Climate and biogeochemical response to a rapid melting of the West-Antarctic Ice Sheet during interglacials and implications for future climate

Menviel, L.; Timmermann, A.; Elison Timm, O.; Mouchet, A. (2010). Climate and biogeochemical response to a rapid melting of the West-Antarctic Ice Sheet during interglacials and implications for future climate. Paleoceanography, 25(4), n/a-n/a. Washington, D.C.: American Geophysical Union 10.1029/2009PA001892

[img]
Preview
Text
menviel10po.pdf - Published Version
Available under License Publisher holds Copyright.

Download (1MB) | Preview

We study the effects of a massive meltwater discharge from the West Antarctic Ice Sheet (WAIS) during interglacials onto the global climate-carbon cycle system using the Earth system model of intermediate complexity LOVECLIM. Prescribing a meltwater pulse in the Southern Ocean that mimics a rapid disintegration of the WAIS, a substantial cooling of the Southern Ocean is simulated that is accompanied by an equatorward expansion of the sea ice margin and an intensification of the Southern Hemispheric Westerlies. The strong halocline around Antarctica leads to suppression of Antarctic Bottom Water (AABW) formation and to subsurface warming in areas where under present-day conditions AABW is formed. This subsurface warming at depths between 500 and 1500 m leads to a thermal weathering of the WAIS grounding line and provides a positive feedback that accelerates the meltdown of the WAIS. Our model results further demonstrate that in response to the massive expansion of sea ice, marine productivity in the Southern Ocean reduces significantly. A retreat of the WAIS, however, does not lead to any significant changes in atmospheric CO2. The climate signature of a WAIS collapse is structurally consistent with available paleoproxy signals of the last interglacial MIS5e.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Climate and Environmental Physics
08 Faculty of Science > Physics Institute

UniBE Contributor:

Menviel, Laurie

ISSN:

0883-8305

Publisher:

American Geophysical Union

Language:

English

Submitter:

Factscience Import

Date Deposited:

04 Oct 2013 14:16

Last Modified:

05 Dec 2022 14:04

Publisher DOI:

10.1029/2009PA001892

Web of Science ID:

000285841000001

BORIS DOI:

10.48350/4619

URI:

https://boris.unibe.ch/id/eprint/4619 (FactScience: 209119)

Actions (login required)

Edit item Edit item
Provide Feedback