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Abstract: 1 

Transepiphyseal tumor resection is a common surgical procedure in patients with malignant bone 2 

tumors. The aim of this study is to develop and validate a computer-assisted method for selecting 3 

the most appropriate allograft from a cadaver bone bank. Fifty tibiae and femora were 3D 4 

reconstructed from CT (computed tomography) images. A transepiphyseal resection was applied 5 

to all of them in a virtual environment. A tool was developed and evaluated that compares each 6 

metaphyseal piece against all other bones in the data bank. This is done through a template 7 

matching process, where the template is extracted from the contralateral healthy bone of the 8 

same patient. The method was validated using surface distance metrics and statistical tests 9 

comparing it against manual methods. The developed algorithm was able to accurately detect the 10 

bone segment that best matches the patient’s anatomy. The automatic method showed 11 

improvement over the manual counterpart. The proposed method also substantially reduced 12 

computation time when compared to state-of-the-art methods as well as the manual selection. 13 

Our findings suggest that the accuracy, robustness, and speed of the developed method are 14 

suitable for clinical trials and that it can be readily applied for preoperative allograft selection.  15 

 16 

 17 

Key Terms 18 

Orthopaedic oncology, Tumor resection, Allograft selection, Surface registration, Computer-19 

assisted surgery 20 
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Abbreviations, Symbols, and Terminology 1 

bi i
th

 bone from the databank 2 

cc Convergence criterion of ICP 3 

CT Computed tomography 4 

DB Databank 5 

HSD Hausdorff surface distance (mm) 6 

ICP Iterative closest point 7 

maxIt Maximum number of iterations for ICP 8 

MRI Magnetic resonance imaging 9 

MSD Mean surface distance (mm) 10 

n Number of surface points of the search template 11 

pb Point on the bone from databank 12 

ps Point on the search template 13 

s Search template 14 

sT Transformed search template 15 

SD Standard deviation 16 

T, TR Transformation matrix 17 
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Introduction 1 

Transepiphyseal resection and consecutive reconstruction is a common surgical procedure in a 2 

wide number of patients suffering from malignant bone tumors. In this specific surgical scenario, 3 

the bone is cut in a way to preserve the epiphysis (Figure 1d), and therefore an intercalary 4 

implant is required for the reconstruction. Various reconstruction methods exist, and the 5 

applicability of each of the methods is a strictly case-dependent decision.
17

 Biological 6 

reconstructions in great defects caused by transepiphyseal tumor resection around the knee is a 7 

major challenge of oncologic orthopaedics. Clinical reports suggest that those defects can be 8 

repaired using bone allografts to preserve the long term bone stock and limb 9 

functionality.
12,15,16,17,22

 Matejovsky et al.
12

 and Ramseier et al.
22

  further support and promote 10 

the use of allografts as opposed to prosthetic intercalary implants, especially in younger patients. 11 

This was based on the long-term follow-up of their patients over time periods of several years. 12 

Moreover, Bielack et al.,
2
 Matejovsky et al.,

12
 and Paulussen et al.

20
 indicated that the tibia is a 13 

site presenting a high incidence of bone malignancies. A good allograft also facilitates and 14 

enhances the fitting process of the fixation plate(s). Furthermore, optimal handling of the bone 15 

bank ensures minimal loss of the usually scarce cadaver bone stock. 16 

 17 

At present, we are not aware of any published automatic method able to select the best allograft 18 

around the knee from a virtual bone bank system based on shape analysis. However, recent 19 

studies demonstrated that a virtual model is a potential predictor to select the adequate allograft 20 

in a preoperative planning environment.
19

 Furthermore, shape matching is the chief method to be 21 

considered when a proper allograft is to be selected.
6,7,18,19

 22 

 23 
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This work is an extension of our previous work
4
 where we presented preliminary results on 1 

automatic allograft selection. However, the method presented several limitations. In particular, 2 

the degrees of freedom of the spatial search were only limited to the cranio-caudal direction, 3 

whereas no consideration to the remaining rotation and orientation parameters was regarded. 4 

Furthermore, the size of the validation dataset was reduced to ten patient computed tomography 5 

(CT) images, from which low resolution surface models of the femur were generated. 6 

Nevertheless, the obtained results were satisfactory, and brought forward a series of open-ended 7 

questions to be further investigated, relating to both the clinical and technical aspects of the 8 

method. 9 

 10 

This study was also inspired by the findings of Ritacco et al.,
23

 Schmidt et al.,
24

 and Seiler et 11 

al.,
25

 where it was shown that a pattern of symmetry between the contralateral lower limbs of the 12 

same subject does in fact exist. The search for the optimal allograft is automatically carried out 13 

through a databank of cadaver bones, in which the search is routinely performed manually.
14,18,23

 14 

In a similar context, Paul et al.
18,19

 presented methods for the selection of massive bony 15 

allografts, in particular hemipelvic allografts. They employ either manual two-dimensional 16 

outline comparison or automatic three-dimensional image registration approaches in order to find 17 

the best donor. They also compare the two methods and show evidence that the registration 18 

method outperforms the planar outline matching. However, they consider the pelvis as a whole 19 

and do not discuss the problem of selecting an allograft for a localized region. They also do not 20 

simulate real clinical scenarios as they consider that the original anatomy of the pelvis is known 21 

beforehand. Towards the end of their discussion, they propose to rely on symmetry in order to 22 

recover information about the original anatomy of the patient at the tumor site. 23 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Habib Bou Sleiman 

Page 6 of 23 

 1 

This paper presents a novel computer-assisted method for the selection of the allograft that best 2 

matches the patient specific anatomy for transepiphyseal tumor resection around the knee. This 3 

work integrates concepts presented elsewhere,
1,4,23,24,25

 together with sound clinical aims and a 4 

more elaborate and comprehensive methodology, into an automatic system that provides the 5 

orthopaedic surgeon with a relatively fast and accurate solution to the problem of selecting a 6 

good allograft. The functional outcome of the surgery is thus enhanced and the durability of the 7 

implant extended.
12,15,16,17,22 

The method adds to the recent research
19

 the capability of selecting 8 

allografts for specific regions of the bone while taking into account that the presence of a tumor 9 

alters the original shape of the recipient bone. 10 

 11 

This study aims to first assess the ability of the presented method to automatically select an 12 

adequately matching allograft. It also aims to explore whether it yields comparable or better 13 

results than those obtained by the manual method, and if its reproducibility is sufficiently reliable 14 

for clinical use. 15 

 16 

HERE GOES FIGURE 1 17 

 18 

Methods 19 

The method proposed in this article takes advantage of the aforementioned concept of symmetry 20 

in order to reconstruct the original shape of a diseased portion of the bone. A template 21 

corresponding to the location of the tumor is extracted from the patient’s healthy contralateral 22 

bone. An iterative three-dimensional template matching process is then applied through the 23 
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virtual cadaver bone databank in order to locate bone portions that resemble the template in 1 

terms of both morphology and scale. System testing and validation was carried out by simulating 2 

clinical cases from the available data. 3 

 4 

The method presented herein was developed, tested, and validated using a set of 50 patient CT 5 

images of the lower limbs (varying image parameters and scanners). The bones were semi-6 

automatically segmented using Amira® (Visage Imaging, Inc., San Diego, CA, USA), and stored 7 

in the form of surface point models and surface meshes (vertices per sample – tibiae: 42,004; 8 

femora: 58,837). This data is regarded as a digitally stored cadaver bone databank, in analogy to 9 

the one presented in Ritacco et al.
23

 From this point onward, we will be referring to those bones 10 

as cadaver bones. 11 

 12 

The overall application of this method can be briefly described as follows: having a diseased 13 

bone, one can use the hereby presented tool in order to find amongst a set of healthy ipsilateral 14 

cadaver bones, the allograft that best matches the anatomy of the part to be resected. Knowledge 15 

about the original shape of that section is obtained from the contralateral bone of the same 16 

patient. This is achieved by first pre-registering the healthy contralateral bone to the diseased 17 

bone and manually cutting the part that corresponds to the location of the tumor. The processing 18 

pipeline therefore consists of the following steps, which are illustrated in Figure 1: 19 

 20 

1) Acquisition of the CT images and segmentation of the patient’s bones and tumor 21 

(Figure 1a-1c) 22 
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2) Virtually cutting out a part of the healthy contralateral bone that corresponds to the 1 

location of the tumor (Figure 1d) 2 

3) Automatic registration of the template with all bones in the databank and storing 3 

measured distance metrics (Figure 1f) 4 

4) Automatic selection of the closest (or few closest) match(es) from the databank 5 

(Figure 1f) 6 

5) Using the boundaries of the registered template to outline the physical cutting planes 7 

on the selected bone and extract the allograft 8 

 9 

As mentioned earlier, the original anatomy of the diseased bone is extracted from the patient’s 10 

healthy contralateral limb and used as a template to guide the search within the databank of 11 

cadaver bones. This is illustrated in the form of a pseudo-code in Algorithm 1. For each cadaver 12 

bone in the databank (line 2), the algorithm applies an iterative closest point
1
 (ICP)-based 13 

registration on the point clouds of the template and the bone itself in order to find the transform 14 

that minimizes the difference between the two surfaces (lines 4-7). This is done in an iterative 15 

fashion and only stops when a certain convergence criterion (cc = 0.001mm, line 8) is met, or 16 

when the number of iterations exceeds a preset value (maxIt = 200, line 8). Surface distance 17 

metrics are measured and stored for further processing (line 7). The rigid transformation is then 18 

applied to the template in order to place it in the best fitting location and orientation. This 19 

process is repeated until all bones in the databank are examined. An identity transformation is 20 

used to initialize the registration in order to avoid biased results. This could be on the expense of 21 

falling into local minima, but with the advantage of being able to find any matching bone 22 
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segment along the potential donor bones and not only those close to the anatomical region of the 1 

tumor. 2 

 3 

At this stage, each bone in the databank is represented by the minimum surface distance metric 4 

between the bone itself and the best fit of the template. Since the goal is to find the closest global 5 

match, one or more closely matching donors can be selected (lines 16-17), thus giving the 6 

surgeon one-to-few possibilities to choose from. 7 

 8 

HERE GOES ALGORITHM 1 9 

 10 

Validation Protocol 11 

Simulated Clinical Cases 12 

A testing application was developed in order to assess the robustness of the proposed method and 13 

evaluate its possibility to be applied in a clinical setup. In every test iteration, the tool considers 14 

one dataset as a clinical case while using the remaining bones as the cadaver bones – the dataset 15 

taken as a clinical case is also included in the databank and used as a control sample, or what is 16 

referred to in Paul et al.
18,19

 as trap graft. A clinical case consists of an assumingly diseased left 17 

bone, and its healthy contralateral counterpart belonging to the same patient. For every case, the 18 

template is cut out of the right-side bone and then fed to the template matching algorithm 19 

described earlier whose role is to find, within the bone databank, the bony part that best matches 20 

the shape of the template. The collective results of the validation experiments are listed in the 21 

following section. 22 

 23 
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Corresponding points between the template in its final position and the databank bone are 1 

efficiently computed by applying a space dividing kd-tree data structure to the complete bone, 2 

and then selecting the closest points to those of the template. Surface distance metrics that were 3 

used for the validation of this method are the mean surface distance (MSD) and the Hausdorff 4 

surface distance (HSD). The former consists of the average value of the individual Euclidean 5 

distances between corresponding surface points. It provides information about the overall global 6 

similarity between the donor and the recipient. The latter is the largest amongst the individual 7 

Euclidean distances and it indicates the largest possible distance between the two surfaces. More 8 

formally, the distance metrics can be written as follows, 9 

 10 

(1) 11 

 12 

(2) 13 

 14 

where k is the index of the search template point, n the number of template surface points, and 15 

bksk pp  is the three-dimensional Euclidean distance between the k
th

 template point and its 16 

corresponding point on the surface of the examined bone. In Equation 1 and Equation 2, s and b 17 

refer to the template and the cadaver bone, respectively. 18 

 19 

Performance Assessment 20 

A subset of ten clinical cases was used to evaluate the performance of the method relative to that 21 

of the manual approach. Two observers were asked to manually choose the best three matches 22 

for each template. Manual search was carried out using a computer interface with an interactive 23 

virtual environment within Mimics® (Materialise NV, Leuven, Belgium). Each result was 24 
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individually scored. The Automatic method was applied in parallel and the best three matches for 1 

every template were noted and scored. The scoring system is based on a visual assessment of the 2 

fit of the allograft with particular attention to the overlap at the boundaries especially at the sites 3 

where a fixation plate would be placed. 4 

 5 

Fisher’s exact test was used to identify differences in the capability of both methods to detect the 6 

contralateral or trap graft (The Chi-squared test was not chosen because the expected frequencies 7 

in the contingency tables were smaller than 5). A significance level of 0.05 was chosen for all 8 

tests. 9 

 10 

Agreement between both methods in choosing the three best matching allografts (with no 11 

consideration to their order) was assessed using Cohen’s kappa.
5
 Using this result, it is possible 12 

to conclude about whether or not both methods are able to yield similar results. 13 

 14 

Furthermore, Cohen’s kappa was computed for the automatic method when applied four times on 15 

the same datasets. This measure would quantify the reproducibility of the method. Similarly, the 16 

reproducibility of the manual method was assessed by measuring the Cohen’s kappa for the two 17 

observers. 18 

 19 

Results 20 

In this section, the results of the validation protocol of the presented method are listed. The 21 

template matching algorithm was tested on a computer with a 32 bit architecture, 3.00 GHz 22 

Intel® Core
TM

 2 Duo CPU, and 3.25 GB of random access memory. The algorithm never failed 23 
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to run or fell into numerical errors. Comparing a template to a single bone from the databank 1 

took 1.73 ± 0.62 seconds (mean ± SD). These figures include the time to build the kd-tree 2 

whenever point correspondences are required. An overhead time of loading the database into 3 

memory and processing of the images is to be added, however this can be done offline and is not 4 

different than that done in the manual method. Convergence of the iterative algorithm was 5 

mainly constrained by the preset convergence criterion. For the 50 x 50 comparisons, 97.24 ± 6 

27.96 iterations were needed. Only three comparisons out of the total of 2,500 went over the 7 

limit of number of iterations. 8 

 9 

In terms of surface distances, one would expect the best obtained match to be part of the 10 

contralateral bone of the same subject. This is due to the high similarity in the original 11 

morphology of the left and right sides of the patient. This was confirmed by the obtained results 12 

where an errorless classification was achieved. The control samples are therefore highlighted by 13 

the diagonals in Figure 2, where the lowest MSD values were recorded. A similar diagonal 14 

pattern is demonstrated for the Hausdorff distance measurements. 15 

 16 

HERE GOES FIGURE 2 17 

 18 

The control samples can be considered as a further validation parameter, since clinically, the 19 

allograft must mimic the shape of the resected region as closely as possible, and therefore the 20 

template must match the shape of the missing part. The values occurring on the diagonals of the 21 

tables in Figure 2 are 0.62 ± 0.0066mm (mean ± SD) in the case of MSD, whereas the HSD 22 

measurements are 2.30 ± 0.76mm. 23 
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 1 

Figure 3 shows three-dimensional views of the results for the best match, the second best, and 2 

the worst for two different simulated clinical cases (i.e., two different patients). Surface distance 3 

is illustrated in the form of color-coded surface maps. 4 

 5 

HERE GOES FIGURE 3 6 

 7 

Tests comparing the performance of the proposed method to its manual counterpart were carried 8 

out on a subset of ten simulated clinical cases. Twenty manual (10 detections per observer) and 9 

twenty automatic detections were carried out in total. It took the observer on the average 12 10 

minutes per template to manually search through the databank and give a score for each bone. 11 

The automatic method was able to correctly detect the symmetric template in all of the cases. 12 

The observers carrying out the process manually managed to correctly classify the trap graft in 13 

only 12 out of the 20 cases. Fisher’s exact test proved an improvement of the automatic method 14 

over the manual approach (p = 0.002). 15 

 16 

Cohen’s kappa tests resulted in a value of 0.73 (95% CI: 0.63 to 0.83), indicating an 17 

intraobserver agreement that is not accidental.
11

 The two methods were therefore yielding 18 

comparable results in terms of choosing the best three matches. 19 

 20 

Reproducibility tests of the automatic method were carried out by applying the algorithm four 21 

times on the same datasets. In all cases, the algorithm converged to the exact same solution 22 
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yielding a kappa value of 1.0 (95% CI: 1.0 to 1.0). Reproducibility of the manual method, or 1 

agreement between the two observers, resulted in a kappa of 0.79 (95% CI: 0.67 to 0.91). 2 

 3 

Discussion 4 

In this paper we presented a novel computer-aided method for the automatic selection of the 5 

donor allograft that best fits the patient-specific anatomy from a given virtual databank of 6 

cadaver bones. The method is able to speed-up and enhance the current state-of-the-art that is 7 

employed in the clinical setup - a rather time-consuming and error-prone manual approach. A 8 

specific application was considered, namely, transepiphyseal tumor resection around the knee. 9 

Patient-specific anatomy is extracted from the healthy contralateral limb of the same 10 

individual.
23,24,25

 11 

 12 

A thorough validation of the method was presented. Two distance metrics were presented and 13 

used in this paper, in particular, the mean surface distance (MSD) and the Hausdorff surface 14 

distance (HSD). The HSD metric, as well as the location of the region presenting the largest 15 

distance, are clinically relevant since they indicate whether or not the use of the particular 16 

allograft and the proper fitting of the fixation plate(s) is feasible. 17 

 18 

Tests assessing the performance of the automatic method and comparing it to that of the manual 19 

method were as well carried out. The automatic method outperformed its manual counterpart in 20 

terms of detecting the contralateral bone, while maintaining a substantial agreement with the 21 

observers’ choices of the best three matches. The presented method showed higher 22 

reproducibility than that measured for the experts. 23 
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 1 

The method can easily be extended to test different surgical scenarios such as epiphyseal, 2 

unicondylar, and bicondylar resections. Such scenarios might require intraarticular 3 

reconstructions where the cartilageneous tissue has to be considered. In such cases, and since CT 4 

does not provide adequate contrast in soft tissues, magnetic resonance images (MRI) can be used 5 

to complement the data acquisition system. Furthermore, and in order to circumvent the common 6 

shortage in donor bones, the search can be applied across dissimilar bones. For instance, a part of 7 

the femur can be grafted in the patient’s tibia as long as it presents adequate morphology. We 8 

have plans to proceed with our research direction and further investigate those topics. 9 

 10 

Computed tomography - and also MR - images are routinely used to determine the tumor 11 

resection margins. Given the current resolution of typical images, 3D segmentations and 12 

reconstructions usually offer high-quality surface models that are adequate for further 13 

processing. Furthermore, the data used in the experiments of Bou Sleiman et al.
4
 was represented 14 

point models of a lower resolution (almost half the current resolution), and the results were 15 

nonetheless satisfactory. The results shown in the previous section support our initial hypothesis 16 

that an automatic 3-dimensional mesh-based template matching algorithm could perform better 17 

than the state-of-the-art automatic and manual techniques. The presented computer-assisted 18 

method proved to be faster than the manual allograft selection and other reported approaches.
18,19

 19 

When compared to the manual search, a significant improvement was recorded while 20 

maintaining a solid agreement between the expert’s opinion and the outcome of the algorithm. 21 

Due to its mathematically stable nature, our method proved to be highly reproducible. Moreover, 22 

the algorithm did not fail to converge in any of the tested cases, and it yielded superior results to 23 
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those obtained by the manual method. We therefore conclude that our method is based on 1 

reliable data and is accurate enough for clinical use. 2 

 3 

The iterative closest point algorithm used in this work faces the inherent limitation of possibly 4 

falling into local minima, which could diverge the results from the sought solution. However, the 5 

results of our tests showed a good immunity of our method against these pitfalls. We are also 6 

aware that a good fit of the edges of the allograft is of higher importance than an overall good fit. 7 

We plan to investigate a weighted-ICP method in which the importance of the edges is 8 

emphasized by correspondingly weighting the vertices of the surface models. 9 

 10 

Legal, ethical, and logistic issues are usually faced when a clinical technique requires the 11 

postmortem collection of organs. Nevertheless, our clinical partners have facilitated access to 12 

organ donation as the country they operate in has already adopted an opt-out presumed consent 13 

donation system. Seven other countries in Latin America share the same donation laws.
13

 14 

Furthermore, bone banks collecting bones from donors who have agreed to sign an informed 15 

consent is currently part of the healthcare standards in several countries worldwide.
6,7,9,10

 16 

 17 

In our initial assumption, we rely on symmetry between the right and left side of the patient in 18 

order to generate the search templates. Additional methods can also be investigated, for instance 19 

in the cases where there is a clear dissimilarity between the two limbs. Three-dimensional 20 

surface reconstruction and prediction methods, especially those based on a statistical shape 21 

model,
3,8,21

 are also capable of providing valuable information about the original shape of the 22 
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operated bone. The large database of segmented long bones developed at our institute makes this 1 

kind of experiments feasible for future studies. 2 

 3 

Our approach however searches for the best donor based on global surface characteristics. 4 

Nevertheless, displaying color-coded maps of local surface distances, as well as providing the 5 

surgeon with a choice of more than one candidate donor renders the tool more flexible and leaves 6 

the final decision to the expert. 7 

 8 
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Figure 1. Processing Pipeline. (a) Original CT image. (b) Segmentation mask. (c) 3D 1 

reconstruction of the tibiae and the tumor. (d) Cutting out the tumor in a virtual environment. (e) 2 

Illustration of the similarity between the diseased bone and the mirrored version of the 3 

contralateral tibia. (f) Illustration of how the template matching algorithm searches through the 4 

virtual bone database. (g) Illustration of the good fit of a part cut out from the best batching tibia 5 

and placed at the location of the resected section. 6 
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Figure 2. (Left) Mean surface distance (MSD) and (right) Hausdorff surface distance (HSD) 1 

grayscale-coded maps illustrating the results of the validation protocol. The vertical axis 2 

corresponds to the templates cut from the right tibiae, the horizontal axis corresponds to the left 3 

bones of the 50 different subjects, and the origin lies in the upper-left corner. The low-intensity 4 

diagonals correspond to distances measured for the contralateral bones of the same patient. Each 5 

row corresponds to one simulated clinical case. 6 
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Figure 3. Three-dimensional view of a sample result. The surface distance between the template 1 

cut from the right bone and the left tibiae from the databank is represented as color-coded surface 2 

maps. The leftmost sample is the best match, the middle one is the second best, whereas the 3 

rightmost bone is the bone that presented the highest MSD. 4 
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