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elasto-visco-plastic numerical modeling
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Abstract Numerical simulation experiments give insight into the evolving energy partitioning during
high-strain torsion experiments of calcite. Our numerical experiments are designed to derive a generic
macroscopic grain size sensitive flow law capable of describing the full evolution from the transient regime to
steady state. The transient regime is crucial for understanding the importance of microstructural processes
that may lead to strain localization phenomena in deforming materials. This is particularly important in
geological and geodynamic applications where the phenomenon of strain localization happens outside the
time frame that can be observed under controlled laboratory conditions. Our method is based on an extension
of the paleowattmeter approach to the transient regime. We add an empirical hardening law using the
Ramberg-Osgood approximation and assess the experiments by an evolution test function of stored over
dissipated energy (lambda factor). Parameter studies of, strain hardening, dislocation creep parameter,
strain rates, temperature, and lambda factor as well as mesh sensitivity are presented to explore the sensitivity of
the newly derived transient/steady state flow law. Our analysis can be seen as one of the first steps in a hybrid
computational-laboratory-field modeling workflow. The analysis could be improved through independent
verifications by thermographic analysis in physical laboratory experiments to independently assess lambda
factor evolution under laboratory conditions.

1. Introduction

In nature, deformation under nonisostatic stress conditions and elevated temperatures often is heteroge-
neously distributed resulting in ductile high-strain domains, so-called shear zones [Ramsay, 1980], along
which considerable displacements are accommodated. Strain is concentrated in these shear zones because
elasto-visco-plastic deformation in the fault rocks (mylonites) keeps the stress low, promoting energetically
optimized deformation within small rock volumes [Regenauer-Lieb and Yuen, 2003]. In order to predict the
rheology of such natural shear zones, extrapolations of experiment-based flow laws toward natural condi-
tions have to be combined with microstructural evidence of the naturally deformed tectonites.

Studies on natural and experimentally deformed monomineralic mylonites demonstrate that at given physical
conditions at elevated temperatures, steady statemicrofabrics evolve inmylonites, where grain size, grain shape,
and crystallographic orientations evolve to strain-invariant states [Barnhoorn et al., 2004;Herwegh and Handy, 1996;
Means, 1981; Pieri et al., 2001]. Starting with large initial grain sizes, strength first increases to a yield value, after
which strain weakening is manifest by a grain size decrease and an increase in strength of the crystallographic
preferred orientation (CPO) (Figure 1; see also Pieri et al. [2001]). On the contrary, small starting grain sizes show
grain growth during transient stages associatedwith strain hardening [Austin and Evans, 2009]. Independent of the
starting grain size, a balance between grain growth and grain size reduction processes yields a characteristic grain
size at high strains, i.e., at mechanical and microstructural steady state, which reflects the ambient state of stress,
strain rate, and temperature [Austin and Evans, 2007; de Bresser et al., 1998, 2001; Herwegh et al., 1997]. Steady state
grain sizes are closely linked to the deformation mechanisms activated in the aggregates. Small grain sizes with
high surface areas promote diffusion creep, while large grains allow for grain internal plastic deformation by
dislocation creep. Flow laws for these two end-member processes were explored over the last decades and are
meanwhile available for a variety of different minerals [e.g., Brügmann and Dresen, 2008; Kohlstedt et al., 1995].

Such flow laws are used for the extrapolation toward natural conditions to predict stress of rocks during defor-
mation. As pointed out above, however, the flow laws are only calibrated for steady state deformation and not for
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transient stages. Although few experimen-
tal studies were performed to empirically
predict strain weakening of rocks during
transient deformation [Barnhoorn et al.,
2004; Rutter, 1999], to our knowledge no full
description exists so far in the Earth science
literature to unravel the entire evolution
between elastic deformation, transient
elasto-visco-plastic deformation, and steady
state. Knowledge on the mechanical be-
havior of transient deformation is rather
crucial for the prediction of the onset of
strain localization or renewed creep after
a seismic event during the seismic cycle
but also for low to intermediate strain
phenomena like boudinage or folding.
This gap can be closed with numerical
modeling requiring reliable microphysical
models that explain changes in stress
and microstructure with strain. Several
approaches were made to incorporate
the grain size variations and their
mechanical response into viscous models
[Braun et al., 1999; Montési and Zuber,
2002]. Recently, Austin and Evans [2007,
2009] presented the paleowattmeter, an
approach which links the energy dissi-

pated during establishing of a steady state grain size to the interplay between grain size reduction and
grain growth. Ricard and Bercovici [2009] and Rozel et al. [2011] followed a similar energy-based approach
by incorporating continuum mechanics and damage. All aforementioned studies are based on viscous
and/or plastic deformation only. However, it is the initial elastic loading at elevated temperature that
provides an important additional driving force for deformation during transient stages and the onset of
dynamic recrystallization. Furthermore, the release of heat dissipated by the mechanical work of plastic
deformation has a feedback on the bulk rheology and therefore also needs to be incorporated into
numerical models [Ogawa, 1987; Regenauer-Lieb and Yuen, 1998, 2004; Kaus and Podladchikov, 2006;
Schmalholz et al., 2009].

Hackl and Renner [2013] recently published a variational analysis based on microphysics and a similar
thermodynamic approach as followed here, but their study relies on the small scale (grain scale and
smaller, i.e., micron to submicron-scale). The authors investigated the relation of dissipation and the steady
state grain size considering various micromechanisms such as the thermodynamics of dislocations, grain
size, diffusion, and elastic processes. Although such an analysis could potentially be used as input for our
study, in the following we rely on relationships derived from centimeter-scale laboratory creep experiments. In
doing so, we hope to indirectly capture some of the micromechanisms that are not considered in a small-scale
homogenization approach. In the future we hope to merge the two approaches.

The main purpose of this paper is hence to scale up the grain-scale mechanisms to the sample size of a high-
strain torsion laboratory experiment. A secondary aim is to numerically explore the transient regime because
of its important control on the formation of shear zones. In order to achieve this goal, we designed and
performed virtual laboratory-scale experiments. These simulations can be numerically extrapolated to geo-
logical field conditions in the future. Our work thus focuses on reproducing real laboratory experiments using
a self-consistent numerical formulation.

We did not follow the usual approach of homogenizing a discrete formulation of the problem at the mi-
croscale [e.g., Knoll et al., 2009; Cordier et al., 2012]. Instead, we used a formulation that is already based on
the homogeneous assumption of a thermodynamic averaging of a population of grains. The average grain

a

b

Figure 1. Experimental data of calcite torsion experiments from Pieri et al. [2001]. (a)
Stress-strain curves from three experiments performed at strain rates of 3×10

�4
s
�1

and a deformation temperature of 1000K. (b) Corresponding grain size evolution
with increasing shear strain (grey bar: grain size distribution; black dot: number-
weighted mean grain sizes).
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size describes the most probable
grain size at the local scale of one
element, assumed to be at its
state of maximum dissipation.

We developed a numerical simple
shear box simulation scheme
allowing the study of rheological
changes for given physical defor-
mation conditions. The shear box
uses thermodynamic processes
during deformation and grain
homogenization based on the
paleowattmeter theory [Austin
and Evans, 2007, 2009]. By casting

the method into a numerical formulation, we can explore the transient regime and the macroscale steady
state evolution of rheology and grain size. This paper presents the thermodynamic approach and focuses
on the discussion of the results. A concise description of the numerical aspects may be found elsewhere
[Regenauer-Lieb and Yuen, 2004; Karrech et al., 2011a]. These papers deal with criteria for mesh resolution,
the implementation strategy of thermodynamic approach, numerical formulation of the flow theory of
plasticity, and the numerical solution technique for the elasto-visco-plastic numerical finite solver.

After an introduction into theory, the manuscript presents the setup of the shear box. Based on a
parameter study and a comparison of our numerical simulations with data from high-strain high-temperature
torsion experiments performed on calcite by Pieri et al. [2001], we then discuss the application of our
approach to derive steady state flow laws for future applications suitable for extrapolation toward natural
deformation conditions. The second step of application to a field case will be subject to a
forthcoming contribution.

2. Theoretical Background

With the onset of deformation, differential stress will build up elastically, in a first step, followed by visco-
plastic deformation. Elasticity refers to the reversible deformation of materials under stress. In the case of
isotropic linear materials, this material behavior is commonly expressed by two independent material prop-
erties such as Young’s modulus and Poisson’s ratio (E, ν), bulk and shear moduli (K, μ), or the Lame’ parameters
(λ, μ). Elasticity accommodates a rather limited amount of deformation, which disappears as soon as the
material is unloaded. For that reason natural tectonites, exposed to the surface, do not reveal evidence for
this elastic component of bulk rheology. Nonetheless, elasticity plays a fundamental role during initial load-
ing when the stress rises (Figures 1 and 2).

After the initial elastic deformation step follows a period of a nonlinear stress increase with strain, which is
called strain hardening (Figure 2). Here a variety of different deformation processes can take place as there
are intracrystalline deformation by glide along active glide systems (e.g., glide-induced vorticity; see Lister
and Williams [1983, and references therein]), twinning [Rutter 1974; Schmid et al., 1987], the onset of dynamic
recrystallization, or even brittle processes. So far, no comprehensive microphysical models are available for
the strain-hardening stage in the case of calcite.

It is important to note that we can therefore not derive the hardening behavior from thermodynamic deri-
vations as the appropriate experiments are missing. Other materials with much simpler micromechanical
behavior, such as metals, lend themselves to a much more elegant and theoretically founded analysis based
on thermodynamic principles.

Because of this lack, we use an empirical homogenization of the microphysical processes by applying the
Ramberg-Osgood relation [Ramberg and Osgood, 1943]. It was designed to describe the nonlinear stress-
strain behavior near the peak stress (Figure 2). We follow the approach presented in Regenauer-Lieb and Yuen
[2008] for the formulation of the constitutive equations and consider for all rheologies the classical isotropic
elastic deformation in a corrotational Lagrangian framework (first term in equation (3) in Regenauer-Lieb and

elastic plastic 1
hardening

plastic 2
steady state

viscous
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Figure 2. Schematic drawing illustrating thermomechanical serial coupling of the different
deformation behaviors (symbols) and the region of their dominance along the stress-strain
curve. The curve is characterized by initial elastic behavior (I) followed by strain hardening
(II) and softening (III) and finally terminates in steady state (IV).
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Yuen [2008]). In addition we expand the
approach here to include a hardening
term of plastic strain of the Ramberg-
Osgood formulation.

εRG ¼ K
σy
E

� �m
(1)

where εRG is the equivalent strain (square
root of the tensor’s second invariant) dur-
ing Ramberg-Osgood hardening, σy is
the second invariant of the deviatoric
stress tensor, and E represents Young’s
modulus. K and m are dimensionless
constants, which describe the harden-
ing behavior in the plastic regime.
Typical values for m are between 3 and
5 (Figure 3). Note that the Ramberg-
Osgood equation is widely applied in

materials science (e.g., for metals see Skelton et al. [1997] and Fan et al. [2005]) and numerical models
[e.g., Kim et al., 2004]. In the elastic regime, our model undergoes no permanent deformation and the
stresses are below a yielding threshold. Hence, K is 0 until the norm of the stress tensor reaches the limit
of elasticity. Beyond this limit hardening and visco-plasticity start playing an important role. When reaching
maximum stress, strain hardening is terminated but elastic loading still continues. More details on the basic
integration procedure of the elasto-visco-plastic behavior used in this paper are given in Karrech et al.
[2011a, 2011b].

Together with strain hardening, the contribution of viscous creep and plastic deformation increases
(Figure 2). During linear viscous deformation, as for example diffusion creep/granular flow, the equivalent
strain rate ( ε̇diff ) linearly depends on the equivalent stress (σ) (square root of the second invariant) expressed
by a stress exponent of 1 (equation (2)).

ε̇diff ¼ Kdiffσnd�mexp
�Qdiff

RT

� �
(2)

Besides an Arrhenius-type activation term consisting of the activation energy (Qdiff ), the gas constant (R), and
temperature (T), a preexponential factor (Kdiff ) is required. Diffusion creep is particularly efficient for solid-
state materials with high grain boundary area, i.e., in aggregates with small grain sizes (d) as expressed by the
negative grain size exponentm. Austin and Evans [2007, 2009] posit that all deformation energy is dissipated
into heat having therefore no manifestation in the diffusion creep microstructure. This is not fully true, since
the local production of heat will directly affect the grain growth component on the way toward a steady state
microstructure. Knowledge on the energy dissipation of the individual deformation mechanisms is required
and could be tracked down by approaches as published in Karrech et al. [2011a, 2011b, 2011c]. Microstructures
related to the presence of diffusion creep are typically very fine grained and consist of equi-axed grains with no
or only weak crystallographic preferred orientation [Rutter, 1995; Schmid and Handy, 1991].

For plastic deformation, i.e., dislocation creep and dislocation glide, strain rate and stress are nonlinearly
related to each other (Figure 2). Among other descriptions for crystal plastic deformation (e.g., exponential
creep law [Rutter, 1974], Peierls creep law [e.g., Renner and Evans, 2002]), classical power laws can be used to
describe dislocation creep having the following form (equation (3)).

ε̇dis ¼ Kdisσnexp
�Qdis

RT

� �
(3)

In addition to the variables mentioned above, Kdis is again a preexponential constant, n is the stress exponent
(typically n> 3) and Qdis the activation energy for dislocation creep [e.g., Kohlstedt et al., 1995; Brügmann and
Dresen, 2008]. The intracrystalline deformation incorporates the temperature-dependent activation of glide
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Figure 3. Fit of experimental data of Pieri et al. [2001] (grey) with the Ramberg-Osgood
relation (black) to express strain hardening using equation (1) and a Young’s modulus E
of 72GPa. Fit constants n and K are given at the graph’s bottom.
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systems in the crystals. With strain, a buildup of defect structures like screw dislocations is manifest as a result
of the mechanical work. Since this work controls microstructural parameters like the recrystallized grain size
and either requires or delivers energy, the link between mechanical action and required energy budget
needs to be established. The specific internal energy of these intracrystalline processes is given in terms of
the specific entropy s by

u ¼ ψ T ; εijel; d
� �þ sT (4)

here u is the specific internal energy of the system, ψ the specific Helmholtz free energy as a function of T the
temperature, εij

el the elastic strain, and d the grain size. In terms of an energy budget, time-dependent evo-
lution of ψ has to be derived (equation (5)).

ψ̇ T ; εijel; d
� � ¼ ∂ψ

∂T

� 	
εijel ;d

Ṫ þ ∂ψ
∂εelij

 !
T ;d

ε̇elij þ
∂ψ
∂d

� 	
εijel ;T

ḋ (5)

In the above equation the subscripts i and j, which take the values 1, 2, and 3, denote the directions of the
Euclidian space. Note that we use the convention of summation indices in this paper.

Related to the mechanical work performed during plastic deformation, heat is liberated. This additional heat
reduces the strength of the temperature-dependent rheology of the deforming material and simultaneously
increases the grain growth rate. Hence, the establishment of the balance between grain growth and grain
size reduction during steady state creep correlates directly with the energies provided by the mechanical
work. Such a link is called a thermomechanical feedback. The total dissipative work appearing as a first
feedback in form of shear heating can be calculated as a function of time (equation (6))

χ tð Þσij ε̇
diss
ij ¼ σij ε̇ ij � ρ

∂ψ
∂εel ij

ε̇elij � ρ
∂ψ
∂d

ḋ (6a)

where χ(t) is the Taylor-Quinney coefficient, ε̇dissij is the dissipative strain rate, and ρ is density. In the particular
case when σij is the thermodynamic force conjugate of the deformation both in the permanent and reversible
regimes, the above equation, reduces to the following:

χ tð Þσij ε̇
diss
ij ¼ σij ε̇

p
ij � ρ

∂ψ
∂d

ḋ (6b)

where ε̇ pij is the rate of permanent deformation. The second term is the stored energy of grain size reduction,
which is consequently not available for shear heating; hence, it belongs to the stored energy of cold work
[Rosakis et al., 2000]. In the sameway, Hooke’s law of elasticity can be obtained as the derivative of Helmholtz free
energy with respect to the elastic deformation: σij ¼ ρ ∂ψ

∂εelij
. We emphasize that an often overlooked second

feedback term ϕ follows from the thermodynamic approach which considers the grain size evolution with
time and links the stored (Helmholtz free) energy to the partial derivatives of grain size and temperature
(Figure 4).

ϕ ¼ ρT
∂2ψ
∂d∂T

ḋ (7)

As mentioned earlier, Hooke’s law of elasticity is used in the elastic regime. This regime is delimited by an
envelope written in terms of the norm of the stress tensor as follows: f(σij) = σeq� σ0, where σ0 is threshold
beyond which the material starts yielding and dissipative deformations start taking place. For simplicity,
we considered the Von Mises criterion as it is valid for geomaterials undergoing deformations at high temper-
atures. The threshold σ0 depends on the permanent deformation in accordance with the Ramberg-Osgood
formula. On the other hand, the equivalent stress σeq is calculated by inversion knowing the rate of deformation,
temperatures, and the expressions of the viscous flow laws, which are presented in the following section.

3. Implementation of Grain Size Evolution

Austin and Evans [2007, 2009] postulate that the plastic energy stored in the microstructure is manifest by
the grain size. These authors assume that the grain sizes evolve over time scales less than those for stress
variations and that the rate of increase of internal energy is related to the rate of increase in grain boundary
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area [see Austin and Evans, 2009, equation 19]. Transferring to our aforementioned notation of the Helmholtz
free energy yields

ψ̇ T ; εelij ; d
� �

¼ � c γ

d2
ḋ red (8)

where γ is the average specific grain boundary energy, c is a geometric constant, and ḋred is the rate of
change of the grain boundary area during grain size reduction via dynamic recrystallization. It follows from
taking the time derivative of equation (4) that

u̇ ¼ ψ̇
�
T ; εelij ; d

�
þ ṡT þ Ṫ s (9)

assuming isothermal conditions, it follows that

Ṫ s ¼ 0 (10)

ṡT ¼ 1� βð Þσij ε̇ ij þ 1� λdisð Þ βð Þσij ε̇ ij (11)

where β ¼ Ẇdis

Ẇ tot

(12)

is the ratio of the dissipated power of dislocation creep over the total power dissipation ( Ẇ tot ¼ σ ε̇tot ¼ σ ε̇dif
þσ ε̇dis and Ẇdis ¼ σ ε̇dis). The parameter λdis represents the portion of power input by dislocation creep strain
rate, which increases the internal energy [see Austin and Evans [2009]]. Note that in comparison to the thermo-
dynamic notation (equation (6)) 1� λdis represents the Taylor-Quinney coefficient χ(t). The ṡT of equation (11)
reflects the rate of dissipation during a relative partitioning of strain rate between diffusion creep and disloca-
tion creep and the efficiency of the two processes [Austin and Evans, 2009, equation 21]. While the power input

Figure 4. Schematic overview shows the two principal types of feedbacks, their interactions, and the equations. (i) Fundamental feedbacks
(grey arrows) between energy, continuity, andmomentum. (ii) Material feedbacks (white arrows) related to the bulk rheology, which consists
of four mechanical components placed in series: elasticity, Ramberg-Osgood strain hardening, dislocation creep, and diffusion creep (see
text for explanations).
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during diffusion creep is assumed to be completely dissipated (λdif = 0, see argumentation in Austin and Evans
[2009]), a portion of the power input during dislocation creep is stored in the microstructure (0< λdis< 1).

In terms of grain size evolution, Austin and Evans [2009] expressed the rate change in total grain size ḋtot as

the sum of contribution of the rates in grain size reduction ḋred and grain growth ḋgrowth (equation (13)).

ḋtot ¼ ḋred þ ḋgrowth (13)

The rate ḋred is expressed as

ḋred ¼ �βλσ ε̇d2

cγ
(14)

where λ is the energy fraction deposited in the microstructure. The rate ḋgrowth can be expressed by a classical
Arrhenius-type growth law

ḋgrowth ¼ Kgexp
�Qg

RT

� 	
p�1d1�p (15)

Kg is the preexponential factor, Qg the activation energy, and p the grain size exponent of the grain growth
law. Substituting (i) equations (14) and (15) in equation (13), (ii) using the dislocation creep law (equation (3)),
and (iii) assuming ḋtot equals to zero at steady state results in the final paleowattmeter equation for the
steady state grain size of[Austin and Evans, 2007, 2009]

ds ¼ κ �σ�m′ � exp� Q′

RT

� 	
(16)

where κ ¼ cγKg

λpKdis

h i 1
pþ1
, m′ ¼ nþ1

pþ1

h i
, and Q ¼ Qg�Qdis

pþ1ð Þ
In this sense, we can base our numerical model on the energy dissipation of the different deformation terms
(equations (2)–(5)), their feedback mechanisms shown in Figure 4 (equations (6) and (7)), the rates of grain
size reduction (equation (14)), and grain growth (equation (15)) on the way toward a strain-invariant steady
state grain size (equation (16)).

In summary, this leads to the following bulk rheology

ε̇total
ij

¼ ε̇elij þ ε̇RGij þ ε̇diffij þ ε̇disij (17)

with the total energy equation

ρcP
dT
dt

¼ σij ε̇ij � ρ
∂ψ
∂εelij

ε̇elij � ρ
∂ψ
∂d

ḋ

 !
þ ρT

∂2ψ
∂εelij ∂T

ε̇elij þ ρT
∂2ψ
∂d∂T

ḋ þ κ∇2T (18)

where κ is the thermal diffusivity of the last term (the conduction term) in the energy equation. Note that we
use a Lagrangian formulation where the material derivatives and therefore heat advection is implicitly con-
sidered. We do not consider any other additional heat sources such as radioactive/Joule/chemical reaction
heating. As illustrated in Figure 4 this introduces two fundamental types of feedback; one is the basic feed-
back mechanism between the energy, continuity, and momentum equations, and the other is the additional
feedback through the material state including grain size as a thermodynamic state variable. The role of feed-
back mechanisms is pivotal for adjusting the system to a grain size distribution achieving a new quasi-steady
state which is an output of the numerical solution of the new far from equilibrium thermodynamic state. In
other words this paper extends the paleowattmeter approach into a new numerical formulation for deriving
constitutive behavior from laboratory experiments.

4. Model Setup and Constraints

When dealing with grain size modeling, two fundamentally different approaches can be used. One approach is
to deal with the individual interactions between the grains explicitly and use the theory of statistical mechanics
(e.g., Elle model, see Jessell et al. [2001, 2009] and Bons et al. [2008]). The other approach is to use a continuum
mechanics framework where the laws of thermodynamics apply. This means that instead of a single grain a
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population distribution of grains must bemodeled. The size of an individual element that contains a number of
grains must be large enough that a population density function is relevant. This size is equivalent to a size
where the grain size distribution can be used by a thermodynamic averaging technique. Note that this
approach is exactly analogous to the thermodynamic definition of pressure where when only a few atoms are
described a full molecular dynamics calculation must be done and there are collisions between individual
atoms which must be considered. The homogenized term pressure, however, only has a meaning when the
number of collisions between atoms is large enough for a thermodynamic description. Also, the use of a
mathematical formulation based on shear stress and pressure implicitly implies a thermodynamic averaging.

It is therefore important to note that when we talk in the following about a grain size, we always refer to an
individual average cell grain size. Note that this grain size is virtually averaging over an undefined number of
grains within this cell. Hence, on the size of the individual cell, it is not possible to obtain information on the
form of the grain size distribution function. This is not necessary for out approach since, in contrast to high-
resolution microstructure-based models, we intend to resolve neither grain interactions on the scale of grain
boundaries nor the size changes of single individual grains. Compared to a real microstructure, our numerical
model represents a population density function of a number of individual grains. Hence, when our average
cell grain size grows, within the virtual aggregate some grains grow but others would have to shrink in order
to maintain compatibility. Note that although it is not possible to resolve the grain size population within a
model cell, the grain size distribution function of the bulk aggregate is available by integrating over the grain
size averages of all cells of the numerical model.

In the current approach the finite element modeling software ABAQUS is used, which is expanded by user-
defined material models (UMAT) [Karrech et al., 2011a, 2011b, 2011c]. The UMAT was adapted in this study to
allow for the thermomechanical coupling between elastic, viscous, and plastic deformation in calcite. For this

Table 1. Experimental Flow Laws and Associated Parameters for Calcitea

Type Flow Law Parameters

Dislocation creep [Schmid et al., 1980] ε̇dis ¼ Kdis �σndis �exp �Qdis
RT


 �
Kdis = 2511.9MPa

�ndis
s
�1

ndis = 4.7
Qdis = 297 kJ/mol

Diffusion creep [Herwegh et al., 2003] ε̇diff ¼ Kdif �σndif �d�m � exp �Qdif
RT


 �
Kdif = 4.3e7MPa

�ndif
μm

�mdif
s
�1

ndif = 1.1
m=�3.3

Qdif = 200 kJmol
�1

a ε̇dis and ε̇diff are strain rate, Kdis and Kdif are the preexponential constants, σ is the stress, ndis and ndif are the stress exponents, d is the
grain size,m is the grain size exponent, Qdis and Qdif are the activation energies, R is the gas constant, and T is the temperature in Kdis ten
percent of experimental uncertainty inferred since no error estimates are given in the original study.

Table 2. Laws for Grain Growth and Grain Size Reduction Terms of Calcitea

Type Law Parameters Treatment in Model

Grain growth ḋgrowth ¼ Kgexp
�Qg

RT

� �
p�1d1�p Kg = 2511.9MPa

�ndis
s
�1

fixed from grain growth experiment
Qg = 175 kJmol

�1
fixed from grain growth experiment

R= 8.314 Jmol
�1

fixed value
T input parameter
d calculated from previous time step

p= 3 fixed from grain growth experiment

Grain size reduction ḋred ¼ �βλσ ε̇d2

cγ where β ¼ ε̇dis=ε̇tot β calculated for each time step
λ= 0.1 or 0.001–0.1

σ

held constant or is ramped (see text) calculated
for each time step

ε̇ calculated for each time step
d calculated for each time step

c= π fixed value
γ= 1 Jm

�2
fixed value

aFixed parameters are taken from Covey-Crump [1997] for grain growth or from Austin and Evans [2007, 2009] for the grain size reduc-
tion term. ḋgrowth and ḋred are rates for grain growth and grain size reduction, respectively. Kg is a preexponential constant of the grain
growth law, d is the grain size at the given time increment, p is the grain size exponent, Qg is the activation energy for grain growth, R is
the gas constant, and T is the temperature in K. λ is the fraction of energy dissipated in formation of the microstructure, σ is the stress
exponent, ε̇ is the total strain rate at the given time increment, c is a geometric constant, and γ is the grain boundary energy.
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purpose a Young’s modulus of 7.5e10 Pa
was used and experimental calibrations
were incorporated using dislocation and
diffusion creep flow laws of Schmid et al.
[1980] and Herwegh et al. [2003], respec-
tively (Table 1). To describe the strain-
hardening part (Figure 2), the Ramberg-
Osgood relation was calibrated on the
basis of mechanical data from calcite tor-
sion experiments performed by Pieri et al.
[2001]. Best fits were obtained for
K=3×1015 and m=5 (Figure 3). The tran-
sition from strain-hardening part to perfect
plastic behavior has to be predefined at
the present stage (see Figure 2 and below).

In order to link the evolution in grain size
with rheology, the paleowattmeter ap-
proach of Austin and Evans [2007, 2009]
was implemented. In the numerical
models the grain sizes evolve by
thermomechanical coupling following
the grain size reduction and grain growth
rates of equations (14) and (15), originally
defined in Austin and Evans [2007, 2009]
(for parameters, see Table 2).

In terms of model setup, a shear box is defined by the ratio of height to width of 1:3 allowing simple shear
deformation (Figure 5a). The model has fixed velocity boundary conditions forcing the side boundaries of the
shear box to move at predefined velocity (Figure 5a). This velocity is calculated to be in agreement with bulk
strain rates required for the appropriate scale and deformation conditions to be modeled (~ 10�3 to 10�5 s�1

for experiments and 10�9 to 10�14 s�1 for nature). To simulate experimental and natural situations, various
thermal boundary conditions are implemented. Depending on the scale of the application of the shear box,
i.e., centimeter- versus kilometer-size dimensions, thermal boundaries of the model can be fixed to different
values onmodel’s bottom and top (Figure 5). In this way a heat flux across the shear box can be generated that
is in accordance with the appropriate geothermal gradient (e.g., 30°C/km). We describe in this paper only a
formulation for shear strains smaller than 1. A different continuum formulation must be used for higher strains
that include logarithmic elastic rotations as implemented in Karrech et al. [2011c]. Therefore, the present model
is not cyclic in X and Y directions.

Within the shear box the size of the individual elements can be varied. For this study, mostly an array of 30×10
and in a few cases 60×20 and 120×40 elements was used. All three grids served for a grid sensitivity study (see
below). Note that for all applications, the element dimensions are much larger than the final steady state grain
size of the samples to bemodeled (Figure 5b). Hence, themodel is not designed to investigate processes on the
resolution of individual grains or grain boundaries (e.g., Elle model see Jessell et al. [2001]) but rather picks out a
statistically sufficient number of grains of an aggregate with infinite dimensions and predicts what the grain
size evolution is following the aforementioned mechanical and microstructural laws. In this sense, each finite
element has to be thought of as an average of local grain sizes that cannot be resolved any further.

At the present stage, two different grain size populations and their grain size distributions can be generated to
define the starting material of each model consisting of small and large grain sizes (Figure 5b). The input
requires definition of the volume fraction and the average and standard variation of grain size distribution of
each population. The strategy to use coarse- and fine-grained populations allows monitoring of both variations
of the local stress state (grain size versus grain size insensitive deformation) and the convergence of the grain
sizes toward steady state. For example, starting grain sizes too small compared to the steady state will grow and
deform under the corresponding deformation mechanism, which either is diffusion creep or a combination of
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grain size
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fr
eq

ue
nc

y

shear box

microstructural parameters

a

b

variance

mean gs

Figure 5. (a) Shear box geometry with ratio of width to length of 1:3, thermal top
and bottom boundaries, and fixed side boundaries that displace at constant ve-
locities. Gridlines indicate element dimensions in the case of a 10× 30 model. (b)
Individual grain size values of small (grey) and large-sized (empty) grain
populations are randomly distributed over the entire element set. Note that a
value of a single grain size is attributed to each element, whereas the element
dimensions are much larger compared to the grain size.
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diffusion and dislocation creep, the latter being the case once the grain size is close to steady state. In contrast,
grain sizes too big will shrink and deform under dislocation creep. In the current models, the volume fraction of
the grain size population of rheological interest is set to 0.99 to ensure that the subordinate grain size population
has no dominant effect on the bulk rheology but still allows the documentation of the grain size convergence on
the way to steady state. Note that the continuous monitoring of this convergence in a single model run is one of
the great advantages of the numerical approach compared to studies of experimentally or naturally deformed real
rocks, where only few time steps or even just the final stage of a long-lasting evolution is preserved.

For each time increment and each individual element the mechanical state (i.e., stress, strain rate, contribution
of dislocation/diffusion creep, local temperature, and grain size) is determined and stored. These parameters
can be read out and used for further data processing and data analysis.

The approach has been followed to explore the general performance of the model in comparison to the
high-strain torsion experiments of calcite Pieri et al. [2001]: (i) First, models were run on the basis of the
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the large grains starts following the paleowattmeter relationship resulting in strain weakening (compare Figures 6a and 6b). Once the shrinking
large and growing small grains converge, steady state grain size and steady state stress are established. Grain size distributions (c) at the start of
the experiment, (d, e, f) during grain size reduction, and (g) at steady state.
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aforementioned torsion experiments using their strain rate, temperature, and starting grain size distribu-
tion as input parameters. (ii) In order to check for the parameters responsible for peak stress, strain
weakening, steady state stress, and the corresponding shape of the stress-strain curve as well as of the
steady state grain size, individual parameters were varied while keeping the others constant. (iii) In a last
step a grid sensitivity study was carried out to learn more about required grid spacing in light of
thermomechanical predictions.

5. Results
5.1. General Model

For the first model run a temperature of 1000 K, a strain rate of 1 × 10�4 s�1, and a lambda of 0.4 were chosen,
the latter ramping from 0 to 0.4 during a shear strain increment of 0.26 (Figure 6). In accordance with the

high-strain torsion experiments of Pieri
et al. [2001], the model starts with 297
elements simulating large grains, show-
ing a Gaussian grain size distribution
around a mean grain size of 200μm
(Figure 6c). In order to document the
grain size evolution of both small and
large grains, three elements simulating
small grains with initial sizes smaller than
10μm were added. Figures 5b and 5a
represent the changes in stress and in
grain size for each individual grain,
respectively. During initial elastic loading,
all grains undergo grain growth while
they deform by strain hardening in a
Ramberg-Osgood manner and a limited
contribution of viscous deformation
(Figures 6a and 6b). Due to limited size
changes and the logarithmic scale,
however, grain growth is visible at the
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presented scale for small grains only
(Figure 6b, see lower part). With termination
of Ramberg-Osgood hardening near peak
stress (61.9MPa), rate-dependent plastic de-
formation dominates and so the grain size
reduction starts for grains being too large
compared to the steady state grain size
(compare Figures 6a and 6b with 6d–6f). In
fact all grains, even the initially small ones,
undergo grain size reduction in this experi-
ment following the paleowattmeter relation
of Austin and Evans [2007, 2009]. Grain size
reduction is accompanied by strain weaken-
ing (Figure 6a). Once the grain sizes converge
toward the steady state grain sizes of 7.7μm
(Figures 6b and 6g), stresses also reach a
stable value of 53.8MPa (Figure 6a). Note the
excellent agreement in grain size reduction
and steady state grain size between rock

deformation experiment (Figure 1) and the numerical simulation (Figure 6). Strain distribution during these
transient stages is heterogeneous particularly around those cells characterized by small grain sizes. With
progressive strain and grain size reduction, the heterogeneity disappears and deformation becomes homo-
geneous. A more detailed treatment of the strain localization behavior is beyond the scope of the present
paper and will be discussed elsewhere.

Both steady state mean grain size and bulk stress are close to the experimentally obtained values (compare
Figures 1 and 6). The main difference between rock deformation experiment and numerical model using
standard flow laws is the lower shear strain required in the latter to reach peak and steady state stress. This
discrepancy indicates either that the steady state flow laws are too weak for describing transient deformation
or there are differences between the kinetics of grain size reduction processes between the rock deformation
and numerical experiments. To discriminate between the two possibilities, a sensitivity study was carried out
for the numerical approach to unravel the most important parameters affecting peak stress during transient
stages and steady state stress in the case.

5.2. Parameter Study

In order to understand how the different parameters affect the grain size reduction and mechanical evolution,
one key parameter per experiment was changed, while the rest of the input variables were kept constant. Given

the large starting grain size and the asso-
ciated importance of grain size reduction
and dislocation creep, we will pay special
attention to changes of parameters
related to these two processes treating
variations in grain growth and diffusion
creep in a subordinate manner only. In
the following the parameters are
presented starting first with the effect of
the strain-hardening component and
continuing then according to decreasing
influence of the parameters on peak and
steady state stresses.

5.3. Strain-Hardening Component

In our setup, the Ramberg-Osgood rela-
tion defines strain hardening (equation (1),
see above). Although we kept variables K

Figure 9. Changes in stresses with increasing strain for experiments performed
at different strain rates ranging from 1×10

�4
s
�1

to 6×10
�4

s
�1
. For all exper-

iments, T = 1000 K and λ= 0.4. Bulk stress is obtained by averaging over the
stress states of all individual grains.
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and m of equation (1) constant, we varied the
duration of the hardening activity ranging from
shear strains of 0.03 to 0.15 (Figure 7). Increasing
strain increments of strain hardening results not
only in an increase in peak stress but also in the
stresses at the grain size convergence and even at
the final stress during steady state (Figures 7a–7c).
The absolute differences in the obtained stress
are about 10MPa for the range in shear strains
considered for strain-hardening activity.

5.4. Preexponential Parameter
of Dislocation Creep (Kdis)

Using a series of real rock deformation experi-
ments, the preexponential factor (Kdis) is calcu-
lated by solving equation (3). This parameter is
subjected to considerable variability due to the
error propagation related to each of the exper-

imentally determined variables in this equation. Errors of more than 1 order of magnitude must be
considered when dealing with Kdis. Starting from the original value of 2511MPa�ndis s�1 [see Austin et al.,
2008], we varied Kdis from 251 to 50,238MPa�ndis s�1 (Figure 8). The lower the Kdis, the larger stress at peak
and steady state stress (Figure 8). The minimum value of Kdis = 251 yields 118MPa and 83MPa for peak and
steady state, while Kdis = 50,238 results in 57 and 51MPa, respectively. Hence, by varying Kdis, both the peak
values and the degree of post-peak strain weakening are controlled.

5.5. Strain Rates (ε�)
Strain rates from rock deformation experiments are calculated by measuring the dimensional change after an
experiment to estimate bulk strain dividing this value by the duration of deformation. Also, this estimation
bears uncertainties. For the numerical experiments, we varied the strain rates by increasing the strain rate by
steps of 1 × 10�4 s�1 from 1×10�4 s�1 to 6×10�4 s�1 (Figure 9). Generally, the slower the strain rate, the lower

the peak and steady state stress. For example,
peak stresses of 77 and 62MPa and steady state
stresses of 65 and 54MPa resulted for the fast
and slow strain rate experiments, respectively.
Note that the onset of steady state is identical
for all experiments since a constant lambda (λ)
of 0.4 was applied (see below).

5.6. Temperatures (T)

Heat supply in real rock deformation
experiments has to be calibrated using a
dummy sample before running the actual
deformation experiments. While during this
calibration step different thermocouples are
placed across the later sample position in order
to achieve a homogeneous temperature pro-
file, moving pistons variations in power supply
may induce temperature shifts during the real
deformation experiment. In order to account
for potential variations in the deformation
temperature, we evaluate in our numerical
approach the effect of temperature changes
of ± 10 K around the mean value of 1000 K
(Figure 10). The total difference of 20 K
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induces changes in peak stress from 64 to 59MPa
for peak stress and from 57 to 53MPa for steady
state stresses. Generally, the stresses are lower the
higher the deformation temperature. Note that nei-
ther the absolute difference of 6–7MPa during strain
weakening nor the onset of steady state stress is af-
fected significantly by changing the deformation
temperature within the range of experimental
uncertainty (Figure 10).

5.7. Lambda (λ)

The parameter λ documents the work required to
change the microstructure. For example, the reduc-
tion in grain size needs work and the degree of λ is a
measure of this work dissipated in the rock. In both
nature and experiment, the estimation of λ is rather
difficult. Numerical modeling represents a potential
way to investigate its influence. In a first series of nu-
merical experiments, λ was kept constant during the
entire experiment but was varied between the exper-
iments by choosing values of 0.01, 0.05, 0.1, 0.2, 0.3,
and 0.4 (Figure 11). The same λ values were applied in
a second set of experiments, where λ was ramped in a
linear way from 0 to the corresponding final value
during a shear increment of 0.26 (Figure 12). All these
experiments were performed at a strain rate of
1×10�4 s�1 and a deformation temperature
of 1000K.

In both experimental suites, the onset of strain
weakening was identical in all runs in terms of stress
(62MPa) and shear strain (0.06). Variations in λ dra-
matically change the rate and the intensity of strain

weakening. While λ=0.4 induces a rapid stress drop to 54MPa reached at shear strain of 0.106, values of 0.3, 0.2,
0.1, and 0.05 induce drops to 54.5, 55.5, 56.8, and 57.6MPa at shear strains of 0.11, 0.125, 0.16, and 0.23,
respectively (Figure 11). In the case of the experiment with λ=0.01 no steady state was reached within the
experimentally applied total shear strain of 0.3. Hence, the larger the λ, the faster and more intense is the stress
drop to steady state stresses. In terms of the microstructural expression, this variation is reflected by the steady
state grain sizes, which range from 10.78 down to 7.71μm for λ=0.05 to 0.4, respectively.

When imposing the λ ramp, the degree of stress drop during strain weakening, the amount of grain size
reduction and the resulting steady state stresses are identical compared to the constant λ experiments. In
contrast, the timing of the onset of steady state stress and stress can be expanded by the λ ramp toward
higher shear strains.

5.8. Grid Sensitivity

Generally, all the three grid sizes used display the same mechanical response with increasing shear strain
(Figure 13). Slight variations in the numerical oscillations between the grids occur only near peak stresses.
Here the oscillations are at maximum±0.2, 0.15, and 0.1MPa for the 30 × 10, 60 × 20, and 120× 40 grids, re-
spectively. Hence, all three grids show excellent reproducibility of the mechanical data allowing to run ex-
periments at low resolution with high confidence.

Given the link between grain size and grid spacing, however, a restriction in terms of spatially highly resolved
grids exists in the presented approach. The grid spacing is not allowed to be smaller than any of the average
grain sizes implemented. Hence, particularly the dimension of the starting grain size defines the minimum
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allowed grid spacing. Therefore, grid spacing at steady state conditions is far away from this grain size criterion
as we are dealing with fine-grained steady state grain size only.

6. Discussion

Austin and Evans [2007, 2009] and Austin et al. [2008] applied the paleowattmeter to evaluate the link
between mechanical properties and recrystallized grain size at steady state deformation of naturally and
experimentally deformed calcite. Combining UMAT in Abaqus with the paleowattmeter allows now the
simulation of mechanical and grain size changes with increasing shear strain. In this way, typical stress strain
curves can be generated for each element of themodel consisting of (i) the initial linear elastic stress increase,
(ii) nonlinear strain hardening terminated by peak stress, (iii) strain weakening, and (iv) final steady state
stress (Figure 6). While (i)–(iii) represent transient stages, (iv) defines strain-invariant steady state. This
mechanical evolution is the direct consequence of the interplay of elasto-visco-plastic deformation and the
associated grain size changes. During the Ramberg-Osgood strain hardening until peak stress (first transient
part), the average grain size increases, but the growth is best visible in small grains (Figure 6b, see lower part
of diagram). Near peak stress, grain size reduction starts during the second transient part resulting in sig-
nificant strain weakening for large grains (Figures 6a and 6b). Small grains with a size just slightly above the
steady state one show both a limited grain size reduction and stress decrease only. In terms of deformation
modes a switch from elasto-plastic to perfect plastic deformation occurs, where in the latter stage the con-
tribution of dislocation creep and diffusion creep depends on the size of an individual grain. Note that the
smaller the grains, the larger the contribution of diffusion creep. The evolution of bulk stress of the aggregate
(e.g., Figures 8–10) is therefore defined by the stress-strain evolution integrated over all elements of
the model.

The modeled evolution in stress and grain size qualitatively follows stress-strain curves generally found in
monomineralic but polycrystalline rock deformation experiments [e.g., Ashby and Verall, 1977]. While the
large starting grain sizes show the classical strain-hardening and weakening behavior on the way to steady
state stress, small grains predominantly follow strain hardening. These two contrasting behaviors are in good
agreement with the concept of steady state grain size, which was found by in situ observations from rock
analogue experiments [Herwegh and Handy, 1996; Herwegh et al., 1997], has been predicted theoretically
[de Bresser et al., 1998, 2001; Shimizu, 2008; Austin and Evans, 2007, 2009; Ricard and Bercovici, 2009], and can
under ideal circumstances also be documented in nature [see Herwegh et al., 2005]. Here grains too small
and too large compared to the steady state grain size grow or reduce their size, respectively, to adapt it to
the energetically favored steady state grains size.

Each numerical model is always just an approximation of a complex situation in reality, and it has to be cal-
ibrated. For calibration we use the calcite torsion experiments of Pieri et al. [2001] (compare Figures 1 and 6).
As visible in Figure 1, each rock deformation experiment is affected by some degree of uncertainty despite
being conducted at identical conditions. Due to this fact, the parameters in flow laws calibrated from such
rock deformation experiments are also affected by uncertainty. These uncertainties were explored in a parameter
study conducted with our numerical approach (see above) in order to explore the effect of variations of indi-
vidual parameters. In the following we discuss what the effects of the parameters are and how they can be used
for the model calibration.

6.1. First Strain Increments of Transient Deformation—Onset of Deformation to Peak Stress

The linear elastic part of deformation relates directly to elastic constants such as Young’s modulus or the
Poisson ratio and terminates in the yield stress [Ranalli, 1987]. Variation of these parameters within the known
variability has limited effect only.

The Ramberg-Osgood strain hardening expresses the contribution of elastic and incipient plastic deformation
[Ramberg and Osgood, 1943]. In order to accommodate these initial strains increments, different processes can
be considered:

1. Intracrystalline glide along activated slip systems allow for grain internal deformation [Etchecopar, 1977;
Jessell, 1988; Lister and Hobbs, 1980; Wenk et al., 1989]. See-through rock analogue deformation experi-
ments of Herwegh and Handy [1996] and Herwegh et al. [1997] demonstrated that this glide-induced vor-
ticity, enclosed with rigid body rotation and intergranular glide, indeed can accommodate initial strain.
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2. In the case of calcite, mechanical twinning can additionally take up shear strains up to 0.67 [Schmid et al.,
1987]. From a microstructural point of view, the elongation of grains and the appearance of twins are char-
acteristic features of this incipient transient deformation [see Pieri et al., 2001, Figure 8a]. It is important to
note that dynamic recrystallization is limited at these deformation stages [see Herwegh and Handy, 1996,
Figure 2; Pieri et al., 2001, Figure 8b]. Hence, the absence of grain size reduction during the first transient
stage in our numerical model is in accordance with the rock analogue and rock deformation experiments.
Instead, grain growth is active, which however has limited effect on the large grains used in this numerical
modeling approach but would significantly influence the mechanical behavior of small-sized aggregates as
shown for the three small grains (Figure 6). Note that this grain growth effect is in agreement with recent
deformation experiments performed on fine-grained calcite aggregates [Austin and Evans, 2009].

As shown in Figure 7 longer duration of Ramberg-Osgood strain hardening results in elevated peak stresses
but also in a rise in steady state stress. Here adaptations in the range of about 10MPa in stress are possible.
Due to lack of micromechanical models for the minerals of interest, the termination of the Ramberg-Osgood
strain hardening at the end of the first transient stage has to be arbitrarily set in the numerical model at the
moment. For the application of our numerical modeling approach to naturally or experimentally deformed
aggregates, a calibration of the strain increments required before the onset of dynamic recrystallization is
possible. This can be derived by the microstructural study of strain series allowing the estimation of the total
shear strain required before the onset of dynamic recrystallization. This value has then to be fed into the
numerical model. Besides the duration of strain hardening, additional physical constraints affect the peak
stress. They are treated in the next section in the context of the stress drop during strain weakening.

6.2. Second Part of Transient Deformation—From Peak to Steady State Stress

In our numerical models, the second part of transient deformation is defined by the degree of grain size re-
duction and the associated stress drop and duration of strain softening between peak stress and steady state
(Figures 2 and 6). This strain weakening is of peculiar interest in Earth and materials science because it provokes
strain to localize resulting in high-strain zones, i.e., so-called shear zones [Hobbs et al., 1990; Montési and Zuber,
2002; Platt and Behr, 2011]. Luton and Sellars [1969], Rutter [1995], and Barnhoorn et al. [2005] empirically quan-
tified the strain weakening on the base of experiments. In contrast to these studies, our approach uses the mi-
crophysical model of the Paleowattmeter, where the grain size reduction leads to an increasing contribution of
diffusion creep allowing a reduction in stress. The value of peak stress in the models and the subsequent stress
drop are affected by different parameters including (i) the duration of strain hardening, (ii) the preexponential
factor Kdis of dislocation creep, (iii) the strain rate, and (iv) the deformation temperature (see Figures 7–10).
Different values of Kdis provoke most intense variations in peak stress and strain weakening (Figure 8). Values of
Kdis at the lower limit of experimental uncertainty reveal peak stresses twice as high as those at the upper limit.
Most severe in comparison to the variations in the parameter space is the degree of stress drop in the case of Kdis,
which decreases from ~30% down to ~10% for high and low Kdis values, respectively (Figure 8). Hence, the
difficulty or ease to activate dislocation creep significantly affects peak stress and the amount of strain weak-
ening. Microphysically, the grain size reduction in a real monomineralic mylonitic microstructure is controlled by
dynamic recrystallization (subgrain rotation or bulging), where the ability of dislocations to glide and climb is
crucial. Although ourmodel does not resolve this atomic scale, the activation of dislocation creep in the grain size
reduction term of the Paleowattmeter takes this effect into account.

Enhancing the strain rate from 1 to 6×10�4 s�1 increases peak and steady state stress by ~25%, while the
stress drop during strain weakening just increases by ~3% (Figure 9). The experimental uncertainty in tem-
perature (1000±10K) allows variations in peak and steady state stress of 10%.

In terms of the calibration of our numerical models with respect to the calcite torsion experiments of Pieri et al.
[2001], Kdis is the most important parameter to be adapted followed by strain rate and temperature. The latter
parameters can be used for the fine tuning. From a mechanical point of view, Kdis = 25119MPa�ndis s�1,
T=1000K, and a strain rate of 1×10�4 s�1 allowed to reproduce peak to steady state stresses, the associated
stress drop during strain weakening, and the final steady state grain size observed in the rock deformation
experiments most convincingly (compare Figures 1 and 6). Despite this agreement, the onset of steady state
flow occurs at much lower shear strains in the numerical experiments compared to the rock deformation ones.
This discrepancy must be related to the chosen values, which define how grain sizes adapt with strain on the
way to steady state. In the numerical models, the grain size reduction term of the paleowattmeter (equation (16))
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contains the parameter λ. This parameter defines the energy fraction dissipated in the microstructure.
Although it is clear that at steady state most of the energy dissipated is transferred into heat [Chrysochoos
and Belmahjoub, 1992], so far, there exists limited knowledge on the absolute value of λ and its evolution
prior to steady state. The changes of λ in the numerical models between 0.01 and 0.4 demonstrate this
effect nicely. The larger the λ, the more work is dissipated in the microstructure and the shorter is the grain
size reduction period required to attain a steady state grain size (Figure 11). For steady state conditions, the
stresses are lower the higher λ is (Figure 11). Hence, variations in λ can be used to control the shape of the
strain-stress curve during strain weakening. As demonstrated by experimental investigations, grain size
changes are not the only modification in a microfabric that consumes energy. Grain shapes adapt due to
intracrystalline glide [e.g., Etchecopar, 1977; Means, 1981; Urai et al., 1986; Ree, 1990; Herwegh et al., 1998],
domainal fabrics can evolve [Garcia Celma, 1982; Pauli et al., 1996; Herwegh et al., 1997], and even more
importantly, crystallographic preferred orientations develop [Hudleston, 1980; Wilson and Russell-Head,
1982; Mancktelow, 1987; Law, 1990; Schmid and Case, 1986; Herwegh and Handy, 1996; Pieri et al., 2001;
Barnhoorn et al., 2004]. All these parameters are not implicitly incorporated in our numerical model, but
their bulk evolution is indirectly hidden in λ. In the experiments of Chrysochoos and Belmahjoub [1992] λ
increases with increasing shear strain until it plateaus at steady state (see his Figures 11 and 12). This
implies that during the initial deformation a major part of the energy is consumed in microstructures and
the energy stored in the microstructure reduces to 10–20% of the total work at steady state. This behavior
translates as a Taylor-Quinney coefficient of 0.9–0.8 at steady state, with much smaller values during the
initial transient deformation. Such variations can be simulated with the existing model by a variety of
possibilities. In the experiments presented in Figure 11, λ was ramped linearly over shear strains of 0.26. In
this way, the duration strain weakening can be expanded. By reducing λ and adding a λ ramp, the afore-
mentioned rapid grain size evolution and stress drop during grain softening can be slowed down and even
adapted to the stress-strain curves from the real rock deformation experiments. However, this will severely
increase computation time. In the future it will depend on the goal of the specific experiment. The
experiment/field case dictates whether the emphasis lies on the accurate scaling in strain and stress or,
alternatively, the relative difference in viscosities. The numerical models can then be designed accordingly.

7. Conclusions and Outlook

In this contribution we have shown a novel approach for numerically exploring the full evolution from
transient to steady state deformation in an existing laboratory experiment. In this way we incorporate the
empirical Ramberg-Osgood hardening model for the transient stage and the Paleowattmeter for the evolution
toward steady state. This approach is important to better understand conditions leading to strain localization.
Here deformational work is converted into microstructure, which later on controls the formation of shear zones
at different scales. Our numerical experiments demonstrate that on the scale of the active shear zone, micro-
structural and mechanical homogenization is achieved. This offers a new way to model the formation and
temporal evolution of shear zones using a macroscale approach where statistical grain size distribution func-
tions describe the microstructural control of the shear zone. Furthermore, we can show that a second level of
homogenization can be achieved through the emergence of characteristic localization structures within the
deforming shear zone. Note that these structures are clearly formed during the transient phase.

The heart of this approach is the parameter λ, which defines the ratio between the energy dissipated as heat
and the amount of energy stored in microstructure. Here we have presented an explorative study, where λ
was used as a fitting parameter to integrate overall processes of energy storage in microstructure. However, λ
could also be inferred indirectly from thermographic studies [Chrysochoos and Belmahjoub, 1992]. In such an
approach an infrared camera is used to show the dissipated power m of experiments where the total work
can be measured. The stored energy is simply the difference between the total and the dissipative work. We
propose here that a simple modification of state-of-the-art deformation apparatus would allow the direct
measurement of dissipated work in the form of heat generated. This could be achieved by replacing tem-
perature-controlled heating units with power supply controlled ones, where heat variations in the deforming
samples are measured. We suggest furthermore a parallel numerical study as performed here and a ther-
modynamic analysis, which would combine numerical modeling and rock deformation experiments. Such a
combined analysis would shed more light on the partitioning of energies and indirectly on the physical
dissipation processes operating as a consequence of the deforming microstructures.
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Finally, such an approach will allow a physics-based extrapolation to large-scale localization processes as ob-
served in the field and would add to the rigor of predicting processes at geodynamic space and time scales.
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