talking about experimental charge density, the more straightforward association 

is with X-ray diffraction, and often the word "X-ray charge density" is adopted or even 

"synchrotron X-ray charge density" (13), when a non-conventional i.e. not home source 

X-radiation is used. We will see in this section the main reasons as to why X-ray 

scattering is still the most adopted methodology and we will learn how to model 

electron density from X-ray scattered intensities.  

  

2.1 X-ray diffraction 

It is well known that the interaction of X-ray photons and electrons produce scattering 

(elastic or inelastic), whose interpretation could be used to reconstruct the 3D 

distribution of electrons. However, the correct reconstruction of the direct space  

electron density image is possible only if the unknown (and in principle non-

measurable) phases of the scattered photons are somehow obtained, which implies 

having a model or at least some physical constraints that allow direct calculation of the 

phases of the structure factors.  

 

2.1.1 Where is the information? 

As many crystallographers know, the crystal structure of a good quality organic 

molecular crystal could be refined with an IAM model leaving a residual index of 3%,3 

                                                 

3 R1 = ||Fo|-|Fc||/|Fo| (Fc are structure factors calculated with the model; Fo are the observed 

structure factors) 
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provided that the sample is cooled to a sufficiently low temperature and that the 

measurement is carried out with sufficient care. As we discussed above, the structural 

model that gives such a low residual is actually a very simple one that considers each 

atom as an independent and spherical scattering center that oscillates harmonically 

about its nucleus, i.e. according to a restoring force F=-kx. Taking into account that the 

3% discrepancy depends also on the statistical errors of the diffraction measurements 

together with any uncorrected systematic error (such as crystal sample absorption, 

diffraction extinction effects, unstable with time and uncorrected  X-ray source intensity 

variations, detector uncorrected or residual non-uniformity or instability errors etc.), one 

can immediately realize that the information on the perturbation of the electron density 

distribution due to the chemical bonding and the deviation from sphericity effects are 

very small and therefore it requires highly accurate X-ray diffraction data to be 

measured. Things might be even worse if heavier elements are present in the molecule 

under study, because the spherical scattering of their cores would largely dominate the 

diffraction pattern and a residual index of 2% or less could be easily obtained upon a 

simple IAM refinement, making it yet more difficult to obtain the extra information that 

we are seeking. Coppens et al. (14) proposed as a "suitability indicator" (SI), an inverse 

measure of the core scattering intensity per unit cell volume 4. A low SI (< 1) is 

normally calculated for transition metal complexes and could be even lower for 

intermetallic systems or alloys, especially for structures containing metals of the lower 

periods of the periodic table. 

                                                 

ܫܵ  4 ൌ
௏

∑ ௡ೕ,೎೚ೝ೐
మ

ೕ
, where V is the unit cell volume, nj,core are the number of core electrons of the jth 

atom and the summation runs over all atoms in the unit cell 
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In Figure 3, we can appreciate the relative importance of core and valence electrons in 

the X-ray scattering of an organic crystal as a function of the diffraction resolution 

(measured with the length of the scattering vector, in Å-1). 

 

 

Figure 3. A typical distribution of the core (blue) and valence (red) relative contribution 

f to the total structure factor, as a function of sin/. Note that the valence contribution 

is rarely in excess, apart for a few low order reflections. At high angle most reflections 

are almost 100% due to the core density. This simulation is based on a theoretical 

electron density model for L-Histidinium Hydrogen oxalate (10). 

 

An interesting simulation illustrates the very narrow zone separating a rough and an 

accurate electron density determination. Let's take an isolated molecular electron 

density, calculated ab initio with quantum chemical methods at density functional 
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theory (DFT) level,5 and make a FT in reciprocal space, thus obtaining the theoretical 

structure factors (defined above), which are of course error free and do not account for 

the atomic displacements.6 If we now fit these data with a simple IAM, the residual 

factor will be sufficiently good, especially for the high resolution reflections (that are 

not much affected by the valence electrons), and quite a lot better than what is normally 

obtained with actual experimental diffraction data.  

 

Table 1.  R1 agreement indexes (based on all data) for refinements of some molecules in 

the gas phase or embedded in a molecular crystals, against theoretical (DFT) or 

experimental structure factors. 

Compound Structure factors Resolution (Å) IAM Multipolar model 

     

Hydrogen oxalate 
(C2HO4)- 

Molecular orbital 
calculations 

(DFT)(a) 
0.46 0.0155 0.0038 

L-Histidinium 
(C6H10N3O2)+ 

Molecular orbital 
calculations (DFT) 

(a) 
0.46 0.0184 0.0033 

L-Histidinium 
Hydrogen oxalate 

crystal orbital 
calculations (DFT) 

(b) 
0.43 0.0171 0.0032 

L-Histidinium 
Hydrogen oxalate 

Experiment on 
crystal (10) 

0.43 0.0494 0.0310 

Chromium 
hexacarbonyl 

Cr(CO)6 

Molecular orbital 
calculations (DFT) 

(c) 
0.42 0.0122 0.0026 

Chromium 
hexacarbonyl 

Cr(CO)6 

crystal orbital 
calculations (DFT) 

(b) 
0.46 0.0141 0.0032 

Chromium Experiment on 0.43 0.0194 0.0092 

                                                 

5 Hereinafter, we refer as theoretical or ab initio the electron density and related properties (like 

structure factors) which are computed from first principle quantum mechanical methods. The 

adjective calculated, in association with structure factors, is instead referred to Fc computed 

with a given refined model (for example IAM or multipolar). 

6 We not only consider a temperature of 0 K, but also neglect the zero point vibration that exists 

at an ‘absolute zero’ temperature. 
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hexacarbonyl 
Cr(CO)6 

crystal (15) 

(a) carried out at B3LYP/6-31G(2d,2p) level of theory. 
(b) carried out at periodic B3LYP/6-31G(2d,2p) level of theory. 
(c) carried out at BLYP-ZORA/QZ4P level of theory 
 

In Table 1, the results of various structural and electron density refinements of isolated 

molecules or the same molecule in a crystal, from experiments or from ab initio 

calculations, are shown. One can observe that for transition metal complexes or in 

general heavier element molecules the agreement is particularly good already at IAM 

level. This simply demonstrates that a pure superposition of unperturbed atomic 

densities (normally referred to as the promolecule), albeit lacking of any physical 

meaning, is sufficiently close to the exact electron density distribution.  

 

2.1.2 Modeling 

There are basically two ways to determine an accurate electron density distribution from 

diffraction data: a) constructing a parameterized analytical function whose Fourier 

transformation fits the observed Bragg reflection intensities or moduli; b) calculating 

the electron density at each point in space from a FT of the structure factors, based on 

the observed scattered intensities and using the phases from an IAM refinement. Of 

course, the numerical solution b) could eventually be fitted with a function in order to 

obtain an analytical description. There is in principle no special restriction on the 

analytical functions to be adopted, however practical considerations orient the choice 

towards quantum mechanical functions, known to reproduce quite well the behavior of 

the electron distribution in particular regions. For example, a Slater Type Orbital 

(hereinafter STO) is a function like: 
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     rrn nn   exp2!2 12/)1(2/1
 (12) 

which is able to reproduce exactly the electron-nucleus cusp condition (16), that other 

functions, like Gaussian or Lorentz, can only approximate, by using a suitable 

combination of a number of these functions. Using STO would be a way to allow the 

experimentally reconstructed function to obey a given physical constraint, thus 

introducing a bias. It is important to note that STOs are nodeless, unlike the hydrogen-

like Schrödinger equation derived electron orbitals. Energy optimized STOs are easily 

calculated for all atoms in their ground state using Roothaan's equation (17) and 

orthonormal atomic orbitals l as basis sets:  

     


 
m

j
j

nn
jjjl rrnc jj

1

12/)1(2/1 exp2!2   (13) 

l are therefore expanded in a series of STO functions of the same symmetry, but not 

necessarily of the same principal quantum number n. In fact, the 1s orbital is normally 

expanded in terms of several functions, of type 1s, 2s, 3s etc. The same holds true for all 

other orbitals, which eventually result in all being orthogonal to each other. This means 

that their densities can be simply summed to produce the total electron density. The 

most famous set of Roothan-Hartree-Fock wave functions is that tabulated by Clementi 

and Roetti (18). These functions are the ideal starting points to fit the experimental 

diffraction data, although these are  not mandatory. One could in fact use just one 

function for each atomic orbital, the so called best single- orbitals (19).  

There are other physical constraints that could be taken into account when refining a 
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model, for example the positivity of the electron density7 at all points in the unit cell, 

the Hellmann–Feynman theorem (electric forces at nuclei vanish), (20) the electro-

neutrality of a crystal, etc. In principle one could also apply constraints based on 

observed properties of the crystal, for example the piezo-electric constants, however this 

has never been taken into account.8 

In general, we can classify the electron density determinations in two categories: a) 

reconstruction within quantum mechanical constraints; b) non-quantum mechanical 

reconstructions. The first category is by far the most adopted and successful, although 

the amount of quantum mechanical prejudice or prior that we must introduce could 

even become "absolute". In this case, the density is fully biased toward theoretical 

quantum mechanics, thus without using any information from experimentally observed 

X-ray structure factor intensities and therefore cannot be called experimental.  

 

2.1.2.1 Quantum mechanical modeling 

As anticipated, a quantum mechanical modeling is one where, at least to some extent, 

information from quantum chemistry is used. This is true even for conventional crystal 

structural analysis, based on IAM refinements: in fact, the atomic scattering factors, 

used for the calculated structure factors, come from quantum mechanical wave 

functions computed for isolated atoms in their ground state using integro-differential 

                                                 

7 It is well known that although representing the distribution of negative charges, the electron 

density is a probability distribution, therefore must be positive by definition. 
8 To the best of the author's knowledge. 
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Hartree-Fock equations or even Dirac-Fock equations.9 These include the relativistic 

effects, which are particularly important for the heaviest elements, because of the 

"contraction" occurring to the orbitals of the core electrons.  

The de-convolution of the temperature induced atomic displacements from the 

thermally averaged electron density is also based on the quantum mechanical harmonic 

oscillator and the lattice dynamics as introduced by Born and Huang (21) and developed 

by Willis and Pryor (22).  The reader is referred to a recent review for more details (23). 

Here we just recall that the atomic form factors can be approximated with the product of 

the electronic and the nuclear density probability function, so that equation (6) can be 

approximated with: 

rHrH HHrrH    i
i

i
ii

V

i eTfnde  22 )()()ρ()F(  (14) 

Ti(H) is the Debye-Waller factor that is the FT of the atomic probability density 

function undergoing thermal motion, and pi (U) that depends on the atomic 

displacement vector U. Within the harmonic oscillator approximation, pi (U) is a three 

dimensional Gaussian function (isotropic or anisotropic) and U is a second order tensor 

(or a simple scalar in case of a symmetric, isotropic probability function). This is the 

typical modelling used by crystallographers for crystal structure refinement of small 

molecules or inorganic compounds. For an accurate treatment, a more extensive model 

could be refined, which includes the anharmonic motion. The most adopted is the so-

called Gram-Charlier (24) expansion of the harmonic Debye Waller factor. In this case, 

                                                 

9 The solution of these equations is not an eigenvalue problem as the Roothaan equations 

described above, therefore the solution, which is less approximate, is numerical. 

Nevertheless, atomic form factors can be retrieved from these numerical solutions.  
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a generalized U could be defined (25) including a third and fourth order tensor. Quite 

important is that the Gram-Charlier expansion requires a larger number of parameters 

(10 for the third order expansion and 15 for the fourth order). This implies large 

correlation among the parameters of a least square refinement and therefore a higher 

diffraction resolution is necessary, depending also on the mass of the atoms involved 

(26). It should be taken into account that Gram Charlier expansion could produce non-

positive probabilities, which are of course lacking physical sense. Therefore, the results 

of Gram Charlier refinements should be carefully scrutinized. 

When the purpose is the determination of an accurate electron density distribution, then 

the amount of quantum mechanical prior becomes larger. Accurate here means that the 

function is closer to the exact quantum mechanical one electron density defined in 

equation (1) than that computed with a simple IAM. For this goal, one should define 

atomic or molecular orbitals and tentatively refine their occupancies. The first attempts 

to refine this type of model were proposed in the late 1960's and early 1970's. This task 

however was rather complex. In fact, the many diffraction intensities that one could 

obtain from a single crystal were not so easily transformed into the desired information, 

given that the Fourier inversion approach would fail to reconstruct an accurate electron 

density (of course they could reconstruct a rough electron density function, sufficient to 

achieve a crystal structure solution). Thus, the first successful works used the same idea 

beyond crystal structure refinement that is the partitioning into a given number of atom 

projected functions, whose parameters are refined against the observations. The so-

called "Stewart atom" (27) (i.e. the atom centered projected molecular densities that 

best fit the total density), is still adopted in quantum chemistry (28) as one of the most 

interesting partitioning of molecules, valid not only for modeling diffraction 

experiments. Of course this projection requires a set of atomic bases, i.e. a series of 
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atom-centered functions that must be appropriately chosen to guarantee completeness. 

Although the IAM is also based on atom-centered functions (see equation (9)), they are 

not obtained from the projection of the total density. On the other hand, although 

lacking of any physical meaning, the IAM molecular density distribution has in fact 

found some important applications in theoretical chemistry and in the analysis of the 

electron density as we will see in Section 4.2.   

Thanks to the work of R. F. Stewart (29), K. Kurki-Suonio (30), P. Coppens (31), N. K. 

Hansen (32) and F. L. Hirshfeld (33) a theoretical framework was developed to describe 

the deformation density (i.e. the atom centered electron density which deviates from 

sphericity). The method they developed is called the multipolar model that retains the 

same atomic approximation of IAM, but with a larger flexibility. In fact, it was proved 

that it is possible to expand the total molecular electron density in terms of atom 

centered functions. For the sake of completeness and closure, their angular parts were 

chosen to be spherical harmonics (i.e. the same functions used for atomic orbitals). The 

atom centered multipolar expansion is a better approximation of the Stewart atom (27) 

than the IAM. With atom-centered functions one loses the possibility to distinguish 

between single-center and multi-center electron density, because all contributions are 

projected onto single centers. However, the atom centered expansion is simple enough 

because it retains a connection with intuitive chemistry, providing atomic functions that 

describe the total number of electrons of an atom and their aspherical distribution, from 

which a set of atomic (29c) and molecular (34) multipolar moments is easily derived. 

The authors mentioned above proposed different interpretations of the multipolar 

expansion. That mostly adopted is the Hansen and Coppens model (32). Here the 

electron density of an atom i is expanded in three main components: the core density 
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(typically a spherical term with frozen population), a spherical valence density (with 

variable population and contraction/expansion ) and a deformation valence density 

(with variable multipole coefficients and expansion/contraction ' ): 
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The parameters Plm, Pvalence and κ are typically refined within a least squares procedure 

versus the X-ray diffraction data, together with positional and thermal parameters, as in 

a normal crystal structure refinement. The spherical valence density is separated from 

the deformation density which also contains a spherical monopole (when l = 0). This 

allows one in principle to refine at least two monopoles for the valence density orbital 

distribution (a feature useful especially for split valence atoms like transition metals).  

The various multipolar models found their applications through proper software 

developed over the years, for example XD2006 (35), VALRAY (36), Molly (37), 

MoPro (38), JANA2006 (39). The Stewart formalism, although proposed earlier (29), 

has been less adopted also because of the more restricted distribution of the software 

associated with this method, VALRAY. Stewart's formalism can be expressed as:10 
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Where, normally, atomic Pcore parameters are refined for each electronic shell of an 

atom but only one monopole for the valence shell(s) is defined.  

One of the most important advantages of the formalism proposed by Coppens was the 
                                                 

10 Noteworthy, refining an exponent  or the expansion/contraction coefficient  is basically 

identical. 
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usage of local coordinate systems: each set of atomic multipoles is defined with respect 

to a dedicated reference system which is totally independent from the unit cell setting 

and from the reference systems of all other atoms. In fact, in most other crystallographic 

applications there is no need to describe an atom with a reference system different from 

that of the unit cell. For example, special positions in a given space group cause some 

constraints on the coordinates or thermal parameters of atoms, easily handled using the 

reference system of the unit cell. On the other hand, the intuition by Hansen and 

Coppens was that there are in general two different, but equally important references in 

molecular crystals: one is the orientation of the molecule with respect to the unit cell; 

the other is the internal coordinates of the molecule (i.e. a definition of each atom within 

the molecule). The two references are rarely coincident, as molecules normally 

crystallize with much lower symmetry than their point group symmetry, therefore there 

is no coincidence between the inertial /symmetry axes of the molecule and the 

crystallographic directions. More importantly, this choice has indirectly anticipated the 

work which is characterizing most of the modern applications of charge density 

analysis. That is the exportability of a set of multipolar parameters (40) from one atom 

of a given functional group (that can be refined or calculated with high accuracy 

because it belongs to a simple system chosen as reference) to an equivalent atom, 

however belonging to a more complex system that cannot be so accurately refined or 

calculated. This idea requires that each atom is defined independently with respect to a 

local coordinate system, defined using other atoms of the molecule. This approach not 

only guarantees the exportability of the multipole parameters but it allows one also to 

define restraints or constraints on chemically equivalent atoms that are not 

crystallographically equivalent, for example if a pseudo symmetry is present in the 

molecule, but it does not coincide with an actual crystallographic symmetry. This 
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allows one to refine a smaller number of parameters and to impose local symmetries in 

keeping with idealised molecular symmetries. 

 

 

 

 

Table 2. The typical parameters and functions of a multipolar model. 

Parameter / Function Remarks 

Scale factor 
K 

It is normally refined, but it would highly correlate with the total number 
of electrons, unless this is constrained (via the electro-neutrality 
constraint). As an alternative, the scale factor could be calculated based 
on a high diffraction angle data with spherical atom refinement, and then 
kept frozen when the valence monopoles are refined without constraints. 
The first option is more common and creates less problems. 

Atomic fractional 
coordinates 

x,y,z 

They are normally refined together with the multipolar parameters. This 
does not work for H atoms, as they would highly correlate with the 
dipolar functions. Thus H atoms must be positioned based on some 
external method, like theoretical calculations, neutron diffraction, 
average positions based on similar species, vibrational spectroscopy etc. 

Atomic displacement 
parameters 

Uiso,Uij, Uijk, Uijkl 

The Uij tensor is normally refined apart for H atoms (same 
considerations as for x,y,z  above). A treatment of the thermal motion 
beyond the harmonic approximation is possible (Uijk, Uijkl), but it 
requires yet higher resolution diffraction measurements to avoid a strong 
correlation within parameters (41). The positivity of the probability 
distribution of the ADPs calculated from this model should be checked. 

Atomic Core population 
Pcore 

Difficult to refine, but technically possible when quality diffraction data 
are available. For more sophisticated treatments of the core electrons, 
including full multipole expansion, see the text. 

Spherical valence 
population 

Pvalence 

Refinement of this parameter gives an enormous improvement to a 
model. 

Aspherical (deformation) 
valence population 

Plm 

These parameters define the shape of the deformation density around 
each atom. A standard model implies refinement up to hexadecapole 
level for heavier elements, in particular metals of the d-block; octupole 
for main group atom; dipole for H atoms. More flexible models are 
welcome, if the number and accuracy of the diffraction data allow. 

Radial scaling of the 
spherical valence density 

κ 

This is a fundamental parameter that gives an estimate of the contraction 
/ expansion of the valence shell. It is in principle an atomic parameter, 
but more often it is collectively refined for chemically equivalent atoms. 

Radial scaling of the 
deformation valence 

density  
κ' 

In principle a different scaling for each multipole radial density is 
possible, but very difficult to obtain convergence. More frequently, a 
single κ' for all multipoles is refined (again grouping chemically 
equivalent atoms). 

Diffraction extinction 
coefficients 

εij 

Unlike X-ray absorption of the sample, X-ray diffraction extinction 
cannot be corrected during diffraction data processing treatment, given 
that a model for the structure factors is necessary. Therefore an 
extinction refinement should be carried out against the diffraction data, 
at least isotropically, to check if extinction effects are indeed visible 
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(42). 

Rl(r) 
Radial density functions for the deformation electron density. In 
conventional multipolar refinements these are single STO functions, 
representing the best single- functions for an orbital (43) 

i,core(r) and i,valence(r) 
Spherical or spherically averaged densities from Roothan Hartree-Fock 
(18) or Dirac Fock (44) wave functions (each orbital is expanded in a 
number of STO functions). 

 

It is important to stress that a multipolar expansion of the electron density is possible to 

construct models not only based on experimentally measured X-ray intensities. For 

example, Stone (45) proposed a multipolar expansion of the theoretical electron density, 

calculated from a molecular wave function. The same approach was used also to expand 

the dipolar polarizability (46). Both expansions are intended to reduce the electrostatic 

and induction energies of two interacting molecules into simple atom-atom pair wise 

terms. We will see in section 4.3 that these ideas found applications also when 

analyzing electron densities from experiment.  

One important limitation of a multipolar model is the level of the expansion. It is clear 

that the larger is the expansion the smaller will be the error. However, expansion in 

terms of higher multipoles could have practical problems because it requires a large 

number of parameters and creates convergence problems for their least squares 

refinement. It is normally assumed that a reflections : parameters ratio of 10 is 

necessary, otherwise the correlation would be so large that the uncertainty on each 

parameter would be too large, even enormous. Given that in general, for charge density 

studies, diffraction data are collected up to a diffraction resolution of 0.5 Å, the number 

of parameters that could be refined is limited to a maximum of 60 per atom. In fact, 

assuming an atomic volume of ca. 18 Å3, the reciprocal volume would be ca. 0.055 Å-3, 

contained ca. 600 times in a sphere of radius 1/d = 2sinθ/λ = 2.0 Å-1. Taking into 

account 3 fractional coordinates and 6 components of the Uij tensor per each atom, there 

could be sufficient parameters for a multipolar expansion at least up to l = 6 (49 
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additional parameters). However, there are some severe problems in this simplified, 

‘back of the envelope’,  calculation: a) not all reflections are actually observable, 

especially at high diffraction angle; b) in the evaluation of 18 Å3 per atom, the hydrogen 

atoms are not included (having a volume of only 1-2 Å3); c) an important warning was 

given by Destro and Roversi (47): the diffracted intensities are not homogeneously 

distributed among all reflections and some parameters do not contribute at all to some 

reflections, therefore the calculation should be more conservative. Having these three 

warnings in mind, a more sensible estimation of what measurements are required is that 

an X-ray diffraction data collection up to a resolution of 0.5 Å (assuming that at least 

80% of the reflections are above a minimal threshold of intensity limit, usually taken as 

2σ(I)) allows refinement of all atomic parameters up to hexadecapole level (l = 4) for all 

heavier elements, but hydrogen atoms are limited to just monopole and dipole because 

the deconvolution of their charge density and atomic displacement parameters is 

particularly difficult, which is a major reason why neutron diffraction could be 

employed. This X-ray diffraction data collection could be considered as a conventional 

or minimal requirement experiment to obtain a charge density distribution. Of course, if 

the crystal type and quality, the radiation or the detector (or all of them) allow a data 

collection at a yet higher resolution (better than 0.5 Å ) one could safely expect to 

obtain an even more accurate charge density description model and perhaps to extract 

more information from it, e.g. higher accuracy for weaker bonding electron densities.  

To illustrate how the multipolar model works, we consider a step by step refinement for 

some simple molecule, whose theoretical electron density has been calculated with a 

quantum chemical approach (at B3LYP/6-31G(2d,2p) level (48)) and then Fourier 

transformed into structure factors (and by including the molecule in an arbitrary unit 

cell 10x10x10 Å3, for a small enough molecule, and assuming no symmetry i.e. P1 
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symmetry), without taking into account thermal motion and random experimental errors 

of the X-ray diffraction intensities. In Figure 4, we see the residual electron density after 

carrying out refinements against theoretical electron density derived structure factors 

calculated for an isolated benzene molecule, as the example, and then increasing the 

level of the multipole expansion from the IAM up to a multipolar expansion truncated at  

hexadecapole level. The residual density around the H atoms is cleared up after the 

refinement of the dipolar density. In fact there is only one, large, polarization for the H 

atoms, which is that in the direction of the C-H bond, easily described by just one dipole 

function on the H atom (directed as C-H) and then finally adjusted with the final  

refinement. On the other hand, the sp2 hybridized C atoms require additional functions, 

in particular one octupole function that is quite typical for such a trigonal 

stereochemistry.  

  

 a b c 

    

 d e f 
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Figure 4 Residual electron densities in a benzene molecule, from multipolar fitting of 

the theoretical electron density derived structure factors at the B3LYP/6-31G(2d,2p) 

level. a) Residual density after IAM refinement (R1 = 0.0234); b) residual density after 

monopole refinement (l = 0; R1 = 0.0221); c) residual density after dipole refinement (l 

= 1; R1 = 0.0195); d) residual density after quadrupole refinement (l = 2; R1 = 0.0135);  

e) residual density after octupole refinement (l = 3; R1 = 0.0051); f) residual density 

after full multipole refinement (l = 4 and refinements of  and '; R1 = 0.0031). The H 

atoms are expanded only up to l = 2. Electron density contour levels are as depicted and 

defined in Figure 1. A hexadecapole refinement (l = 4) would give results very similar 

to l =3 with only minor improvements (R1 = 0.0048). Notice the gradual reduction i.e. 

improvement of the R1 for each extra level of charge density description as well as the 

improvement i.e. disappearance in the residual electron density features. Thus, by 

monitoring both, it can be directly seen that the X-ray diffraction intensities do indeed 

have the information to describe the electron density in this fine level of detail.  
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We will now consider a more complicated structure, such as the octahedral metal 

complex Cr(CO)6. Here, the main difference is the presence of a fourth period atom, 

having some d-electrons. Describing a transition metal is also complicated by the 

double nature of the valence: the energy levels of the ns and (n-1)d electron orbitals are 

very close, and that means that both are available with almost equal probability for 

electron occupation and thereby for the proper combination of atomic orbitals to 

produce molecular orbitals. Indeed, the electronic configuration of a transition metal in 

its ground state is also peculiar: most atoms have ns2(n-1)dx-2 where x is the total 

number of valence electrons; a few atoms have ns1(n-1)dx-1 or (n-1)dx electronic 

configurations. This demonstrates the rather similar energy of the corresponding states. 

But these could however be highly perturbed in the electric field of the ligands (neutral 

or anionic), especially if the metal is positively charged (an oxidation state +2 very 

commonly produce a dx-2 configuration).  

From Figure 5, we learn that for a transition metal the multipolar model must 

necessarily extend up to the hexadecapole level (l = 4). In fact, the electron probability 

density of a d-orbital can be exactly expanded in multipolar terms as a summation of a 

monopole, a quadrupole and a hexadecapole term. This arises from a mathematical 

closure property of spherical harmonics, whose product is a linear combination of other 

spherical harmonics and in particular the summation runs over harmonics of order L = l 

+ l' , L = l + l' -2 ... etc. (where l and l' are the orders of the two harmonics that are 

multiplied). Thus the electron probability density of a p orbital (which is associated with 

an l = 1 spherical harmonic) is described by a quadrupole and a monopole term (coming 

from the product of two l=1 harmonics). As each orbital type would produce a different 

combination of spherical harmonics, in principle from the refined multipolar 

coefficients, one could retrieve an atomic orbital population by inverting the matrix 
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which transforms electron orbitals into multipoles. However this is in general 

impossible because the total electron density comes from molecular orbitals where the 

individual orbital components are no longer orthogonal to each other because of the 

mixing with orbitals of other atoms in the complex. With transition metals, however, 

under the hypotheses of a low overlap with the ligand orbitals - the same principle 

justifying the basis for the Ligand Field Theory (49) - this mathematical transformation 

would work. In fact, Coppens et al. (50) introduced the method whereby electron orbital 

coefficients from multipolar refinements of a transition metal atom could be obtained. 

There is an additional observation which is possible after the examples shown in 

Figures 4 and 5. In fact, because of the molecular symmetry and the atomic site 

symmetry, there could be special constraints on the multipoles. The 6/mmm molecular 

symmetry of benzene implies that all C atoms are identical and therefore share the same 

set of multipoles, if the local coordinate system is identically oriented. The same holds 

true for the six hydrogen atoms of benzene, of course. On the other hand, the symmetry 

elements on which some atoms lie impose the constraint that some multipoles cannot be 

present, because they would violate the site symmetry. For example, if an atom lies on a 

mirror plane of the molecule, it cannot bear a dipole perpendicular to that plane, 

because it would be positive one side and negative on the "mirror symmetric" side, 

which is obviously impossible. This reasoning is particularly cogent for the Cr atom in 

Cr(CO)6, lying on an octahedral high symmetry site (see Figure 5e) which allows only 

an hexadecapolar function together with the spherically symmetric monopole. A 

collection of the symmetry constraints pertaining to atoms on a special site is 

summarized in ref. (30e). 
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Figure 5 Residual electron densities in Cr(CO)6, from multipolar fitting of the 

theoretical electron density derived structure factors (calculated at a B3LYP-

ZORA/QZ4p level of theory). a) Residual density after IAM refinement (R1 = 0.0122); 

b) residual density after monopole refinement (l = 0; R1 = 0.0109); c) residual density 

after quadrupole refinement (l = 2; R1 = 0.0065); d) residual density after full multipole 

refinement (l = 4; R1 = 0.0026). e) molecular structure of Cr(CO)6. At all multipole 

levels,  and ' are refined. Electron density contour levels as in Figure 1.  
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As anticipated above, the radial description of the atomic density is rather important. 

The choice of atomic wave functions borrowed from quantum chemistry gives a very 

good initial estimate, but not necessarily a perfect solution to describe the accurate 

electron density distribution. In fact, atomic electron densities undergo contractions or 

expansions from their ground state form, due to interactions with other atoms in a 

molecule or in a crystal. The electron density deformation is qualitatively predictable: 

for example, an atom in an electric field will polarize the electron density depending on 

the direction and magnitude of the applied electric field vector and on the polarizability 

of the atom. The main problem is that the electric field experienced by an atom is not 

homogeneous; therefore, each point in space is polarized in a different way. Of course, 

an atom involved in many different chemical bonds will be anisotropically distorted. 

Moreover, each part of the atomic electron density has a different response to the 

applied electric field: core electrons are obviously less polarizable because they are 

more bound to the nucleus. Last but not least, the polarization depends on the oxidation 

state and the charge of the atom. In general one could expect that anions are larger than 

cations, as an excess of electron density makes the electron density cloud larger.  

Within the multipolar model, the way to account for a homogeneous expansion or 

contraction of the electronic cloud of an atom is by modifying the exponent of the STO 

function used to describe the core or the valence of a given atom, which is easily 

applied through the  parameters. Much more difficult is taking properly into account 

the anisotropic deformation due to the chemical bonding. In fact, even within the same 

electronic shell, one must consider the possibility of different expansion/contractions in 

different directions. This could be estimated in several ways, but the price would be to 

significantly increase the number of parameters of the model. A larger flexibility is 

obtained assigning to each function in the multipolar expansion of equation [15] an 
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independent radial function (51): 
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It is obvious that this implies many more parameters, because each multipole lml has a 

different radial function (thus l- and m-dependent) and ' scaling, at variance from the 

multipole model of equation 15 where radial functions are only l-dependent and often 

they are constrained to be the same for all multipoles, thus being both l and m 

independent. One should take into account that this ultra-flexible model is intended to 

pick up the 0.3% (i.e. 0.003) portion in the residual of an agreement factor R1, which 

remains unexplained after a "conventional" multipolar refinement (Table 1 and Figures 

4-5). In most practical examples, however, this approach cannot be used because it 

requires too many data and or too much accuracy, versus what is usually available. The 

0.3% residual spread is easily lost in the imprecisions of data corrections. The 

refinement of the model from equation [17] against experimental data could be more 

stable if the m-dependent radial functions are rigidly maintained, that means without 

any ' refinement and the radial functions are taken from calculations of a number of 

prototype atoms and then stored in a database. 

A lower level of flexibility would be that of using a different expansion/contraction for 

each multipolar level, thus using the parameters ' as they actually appear in equation 

[15], instead of imposing '='l for each l.  

Research in this direction is still on-going and one could expect some improvements in 

the next few years, whereby attempts are being made  to reduce any large correlations 

among variables in this kind of model, and which hampers a full applicability at present. 
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While equation [17] is intended to improve the flexibility of the radial functions for 

valence electrons, in some recent works the role of the core electrons has also been 

deeply investigated. The possibility to visualize distortions of the atomic cores has been 

proposed in the past, but with few  applications. More recently, instead, Scherer, Iversen 

and co-workers (52) have shown that even minor features of the polarisations of core 

electrons are visible if accurate diffraction data are measured, even from powder 

diffraction, giving as a side product almost perfect thermal parameters, otherwise 

affected by some unexplained electron density feature. Refining core electron density 

within a multipolar model is not particularly different from refining the valence electron 

densities: the principal problems are the very small extents of core deformations and the 

very fine diffraction resolution that would be necessary to refine them properly. 

The core charge density refinement could be carried out in the following ways: 

(1) minimal: refining the atomic core monopole populations in a typical multipolar 

refinement, that means making Pcore in equation [15] a variable (notably this is often the 

standard in VALRAY (36) refinements); 

(2) semi-flexible: refining a scale κcore factor together with the monopole population, 

allowing therefore a contraction/expansion of the core itself; 

(3) flexible: refining a full set of multipoles (even up to hexadecapole) for the core 

electrons, starting from the orbitals of the atomic wave functions.  

(4) extremely flexible: refining different sets of multipoles and contraction factors for 

each electronic shell of the core for atoms of the third period or higher (thus one set of 

multipoles for K shell, one for L-shell etc.).  

With all these possible models, equation [15] becomes:
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with a different degree of flexibility depending on which recipe (1)-(4) is used. It is also 

obvious that equation [18] could be merged with [17] making all the radial functions l 

and m-dependent. Practical considerations make the extremely flexible model (4) very 

rarely usable, because the number of parameters would be enormous. An example is the 

seminal work of Fischer et al. (52) on α-Si, where the very high symmetry and the 

simplicity of the compound reduce the number of variables even for the most flexible 

models. In more complex systems, one could use a simplified scheme (3): apart from 

(pseudo)symmetry considerations, one could also take into account the kind of 

deformations that are theoretically possible for a core. For atoms of the second period, 

the cores do not contain d orbitals and the through bond11 1s – 3d mixing should be very 

small, therefore one would not expect very large multipolar contributions above dipole 

(1s-2p mixing). On the other hand, 2s and 2p orbitals of 3rd period atoms could mix with 

3d, at least in part, producing some more significant contributions of higher multipoles. 

As a matter of fact, in α-Si the refinable octupole and hexadecapole of the K shell of Si 

returns very small values (modelled against theoretical wave function parameters). 

Nevertheless, the very flexible refinement showed a significant contraction of the 

corresponding valence multipoles and significant figures also for the octupole of the L 

shell.12  

                                                 

11 1s and 3d are obviously orthogonal in the isolated atoms. 

12 Also the L-hexadecapole is not negligible, although it cannot be produced by s-d or p-d 

mixing. We can only explain this as a pure d contribution that should give an idea of the 

total amount of d-polarization in Si. 
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As discussed above, the atom centered multipolar expansion is the simplest possible in 

terms of interpretation and so far scientists have forgiven the limitation of this model, in 

return for the reduced computational costs (which are of the same order of magnitude of 

a conventional IAM refinement). This advantage has allowed this field to make 

enormous progress and to demonstrate the feasibility of charge density experiments and 

their potential usage. 

On the other hand, a larger precision of the modelling (for example the radial function 

refinement method of Koritsanszky and Volkov (51)) would require much larger 

computation not only for the refinements but also for the calculation of electron density 

derived properties (see section 4). For this reason, other methods could become at this 

point competitive, like the refinement of molecular orbital wave functions against 

diffracted X-ray intensities.  Many authors have tried to propose these kinds of 

calculations, of course facing the problem that the Hamiltonian of a Schrödinger 

equation cannot directly contain the measured X-ray intensities. A brilliant solution was 

proposed by Jayatilaka and coworkers (53), who connected the Hamiltonian and the 

diffracted intensities by means of a Lagrangian multiplier. This means imposing a 

constraint to the wave function: the wave function is calculated in such a way that on 

the one hand it minimizes the electronic energy (the normal variational principle) and 

on the other hand it minimizes the difference between the FT of the calculated electron 

density and the observed structure factors. The Lagrangian multiplier is set before the 

calculation and it determines which minimization is more important (energy or structure 

factor difference). In this way one obtains a so called "X-ray constrained" wave 

function out of a self consistent calculation, where neither energy nor electron density 

are self-consistent, unless the Lagrangian multiplier is set to zero (i.e. observed structure 

factors are not used). Despite the fact that the quantum mechanical meaning is, strictly 
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speaking, lost, this approach has received enormous attention especially because it gave 

access to a number of correlated properties that are available only if a wave function is 

known, whereas they cannot be calculated exactly from an electron density function.  

An alternative procedure is the direct refinement of the density matrix elements, which 

implies going well beyond simple Bragg scattering and including Compton X-ray 

profile measurements. This subject, albeit extremely interesting, is beyond the scope of 

this tutorial review, but the reader is referred to a recent review of the methods of this 

part of the field (51a) for more information. 

 

2.1.2.2 Non quantum mechanical modelling 

As anticipated above, orbital functions are not strictly mandatory to describe the 

electron density distribution, as in general orbitals are not necessary to solve the 

Schrödinger equation. An analytical function is also not mandatory, in fact, as we saw 

above, the FT of the observed structure factors could in principle produce the electron 

density at each point in space. However, as already discussed, this would not be a 

suitable method for the determination of the electron density distribution. Therefore, 

other approaches have been proposed, which are based on different ways to reduce the 

ripples that would otherwise occur from a simple FT. 

For example, the Maximum Entropy Method (MEM) (54) is a technique based on 

information theory, which was originally introduced in the field of radio-astronomy to 

extract signals from stars out of noisy backgrounds (55). MEM uses the information 

entropy to find the most likely distribution of a numerical function like the electron 

density distribution over the ensemble of all points in a unit cell. It is necessary to 
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define an information entropy S (56), to be maximized so as to achieve the least biased 

interpretation consistent with the experimental data: 
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where Np is the total number of points in the unit cell,  jj r   is the value of the ED 

in the pixel j centred at rj and  j
priorprior

j r   is the corresponding value for a 

convenient but ideally arbitrary prior reference electron density. The prior electron 

density could be a uniform electron density distribution or that calculated from a simple 

IAM model, or even a multipolar electron density if the aim of the MEM study is trying 

to improve the multipole model itself. Maximization of the information entropy, 

however, would simply produce a homogeneous electron density in the whole unit cell, 

because in this essentially trivial form of the mathematics it is lacking of any physics 

based constraint. If constrained to fit a set of observed (or simulated) X-ray structure 

factors, the MEM procedure produces a more suitable electron density distribution. 

MEM has often been adopted in electron density studies in order to overcome possible 

ambiguities of the multipolar model, especially due to limitations of the radial 

functions. The model independent nature of MEM is however questionable because of 

the role of the prior information in the definition of the information entropy (57).  

On the other hand, MEM has some disadvantages because the electron density which is 

obtained is not analytical, which substantially reduces the calculations of the electron 

density properties unless trying to fit the numerical values with proper functions. 

Moreover, the electron density is thermally smeared, as that coming from a direct FT of 

the measured X-ray intensity data. This is a limitation, in general, because the main 

purpose of an electron density study is the static function (the same normally estimated 
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via a theoretical calculation). Important is also that the structure factor phases, the scale 

factor K (defined in Table 2) the anomalous dispersion and the extinction effects are not 

self consistently calculated. All these corrections to the data must be applied in advance, 

using for example a preliminary IAM model (59a). 

The basic aspects of the application of the MEM approach in crystallography are 

summarized in the book by Coppens (31), while a discussion of most recent 

methodological improvements (57, 58) and applications of the MEM, in particular to 

molecular crystals of biological interest, may be found in (59). Software for MEM 

refinement and analysis is available, for example BayMEM (60). Other software is 

necessary for a full topological analysis (see section 4.1) of numerically reconstructed 

densities, for example EDMA (61), Integrity (62) or Bader (63). 

It is interesting that MEM has been widely used in crystallography as a method to solve 

crystal structures especially when data are not so easily interpreted, for example from 

powder diffraction. This has stimulated many electron charge density studies, as of 

course powder diffraction seriously limits the application of conventional multipolar 

models, although the combination of a Rietveld refinement using a flexible model is 

technically possible (39). On the other hand, the (stated) power of MEM is the ability to 

reconstruct the function even when the information is substantially hidden in the 

observations. Limitations of MEM are however due to the termination of the data and, 

in powder diffraction, to the basically impossible challenge in correctly extracting 

structure factors amplitudes in a severely peaks overlapping situation, where 

‘equipartitioning’ is not adequate especially at the needed highest diffraction 

resolutions, as well as the modelling of the X-ray background (64).  
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MEM has sometimes been criticized because of artefacts produced in the resultant 

electron density reconstructions, for example the occurrence of electron density maxima 

at non-nuclear positions (65). However, it should be kept in mind that any method could 

produce artefacts due to some approximations and assumptions, like the use of orbital 

functions, the atomistic approximation etc. In this sense, no model can be considered 

bias-free.  

 

2.2 Other scattering techniques 

Although X-ray diffraction is by far the most adopted technique, we should keep in 

mind also that neutron or electron scattering does provide information on the electron 

density. Neutrons have been widely adopted in the past to obtain precise and 

independent estimations of nuclear positions and thermal motion, to be used as the IAM 

reference for the experimental deformation density maps. Later on this method was 

gradually left behind as the multipolar model proved satisfactory to bypass the 

ambiguity of refining atomic positions and their individual thermal motions together 

with deformation electron density parameters. As a matter of fact a perfect multipolar 

model would produce atomic xyz and Uij parameters close enough to those coming from 

the refinement based on  neutron data. Nevertheless, neutron diffraction has remained a 

core approach for a precise determination of the thermal parameters for H atoms, simply 

not possible with X-rays, which is especially important in studies on the medium-strong 

hydrogen bond. In fact, although X-ray diffraction methods have been proposed to 

refine the positions of H atoms, for example the polarized H atom model of Stewart 

(29a, 66), these are normally less accurate than with neutron diffraction data, and as 

stated above do not provide Uij tensors. On the other hand, a combination of polarized H 
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atom and spectroscopic information has been successfully proposed and implemented, 

especially by Destro and Roversi (67). More recently, a new approach has become 

available, which solves most of the problems, making the use of neutrons unnecessary, 

though taking advantage of substantial theoretical information. In fact, the optimization 

of molecular crystal geometries under periodic boundary conditions has now become 

quite easy and reliable. Therefore, the precise coordinates of H atoms, at the same level 

of accuracy as from neutron diffraction, are available at relatively lower investigator 

effort (much lower than involved in undertaking a neutron diffraction experiment at a 

centralised facility). At the same time, the determination of hydrogen Uij values is 

possible combining the external molecular motion (quite easily determined from an 

accurate X-ray diffraction) and vibrational frequencies available from spectroscopy, like 

in the method proposed by Destro (67), or otherwise from the calculations themselves, 

albeit they necessarily require a correction for the anharmonic motions of the H atoms 

(68). 

Despite the fact that the usage of neutrons can basically  be considered as obsolete, 

there is still a very good reason to carry out neutron diffraction experiments, namely 

using polarized neutrons (PNs). In fact, PNs interact with the electronic spins of atoms 

and their diffraction provides information on the spin density (69). Moreover, a new 

methodology was proposed, which combines the refinement using  X-ray and polarized 

neutrons diffraction data, using a unified Hansen-Coppens formalism. Research is now 

concentrated in the direction of combining Bragg X-ray scattering, PN and Compton 

scattering profiles to produce a joint electron, spin and momentum density refinement 

(51a). 
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3. Electron density from theory 

A full quantum chemical treatment is beyond the scope of this review. We will limit our 

descriptions here to briefly describe the most adopted and reliable methods to obtain 

theoretical electron densities, and focusing especially on those of more crystallographic 

applications like the calculations under periodic boundary conditions that obviously are 

the case in a crystal.  

 

3.1 Gas phase calculations 

In this section, we refer to the determination of electron density in isolated molecules 

therefore ignoring any external perturbation, such as the electric field of other molecules 

in a crystal.  

Most of the theoretical methods adopted to solve self-consistently the Schrödinger 

equation (70) allow the definition of an electron density matrix and therefore provide an 

electron density distribution. The most widely adopted methods are based on Molecular 

Orbital wave functions, obtained from a linear combination of atomic orbital basis sets. 

Noteworthy, these basis sets are typically constructed with Gaussian type functions, 

mimicking a STO function. Stewart showed that the Gaussian expansion introduces a 

relatively negligible error (27), which is however quite concentrated at the nucleus.  

The reader is referred to some specialized books to evaluate the different methods, basis 

sets and their reliability (71). From the point of view of the electron density it is obvious 

that a better wave function, obtained from a multi-configuration (and perhaps multi-

state) calculation, would provide a more accurate electron density distribution.  

However, the challenge of estimating a "perfect" wave function is the computational 
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overhead. Given the increasing complexity of the molecular systems that are more and 

more being investigated, the density functional theory (4) (DFT), especially in the 

formalism of Kohn-Sham orbitals (4b), has grown as the best standard method, given 

its inherent simplicity and the relatively lower computational costs. The reason is that 

although based on a single configuration it is supposed to partially include the effects of 

the electron correlation, albeit in a semi-empirical way. Electron correlation cannot be 

accounted for at the Hartree-Fock level, where only one electronic configuration is 

calculated. Electron correlation requires that interaction of more electronic 

configurations is explicitly considered.  

Many approximated functionals have been proposed at similar computational costs, but 

which would require an accurate testing of their performances. Normally, pure 

generalized gradient approximation functionals13 or hybrid functionals14 give the best 

performances in terms of molecular geometries, vibrational frequencies, binding 

energies and activation barriers. Similar results are expected if the electron density is 

analyzed, although systematic comparisons in terms of electron density parameters are 

limited to a molecular dipole moment treatment (71).  

In general, it is obvious that the theoretical methods should include a sufficient amount 

of electron correlation (72) in order that the electron density approaches as much as 

possible the experimental results. Therefore, functionals able to mimic at best the 

effects of the electron correlations are those that provide the more reliable molecular 

geometry and electron density distribution. In this respect, the hybrid functionals are 

                                                 

13 The exchange functional is expressed in a local form which includes the gradient of the 

electron density, which is different from the Local Density Approximation in which the 

Exchange functional only depends on the electron density.  
14 The Exchange functional is combined with some amount of exact Hartree-Fock exchange. 
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normally the best candidates. More recently, dispersion corrected functionals have been 

introduced. If the dispersion is included in a non-variational way (applying a correction 

to the DFT variational energy) then this will certainly improve the molecular geometry 

but not directly the electron density. On the other hand, in approaches like the Coulomb 

attenuation method (73) (CAM) that modifies the Hamiltonian itself, the dispersion 

corrected density is itself variational, i.e. it is calculated by minimizing the energy.  

While one can regret that little work has been done in order to compare the various 

functionals using electron density as benchmarks, one can report interesting 

observations from the literature that could be further exploited: 

(a) Volkov and Coppens (74) reported that multipolar models refined against theoretical 

structure factors were closer to the experiment when hybrid functionals (B3LYP) were 

employed, rather than for pure Hartree-Fock. This preliminary observation guarantees 

that the electron correlation introduced via the functional is visible in the experimental 

data. Moreover it is notable that in all DFT methods, it is the electron density and not 

the electronic wave function to be optimized, which therefore anticipates a better 

performance. 

(b) Koritsanszky (75) reported that finer features of DFT functionals could not be 

revealed if experimental conditions were simulated. This means that the current 

experimental techniques would not be able to further scrutinize the quality of a 

theoretical approach.  

(c) Santos and Macchi reported (76) that CAM-B3LYP (73) returns atomic density 

parameters and molecular polarizabilities that are closer to much more expensive 

coupled-cluster techniques (like CCSDT), where single double and triple excitations are 
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accounted for. This means that the most accurate DFT functionals may replicate, at a 

much lower cost, the performances of the least approximated quantum chemical 

methods.  

(d) The X-ray constrained wave function methods proposed by Jayatilaka (53), and 

discussed in section 2.2.2.1, can be carried out at various levels of theory including the 

experimental information (weighted by the Lagrangian multiplier). In the absence of 

any constraint of the  X-ray diffraction intensities, the method is identical to a normal 

molecular wave function calculated with a given Hamiltonian. If the Hamiltonian is the 

simple Hartree-Fock operator, than the SCF wave function is a pure Hartree-Fock. If the 

Lagrangian multiplier is activated, instead, the wave function is no longer purely 

variational. The method becomes a special kind of DFT. As a matter of fact the 

difference between an X-ray diffraction constrained Hartree-Fock and DFT wave 

function (and the corresponding densities) calculation is much smaller than that 

obtained with the unconstrained methods. 

3.2 Condensed matter  

For the crystallographic community, more interesting than gas phase calculations are 

theoretical methods for calculations of periodic electron densities, mimicking crystal 

structures. For practical and historical reasons, DFT methods are by far the most 

adopted. Hartree-Fock periodic wave functions are rarely employed nowadays and 

available only in some software codes. Perturbation theories applied on Hartree-Fock 

wave functions are in principle possible, but at enormous computational costs (77). 

The basis set is a very important component in periodic DFT calculations. Most of the 

software codes make use of plane waves (PWs) instead of orbitals. PWs are naturally 

periodic functions: 
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G is the reciprocal lattice vector, r is the direct space vector, and  is the unit cell 

volume, and k is the reciprocal space vector. PWs are inherently periodic and 

continuous. PWs are the researcher’s elective choice especially for crystalline metals, 

given the delocalized nature of the electrons in these solids. PWs provide some 

advantages: they are orthonormal, they are not atomic dependent and convergence of 

the Kohn-Sham equation could be computationally very fast. It is normal procedure, 

however, to omit the core electron density, which is more difficult to describe with PWs 

and easily simulated within the functional itself, but this prevents the analysis of core 

electron density distortions.  

An alternative to PWs are the atom-centered orbital functions, typically Gaussian-type, 

an analogue of the molecular orbital approach (78): 
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where ri is the vector distance from the nucleus i, ylm are spherical harmonics, Nlm are 

normalization coefficients, cij are contraction coefficients and ij are Gaussian 

exponents,  M is the number of Gaussian primitives of angular momentum components l 

and m. In the crystal, for the orbital wave functions, the Bloch condition must be 

applied. Problems arise from the inherent incompleteness of these kinds of basis sets 

and the diffuse atomic orbitals that could lead to quasi-linear dependence of the crystal 

orbital. On the other hand, for molecular crystals rather than inorganic solids, the major 

advantage is a very immediate comparison between the isolated gas phase molecule and 

the molecule in the crystal as nominally the very same basis set could be adopted. 
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A software for estimating the crystal orbitals periodic wave function is CRYSTAL09 

(78), and which  calculates Hartree-Fock or DFT wave functions. CRYSCOR (77) can 

calculate perturbation corrections to the Hartree-Fock energy.  

For PW calculations, solid state physics researchers have a variety of software programs 

available, among which that are well used are QuantumExpresso (79), Vasp (80) and 

Wien2K (81). 
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4. Analysis of the electron density 

So far, we have discussed methods to obtain accurate electron density distributions, 

either from theory or from experiment. We will now focus on the most important 

applications of the analysis of the obtained electron density distribution. Most of them 

allow one to extract information on the chemical bonding, intra- or inter-molecular, its 

nature and strength. Other applications are related to molecular or crystal properties, 

directly or indirectly dependent on ρ(r).  

 

4.1 The Quantum theory of atoms in Molecules 

Richard Bader has dedicated his entire scientific career to the development of a theory 

based on the electron density distribution with the aim to produce a self-consistent 

understanding of chemistry (82). At variance from other quantum mechanical 

partitioning of the wave function, Bader provided an alternative way to identify atoms 

in molecules, based on a rigid space partitioning based on the field gradient of the 

electron density distribution. Interestingly, this topological partitioning of the electron 

density distribution coincides with a quantum chemical definition of atoms, based on 

Schwinger's quantum action principle (83) (a differential statement which connects the 

time and the transformation of quantum mechanical observables in kinematical and 

dynamical variations).  

Although QTAIM would not be useful for fitting X-ray scattered intensities, it provided 

the possibility to partition all molecular properties into an individual atomic basis, 

including the energy itself and to analyze the chemical bonding with new eyes. In fact, 

Bader was able to show that an accurate analysis of the electron density, and 
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derivatives, could shed light on the nature of the chemical bonds, a perspective 

alternative to the traditional analyses of the molecular wave functions (84).  

All these results were not accepted without severe criticism (85), nevertheless, in the 

past three decades, the Quantum Theory of Atoms in Molecules (hereinafter QTAIM) 

has achieved a tremendous momentum. One of the major reasons was that it gave, for 

the first time, a common platform for theoreticians and experimentalists together, 

otherwise entrenched in their very different points of view. Notable is the fact that in the 

1970s and 1980s, comparisons were made between experimental deformation electron 

density maps (therefore including the thermal motion of atoms) of molecules in crystals 

and theoretical static deformation densities (without thermal motion of the atoms) of in 

effect gas phase molecules. On the other hand the development of an analytical 

description of the experimental electron density on the one side, and the QTAIM on the 

other, gave a common language to speak about the very same quantities (e.g. the 

topological analysis of the static electron density) and to compare theory and 

experiment without prejudice.     

In this tutorial review, we cannot present a detailed overview of QTAIM. The reader is 

referred to more specialized and comprehensive books (82,86) or review articles of the 

research field on this subject. Here we limit the discussion to some illustrative 

examples. 

 

4.1.1 Topological analysis  

The basic idea of Bader and co-workers (87) is the possibility to partition the electron 

density into atomic domains (or basins) and approach in real space the chemical 

bonding problem. An atomic domain is defined as a region of space in which all the 
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electrons which are bound to the nucleus. Of course, the kind of binding forces chosen 

for the partitioning define atomic basins having different meanings. Apart from the 

classical gradient field ρ(r) ie the gradient of the electron density introduced by Bader 

(87), similar partitioning styles have been proposed but based on the electric field (88) 

(the total electrostatic force acting on a charge) or the Eherenfest force (89), (the total 

force acting on an electron of the system by the nuclei and all the remaining electrons).  

We will limit our discussion to the "classical" QTAIM, i.e. based on ρ(r) partitioning, 

which generates some very important loci: 

(a) The nuclear attractor: a stationary point of the electron density corresponding to a 

nuclear position obviously ignoring the zero point motion that exists even at absolute 

zero temperature.15 Derivatives at this point are not defined due to the cusp,16 however 

in a Gaussian approximation, the point would be characterized by three independent and 

negative curvatures of the electron densities. In some controversial cases, local 

attractors (called non-nuclear maxima, NNM) were found in positions very far from a 

given nuclear site, normally in regions of low electron density, in particular in some 

                                                 

15 Sometime it is erroneously said that electron density maxima and nuclear positions are not 

coinciding, for example to explain the systematic shortening of bonds to hydrogen atoms in X-

ray diffraction refined crystal structure models. This interpretation is not correct: even if 

extremely polarized the electron density generated by STO functions is necessarily maximal at 

the nuclear position. The large and apparent shortening of X-H bond distances (X = any atom) 

is due to the fact that in order to fit extremely polarized and anisotropic electron densities from 

unpolarized and spherical scattering factors, the easiest way is shifting the pseudoatom center in 

the direction of the bond. The same holds true if we use polarized but still spherical scattering 

factors for H atoms, which is the default option in most of the commonly adopted computer 

programs.  
16 If we do not take into account the finite size of the nucleus. 
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metal solids, like Be (90), or in small Li or Na atom clusters (91). The interpretation of 

these points is as yet unresolved (92), although in some cases their occurrence has been 

demonstrated to be a pure artifact of the reconstruction model (65). According to Martín 

Pendás et al. "Rather than being an oddity, NNMs are a normal step in the chemical 

bonding of homonuclear groups, if analyzed in the appropriate range of internuclear 

distances. For most elements, however, this range occurs far away from the stable 

geometry under normal thermodynamic conditions” (93) 

(b) The interatomic surface: this is the locus of space where  

0)()(  rnr  (22) 

n(r) is a vector normal to the surface.17 An interatomic surface separates each atomic 

domain from the others and defines the volume of the atomic basin. 

(c) The bond path: two atomic domains sharing an interatomic surface are necessarily 

connected by a line of maximal electron density which crosses the interatomic surface at 

the bond critical point, i.e. a saddle point with two negative and one positive curvatures 

of the electron density. 

(d) The critical points: topological rules imply that saddles, maxima and minima be 

present in the electron density distribution. All these stationary points are characterized 

by three independent curvatures, with the same sign (like maxima and minima) or 

opposite signs (saddles). Therefore one can recognize the maxima (nuclear attractors), 

                                                 

17 The nuclear position must be excluded from this definition (either if the gradient is defined 

or not). 

 



57 
 

the saddles (bond critical points or ring critical points) and the minima (cage critical 

points). Topological considerations lead to a precise correlation between the total 

number of all critical points, the so called Poincaré-Hopf relationship (94): 

Nୡ െ N୰ ൅ Nୠ െ N୬ 	ൌ 	c (23) 

where Nc is the number of cage critical points, Nr the number of ring critical points, Nb 

the number of bond critical points, Nn the number of nuclear attractors and c is a 

constant (c = -1 for a finite system, c = 0 for an infinitely periodic system, taking into 

account all the critical points of a unit cell).  

No matter how the electron density is defined, from a molecular orbital wave function, 

from a multipolar expansion or even from a discrete series of values on a grid, it is 

always possible to analyze it in topological terms, locating the critical points and 

defining the atomic domains. 

  

Figure 6 The QTAIM partitioning of molecular benzene from the theoretical wave 

function (left) or from the multipolar reconstruction (right). Gradient paths are shown 

for each atomic basin (red lines). Bond paths are black lines, bond critical points are 
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blue spheres and the ring critical point is a green sphere. In the left figure the C-H 

interatomic surfaces are also represented in grey. 

 

As an example, in Figure 6, we see the density gradient partitioning of the benzene 

molecule, as calculated in section 2 from theoretical ab initio wave functions or from 

multipolar reconstruction of the same electron density through structure factor fitting. 

The red lines represent all the gradient trajectories terminating at the nuclear attractors. 

The grey surfaces are the interatomic surfaces. The solid black lines are the bond paths 

that form the molecular graph, an interesting representation of a molecule, which could 

correspond to a traditional visualization of the chemical bonds, but with some 

distinctions: 

(a) The bond path does not correspond to a covalent two-center bonding, but it simply 

highlights the connection between two atoms. 

(b) The bond path does not discriminate the total number of electrons shared between 

two atoms (ranging from 0 to all electrons belonging to the atoms). 

(c) The bond path is not necessarily a straight line and could be significantly longer than 

the simple geometrical vector connecting the two atoms, especially for very strained 

systems (like cyclic molecules) 

(d) The bond path cannot represent through bond or multi-center interactions, but it is 

obviously affected by them. 

The actual meaning of the bond path is well described in a seminal paper by Bader (95), 

where some criticisms (96) associated with identifying the bond path with the chemical 

bond are discussed. 
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4.1.2 Chemical Bonding analysis 

It is noteworthy that an immense literature describes the characterization of the nature 

of the chemical bond, based on the analysis of the electron density distribution and its 

derivative at the bond critical points (97). The main conclusion of this enormous work 

was that it is basically impossible to provide a sensible and comprehensive 

classification of chemical bonds based only on a few quantities determined at the bond 

critical points, even if energy densities are also considered (i.e. functions that distribute 

the total, the kinetic and the potential, energy of a system per each unit of volume (82)). 

On the other hand it is now clear that the nature of the chemical bond may be revealed 

by a more comprehensive analysis, including: 

(a) the calculation of integral properties of the atomic domains (atomic populations, 

atomic energies, mulipolar moments, etc.); 

(b) the calculation of properties of the two electron density, for example electron 

delocalization indices (98) that measure the amount of covalent character in a bond by 

counting the fraction of electron pairs shared between two atomic basins. 

(c) a breakdown of interatomic energy in terms that more precisely reflect the covalent 

or non-covalent bonding mechanism, for example by means of the so called interacting 

quantum atom approach (99), that defines all the bonding contributions per each atom 

using QTAIM partitioning.     

While a topological analysis of the QTAIM kind is always feasible from an electron 

density distribution, some yet  more sophisticated analyses require instead the two 

particle density. This rules out some of the refinement methods of the experimental 
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electron density against measured X-ray diffraction intensities, in particular the 

multipolar model or the electron density on a grid as available from MEM. On the other 

hand, methods like the X-ray constrained wave function or the density matrix 

refinement could return some quantities otherwise available only from purely 

theoretical methods.  

As discussed above, it has become clear that Bader's QTAIM topological analysis 

cannot alone reveal the nature of chemical bonding. The reason is simply explained by 

the nature of the density matrices introduced in equations [2-4]: the chemical bonding 

resides in the off-diagonal terms, whereas the electron density is the trace of the first 

order density matrix. Thus, ρ(r) is determined by the chemical bonding but the nature of 

the chemical bonding is not entirely retrievable from ρ(r) only. For this reason, the 

indicators based on the pair density (like the delocalization indices) are necessary for a 

full comprehension as well as the analyses of other functions based on pair density, like 

the electron localization function (100) or the electron localizability indicator (101), 

which are brilliantly illustrated in ref. (102). All these functions try to quantify and 

visualize the electron pairing occurring upon covalent bonding, which is "invisible" in 

the one electron density. The disadvantage of these functions is they are not available 

experimentally. For this reason, Gatti proposed the systematic use of the source function 

(103), an observable Green's influence function (104) of the one electron density: 

  ')',LS()ρ( rrrr d  (23) 

Where LS is the local source: 

)'ρ()'4()',LS( 21 rrrrr    (24) 



61 
 

The applications of the source function are well described in ref. (105). In particular, the 

integral properties and the partitioning are extremely intriguing, as one may equate (r) 

to a sum of S(r;) (terms integrated over each atomic basic Ω):  

 


'
)',S(),S()ρ( rrr  (25) 

An analysis of the source function at the important topological loci is expected to 

provide information on the nature of chemical bonding, although this function is not at 

all connected with the pair density but only with the one electron density. 

Unfortunately, the atomic terms in equation (25) have often been interpreted by other 

authors as a kind of population, like a charge or an orbital occupancy, which is an 

incorrect view given that S(r;) could be a source (positive) or a sink (negative) and it 

is better understood as the determination of the density, rather than a contribution to the 

electron density at r (in the same way as the water density at a given point is determined 

by the pressure at another point in an hydraulic system). This mistaken view has highly 

affected some interpretations. 

On the other hand, Gatti stressed the ability of source functions to visualize the 

localization and delocalization of electrons and therefore their utility to analyse the 

nature of the chemical bonding. However, this view received some criticism (106) 

especially for the ability to really represent electron sharing and long range, through-

bond, interactions. 

 

4.2 Hirshfeld analysis and conceptual DFT 

Following Bader’s QTAIM, other partitioning schemes have been proposed, the most 

relevant being the Hirshfeld's approach (111), based on a very simple partitioning based 

on a kind of "financial approach" to the electron density: each atom is viewed as a 
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stockholder that shares the profits or losses of the electron density distribution (more 

adequately the charge concentrations or depletions) in accordance with the 

"investment", that is the amount of electron density that a spherical atom would 

independently provide at each point. Thus, in a very simple way, the Hirshfeld atomic 

electron density is obtained by   

௜ሺ࢘ሻߩ ൌ ሺ࢘ሻߩ	
ఘ೔
಺ಲಾሺ࢘ሻ

∑ ఘೕ
಺ಲಾሺ࢘ሻಿ

ೕ
 (26) 

where ߩ௜ሺ࢘ሻ is the electron density at point r belonging to atom i; ρሺܚሻ is the total 

electron density of a molecule, ߩ௜
ூ஺ெሺ࢘ሻ is the electron density calculated at point r from 

the spherical atom distribution of the atom i and ∑ ௝ߩ
ூ஺ெሺܚሻ୒

୨  is the total electron density 

obtained from the superposition of all the spherical atoms (also called as promolecular 

density). In Hirshfeld's definition, all atoms overlap as any atom contributes at least in a 

small part to the electron density at each point in space.18 This is the main difference 

with respect to QTAIM, which instead is a rigid partition of the molecular space. The 

other major difference is that Hirshfeld or stockholder partition is not quantum 

mechanical as the promolecule has no precise quantum mechanical meaning, despite 

some papers (107) which discuss it within a reappraisal of Berlin's theorem (108). 

Moreover, the promolecule is not energetically stable, since atoms with such a 

spherically distributed electron density would be more stable in isolation than bound 

within a molecule built from their superposition. 

Besides these very important contra-indications, Hirshfeld’s approach has found at least 

two very important applications: one is the atomic partitioning within the so called 

                                                 

18 The electron density decays to zero at infinite distance from the nucleus. 
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conceptual-DFT (109), where the stockholder scheme is used to retrieve atomic DFT 

functions; the other is the Hirshfeld’s molecular partitioning proposed by Spackman and 

co-workers (110) with potential applications in crystal engineering (111), see Figure 7.  

Conceptual DFT provides a unified mathematical framework to correlate changes of the 

electron density with chemical reactivity and thermodynamics.  

The approach suggested by Spackman, instead, represents an extension of Hirshfeld's 

idea to a crystal: as an atom in a molecule can be identified using equation [26], so a 

molecule in a crystal can be defined replacing the atomic weight with a molecular 

weight. However, Spackman recognized the necessity to define precise spatial regions 

for molecules, and therefore he proposed to assign to a molecule the volume that is 

owned (by a stockholder, to pursue the analogy above further) at least at 50% (that is 

ఘ೔
಺ಲಾሺ࢘ሻ

∑ ఘೕ
಺ಲಾሺ࢘ሻಿ

ೕ
 ≥ 0.5, where i and j here runs over all molecules in a crystal, instead of 

atoms). The volume is defined by a surface, the so-called Hirshfeld surface, which was 

found not only useful to illustrate the shape of a molecule in a crystal but also to plot 

other properties (like the lengths of intermolecular contacts) to characterize the binding 

properties of the molecule, a tool particularly useful in crystal engineering.  
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Figure 7. The Hirshfeld surface of a benzene molecule in the benzene P21/c crystal 

structure. The surface shown includes within it a benzene molecule. The stick 

representation molecules are the nearest neighbours to the Hirshfeld surface 

encapsulated benzene molecule. The color coding emphasizes closer intermolecular 

contacts (red), intermediate contacts (green) and very distant contacts (blue). 

4.3 Fine and coarse grain approaches for the intermolecular interactions 

The last kind of analysis which is shown in this Tutorial review is concerned with the 

quantification of binding attitudes of molecules in supramolecular aggregations.  

Both materials science and pharmaceutical drug design require nowadays precise 

information on the distribution of electrons in the building blocks that constitute a 

material or a biomolecule, because this is fundamental to predict their functionalities 

and the abilities to aggregate, in a crystal or an agglomeration of molecules such as in a 

pharmaceutical pill containing a drug.  

In fact, methods to anticipate binding energies between two or more molecular building 

blocks have been known for a long time, based on simple electrostatic charge schemes 

or more sophisticated descriptions. For example, the multipolar expansion is normally 

used to approximate the electrostatic potential of molecules (112) (see Figure 8) and 

allows one to calculate, at least approximately, the electrostatic interaction energies 

between two molecules (113). This approach has been widely adopted also for tentative 

predictions of solid state aggregation (the field of crystal structure prediction), a well 

known hot topic in modern structural science (114).  
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Figure 8 The Electrostatic potential,  
 '

'

)'(
)( r

rr

r
r d

 , of benzene from B3LYP/6-

31G(2d,2p) (left) and from multipolar reconstruction (right). Isosurfaces at +0.025 eÅ-1 

(blue) and -0. 025 eÅ-1 (dark red). 

 

In a more comprehensive treatment, one should consider the interaction energies not 

only in terms of pure electrostatics, but also including perturbations due to quantum 

mechanical phenomena. In fact, the interaction between two charge or multipolar 

distributions A and B could easily be described using Coulomb’s Law or Buckingham 

(113) extension to higher multipoles, both based on classical electrostatics: 
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with implicit summations (following Einstein’s convention) over Greek indices. The a 

and b indexes run over all atoms belonging to the A or B molecule, μ and  are 

electric dipole and quadrupole moment components, whereas T…are the symmetrical 

interaction tensors (…(rab)-1, rab being the vector from the origin of “a” to “b”. 

The sum extends up to the higher multipole-multipole interaction description and the 
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summation generally converges for la + lb > 5 (l being the order of the multipolar 

expansion on center “a” and “b”, respectively).  

The multipole approximation is quite correct at large intermolecular distances, but in the 

short range the mutual penetration of the two electron distributions creates a large 

perturbation. The actual space distribution of the two interacting electron densities 

should be properly considered. Spackman recognized this [115], but the model was 

lacking the most important part of the penetration as later recognized [116]. Volkov 

[117] and Gavezzotti [118] proposed volume integration of the electron densities for the 

evaluation of the exact electrical potential. A combination of exact-potential at short 

atom-atom distances and multipole model at large atom-atom distances [119] has now 

become the standard.  

So far we have assumed that electrons are statically distributed, but in reality the 

observed electron density only describes the averaged probability to find electrons at a 

given point in space. This average comes from many possible electronic configurations 

and quantum states (in principle an infinite number), which have a given probability to 

occur and therefore they yield instantaneous deviations from the average distribution, 

creating instantaneous multipoles that are different from the static multipole distribution 

(that normally are refined against X-ray diffraction intensities or calculated from 

molecular wave functions). The instantaneous multipoles of two molecules produce an 

additional interaction between them, which gives rise to the so called London forces, 

more commonly known as van der Waals interactions. Moreover one should further 

consider that the electrons are Fermions and therefore cannot be described without 

taking into account the anti-symmetrization of their wave function, in order to obey the 

Pauli exclusion principle (8).   
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The London forces produce a mutual, albeit small, stabilization between two molecules 

, also called the dispersion energy (and which are an order of magnitude smaller than a 

Coulomb interaction between two ions and in turn also much smaller than the 

interaction between two permanent dipoles). A precise calculation of these London 

forces and corresponding energies would require a sophisticated theoretical treatment, 

including a configuration interaction that for systems of more than one molecule 

become easily prohibitive computationally. However, research in this direction has 

proven that some approximate force fields could be constructed based on the type of the 

atoms involved and of course on the distance between them. For example the well 

known Lennard-Jones potentials (120) include an r -6 stabilizing term, and this 

coefficient tries to reproduce the dispersive attractive interaction between two 

molecules (A and B). Notably, the Coulomb electrostatic interaction energy decreases 

as a function of r -2 therefore the stabilizing dispersion energy is over a much shorter 

range than a charge-charge interaction and somewhat similar to a quadrupole-

quadrupole interaction (for example that occurring between two molecules of benzene). 

More sophisticated force fields include r -8 and r -10 terms, as well as anisotropic 

interactions (121), hence a tensorial form for the coefficients is needed. The more 

flexible force fields (i.e. those using more parameters) are based on distributed atomic 

interactions. Therefore for each pair of molecules all the atom-atom interactions are 

considered. 
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The Fermions’ behavior produces a local short range destabilization (normally called 
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Pauli repulsion).19 The potential associated with this destabilization has been described 

in forms of a term varying as r -12 


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
Bj ab
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ABE
12

)(


 (28) 

or expressed as an exponential function  

   .)(exp rccbbABE BABArep   (29) 

In both equations (28) and (29) it is evident that this term is quite short range and it 

becomes dominant at very short distances. In fact, two electron density distributions 

tend to avoid each other mainly because of the Pauli principle at very short range or 

because of electrostatic forces (at a medium-large range). Nuclear charges (which also 

repulse each other because of Coulomb forces) could then compensate the electron-

electron destabilization producing a larger electrostatic attraction (nucleus to electrons). 

The overall stabilization or destabilization depends on the overall amount and 

distribution of positive and negative charges. 

Two additional terms are necessary to fully understand the interaction between two 

molecules: one is the so-called induction (or polarization) energy, the other is an 

account of covalent effects, sometime reduced to as a charge transfer term (that cannot 

be taken however as a classical electrostatic term). 

                                                 

19 Of course, there is no Pauli force in quantum mechanics. However, the Fermi Hole energy, 

due to the Pauli exclusion principle, can be associated with a potential (that is normally used 

in semi-empirical force fields) whose gradient generates an apparent force, which is 

necessarily repulsive for each pair of atoms.  
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The induction energy is the stabilization obtained by mutual polarization of the 

molecule by another and it depends on the electric field of one molecule and the 

polarizability of the other (and vice versa). Noteworthy, however, if a molecular 

electron density is refined against single crystal X-ray diffraction data, or otherwise 

calculated in periodic systems, then the electrostatic energy and the induction energy are 

basically merged and indistinguishable, because the electron density distributions are 

already including the effects of such mutual polarizations (122). It is important to note 

that while the induction energy is the interaction between the static field produced by 

one molecule and the polarizability of the other, the dispersion energy (in a first order 

approximation) comes from the interaction between the two molecular charge 

distributions, given the well known relationship also proposed by London (123): 
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where Eion is the first ionization energy of a molecule and α is the molecular 

polarizability.  

The covalent effects that we anticipated above may play an important role for very short 

range interactions, like strong and very strong hydrogen bonds, where the covalent 

mechanism is dominating. In fact here the assumption made above, that a short range 

potential is entirely due to the anti-symmetrization of the relative wave functions of the 

two molecules, is no longer valid and an analogous, stabilizing, exchange potential 

should be considered. For example, very strong hydrogen bonds are better simulated 

including at least empirical force fields mimicking the covalent interactions (124).  

Espinosa and co-workers (125) proposed energy density indicators for the evaluation of 

the strength of hydrogen bonds X-H---Y, in particular correlating the potential energy 
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density at the H---Y bond critical point with the dissociation energy of the aggregate: 

bcpVABE
2

1
)(   (31) 

This correlation was obtained from a series of experimentally calculated topologies. 

There are some remarks to consider, however. The energy density at the bond critical 

point is not accounting for the overall intermolecular interactions, in particular when 

charged molecules are concerned. The most relevant example is the strong hydrogen 

bond between two ions (126), that normally is not sufficient to guarantee an overall 

stability of the aggregate, for which counter-ions are also necessary. Nevertheless, the 

energy density would address the stabilization produced by the hydrogen bond, namely 

the local attraction in the frame of a global repulsion. It is also interesting that an energy 

density is measured in units of e2Å-4, that is a pressure. Therefore the ½ coefficient in 

equation (31)  is actually not dimensionless. Recently, the kinetic energy density at the 

bond critical points of the weaker intermolecular interactions has instead been adopted 

to correlate with the bulk modulus of the crystal (127). 

We conclude this section by mentioning the potential application of electron density 

multipolar expansion to calculate optical or mechanical properties of crystals: the 

atomic/molecular multipoles can be used to calculate crystal elastic constants (128) or 

crystal susceptivities (129), through Ewald summation (130). This has stimulated some 

interesting studies on linear and non-linear optical properties of molecular crystals 

(131), using the X-ray constrained wave function method.  

In Table 3, the main crystal or molecular properties available from various electron 

density models are summarized. In particular, the limitations of each method are clearly 

outlined.
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Table 3 Possible analyses of electron density derived properties from the different models. Note that this table does not take into account the 

actual availability of these functions in the commonly adopted software packages. 

ρ(r) 
Deformation 

densities 

QTAIM 
topological 

analysis 

Hirshfeld 
multipoles 

Delocalization 
indexes and 
pair density 

Source 
Function and 
Information 

theory 

Intermolecular 
Electrostatic 
interaction 

Total 
intermolecular 

Interactions 

Crystal 
Elastic 

properties 

Crystal 
Optical 

properties 

Multipolar 
expansion 

Y Y Y N.A. Y 
induction energy 

implicit 
Only empirically 

From 
multipole 

summation 

semi-
empirical 
based on 

multipoles 

MEM 
Y (only 

dynamic) 

only 
numerical, 

thermal 
average 
density 

thermal 
average 
density 

N.A. 

only 
numerical, 

thermal 
average 
density 

induction energy 
implicit; 

multipoles from 
numerical 

integration; 
thermal average 

density 

Only empirically 
From 

multipole 
summation 

semi-
empirical 
based on 

multipoles 

X-ray 
constrained 

wave function 
Y 

only 
molecular 

Y 
only molecular 

and 
approximated(a) 

Y 
induction energy 

implicit 
Y 

From 
multipole 

summation 

From 
Lorentz 

summation 

Molecular 
orbital Wave 

function 
Y 

only 
molecular 

Y 

only molecular, 
approximated for 

DFT wave 
functions(b) 

Y Y Y 
From 

multipole 
summation 

From 
Lorentz 

summation 

HF or DFT 
Crystal orbital 
wave function 

Y Y Y 

Exact at HF 
level, 

approximated at 
DFT(b) 

Y 
induction energy 

implicit 
Y Y Y 

DFT Crystal 
Plane waves 

Y Y Y approximated(b) Y 
induction energy 

implicit 
Y Y Y 

(a) The definition of the correlation density in these wave functions is not defined;(b) At DFT level the pair density is not defined, but an approximated function can be 

constructed using the Kohn-Sham orbitals in a similar way as the HF wave function (132). 
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5. Conclusions and outlook 

This Tutorial review has presented the basics of the topic, including the motivations and 

the methodologies for modeling electron density in molecules and solids from quantum 

mechanical methods or from X-ray diffraction data. It also focused on the expectations 

and limitations of the various approaches. 

It was shown that the amount of quantum mechanical prior information necessary for 

the modeling from experimental data is nowadays very large and the so-called classical 

challenge has now been inverted: theory is more and more challenging the experiments 

and only the most accurate measures can reveal features anticipated by first principle 

calculations.  

This is mainly due to the more limited progress made on the experimental side: in fact, 

despite large technological improvement (X-ray sources, detectors etc.), the problem is 

that it is still elastic X-ray diffraction that is the most adopted method for electron 

density determination. New approaches, however, have been recently proposed, for 

example the combined X-ray, polarized neutron and Compton X-ray scattering that can 

allow one to simultaneously refine charge, spin and momentum densities derived  from 

experiments (51) enlarging the traditional point of view of an electron density 

determination.  

The framework of the field might also change thanks to the introduction of free electron 

X-ray lasers, because the electron density of excited states might be more accurately 

measured, challenging the theoretical interpretation. 
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Subject index  
atomic basin (atomic domain) 
anharmonic motion 
bond critical point 
bond path 
Bragg scattering 
cage critical point 
core refinement  
Compton scattering  
Coulomb force 
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non-nuclear maxima (NNM)  
one electron density 
Pauli Exclusion Principle  
Poincaré-Hopf relationship  
polarized neutrons (PN) 
promolecule 
Quantum theory of atoms in molecules (QTAIM) 
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Radial functions 
residual index 
ring critical point 
Roothaan equation 
Schrödinger equation 
Schwinger's quantum action principle  
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source function (SF) 
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