New MIS 19 EPICA Dome C high resolution deuterium data: hints for a problematic preservation of climate variability at sub-millennial scale in the "oldest ice"

Pol, K.; Masson-Delmotte, V.; Johnsen, S.; Bigler, M.; Cattani, O.; Durand, G.; Falourd, F.; Jouzel, J.; Jouzel, B.; Parrenin, F.; Ritz, C.; Steen-Larsen, H.C.; Stenni, B. (2010). New MIS 19 EPICA Dome C high resolution deuterium data: hints for a problematic preservation of climate variability at sub-millennial scale in the "oldest ice". Earth and planetary science letters, 298(1-2), pp. 95-103. Amsterdam: Elsevier 10.1016/j.epsl.2010.07.030

[img] Text
1-s2.0-S0012821X10004681-main.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

Marine Isotope Stage 19 (MIS 19) is the oldest interglacial period archived in the EPICA Dome C ice core (~ 780 ky BP) and the closest “orbital analogue” to the Holocene — albeit with a different obliquity amplitude and phase with precession. New detailed deuterium measurements have been conducted with a depth resolution of 11 cm (corresponding time resolution of ~ 130 years). They confirm our earlier low resolution profile (55 cm), showing a relatively smooth shape over the MIS 20 to MIS 18 time period with a lack of sub-millennial climate variability, first thought to be due to this low resolution. The MIS 19 high resolution profile actually reveals a strong isotopic diffusion process leading to a diffusion length of at least ~ 40 cm erasing sub-millennial climate variability. We suggest that this diffusion is caused by water-veins associated with large ice crystals at temperatures above −10 °C, temperature conditions in which the MIS 19 ice has spent more than 200 ky. This result has implications for the selection of the future “oldest ice” drilling site.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Climate and Environmental Physics
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)

UniBE Contributor:

Bigler, Matthias

ISSN:

0012-821X

Publisher:

Elsevier

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:16

Last Modified:

05 Dec 2022 14:04

Publisher DOI:

10.1016/j.epsl.2010.07.030

Web of Science ID:

000283979200010

BORIS DOI:

10.48350/4601

URI:

https://boris.unibe.ch/id/eprint/4601 (FactScience: 209091)

Actions (login required)

Edit item Edit item
Provide Feedback