In vivo differentiated Th9 cells are enriched in skin-homing and skin-resident T cells

C Schlapbach, R Hosokawa, A Gehad, C Yang, JE Teague, TS Kupper, RA Clark
Department of Dermatology, Harvard Medical School / Brigham and Women’s Hospital, Boston, USA

In this study, we sought to investigate the antigen-specificity and cytokine profile of human tissue-homing and tissue-resident memory T helper cells. Human skin-homing (CLA+) and gut-homing (alpha4beta7+) memory T helper cells isolated from PBMCs were stimulated with a broad panel of viral, bacterial, and fungal pathogens and proliferation and cytokine production was measured. Additionally, tissue-resident T cells from skin and gut were isolated and analyzed for their cytokine profile. In accordance with current concepts of tissue-specific imprinting of homing receptors in naïve T cells in the course of infection, pathogen-specific T cells in PBMCs showed homing potential to the predominant site of infection of the respective pathogen. Intriguingly, cytokine analysis revealed that IL-9 was exclusively produced by CLA+ T cells stimulated with Candida albicans but not by alpha4beta7 or CLA-/alpha4beta7- T cells. No other pathogens elicited significant production of IL-9 in any subpopulation of T cells. Further investigation of the cytokine profile of skin-homing T helper cells showed that TGF-beta induces the expression of IL-9 but not IL-4, IL-17, or interferon-gamma in CLA+ but not CLA-memory T cells. These IL-9 producing cells also lack the regulatory T cell marker FoxP3, thus showing the phenotype of bona fide Th9 cells. To assess whether the skin-homing Th9 cells found in the peripheral blood are indeed present in the skin, we analyzed the cytokine profile of tissue-resident T cells isolated from healthy skin and gut using the explant culture technique. In accordance with our previous findings, skin-resident T cells contained a distinct population of Th9 cells whereas gut-resident T cells did not. These results indicate that human Th9 cells distinctively home to and reside in the skin and that they may show distinct antigenic specificity to the cutaneous pathogen C. albicans. Thus, our data establish a link between tissue-specific imprinting of homing potential and pathogen-specific imprinting of cytokine profiles during the course of T helper differentiation.

P91

Possible involvement of Ambroxol as trigger of an erythema exsudativum multiforme majus/Stevens-Johnson Syndrome overlap

J Adam1, N Wuillemin1, K Schnyder1, D Yerly1, WJ Pichler1, N Yawalkar2, C Schlapbach2
1 Division of Allergology, Clinic for Rheumatology and Clinical Immunology/Allergology, Inselspital, University of Bern, Bern
2 Department of Dermatology, Inselspital, University of Bern, Bern

Objective: To characterize the blister cells isolated from an erythema exsudativum multiforme majus/Stevens-Johnson Syndrome (EEMM/SJS) overlap and to investigate its cause.

Methods: The cutaneous eruption was classified according to consensus definitions and histological analysis. Blister cells were analyzed for their expression of lineage and activation markers and cytotoxic...
Treatment of Severe Cold Contact Urticaria with Omalizumab – Case Reports

P Brodská1, J Genser2, P Schmid-Grendelmeier2

1 Allergy Unit, Dept. of Dermatology, University Hospital of Zürich and Dept. of Dermatology, University Hospital, Pilsen, Zürich and Pilsen, CK
2 Allergy Unit, Dept. of Dermatology, University Hospital of Zürich, Zürich

We report 2 patients with cold urticaria with different response to treatment with omalizumab (Xolair®). Cold contact urticaria (CCU) is a common subtype of physical urticaria. It is characterized by the development of wheal and/or angioedema within minutes after cold contact. Clinical manifestation of CCU can range from mild, localized whealing to life-threatening anaphylactic shock reactions. Omalizumab has been described as useful in cases of chronic urticaria (chronic spontaneous urticaria) and may be an interesting option for treatment of CCU. We describe one patient with significant and long-lasting improvement of symptoms after 300mg Omalizumab every 4 weeks for 3 months and one without any improvement after anti-immunoglobulin E therapy.

In our case reports, we want to highlight that there is still a small group of patients without benefit from omalizumab treatment. It is necessary to identify this minor subgroup of patients where omalizumab does not represent an effective treatment possibility. We also review the literature and compare with other cases of CCU treated with Omalizumab.

References

P92

A patient with metastatic melanoma under combination therapy with a selective BRAF and MEK inhibitor

P Stieger, C Murer, M Nägeli, S Goldinger, R Dummer

Institute of dermatology, University Hospital of Zürich, Zurich

We report the case of a 75-year-old man who suffered from metastatic melanoma on his scalp, pT4b pN3 M1b. The patient received several excisions with a latissimus dorsi flap and a neck dissection of lymph nodes from level V. Two months later the PET-scan showed local progression of the tumor. Genetic testing confirmed a BRAF V600E mutation. We decided to include him into the GSK Combi-V trial (MEK116513) that investigated the combined therapy with dabrafenib, a selective BRAF inhibitor, and trametinib, a selective MEK inhibitor. In the first week of therapy the patient responded well and showed clinical regression of the metastases. Nevertheless, one week later the metastases started to progress rapidly. CT scan confirmed the tumor spreading. As the response to immunotherapy is delayed we decided to treat the patient with chemotherapy. The patient declined any systemic therapy but wished only palliative care. Targeted therapy with a BRAF kinase inhibitor in melanoma patients with a BRAF V600 mutation is known to develop resistance. To prevent this resistance a phase I and II trial of combined treatment with dabrafenib and trametinib compared to monotherapy with dabrafenib has been conducted (funded by GlaxoSmithKlein). Flaherty et al. [1] showed that progression free survival was significantly improved with the combined therapy (9.4 months versus 5.8 months). Also the rate of complete or partial response was significantly higher in the combination group (76% versus 54%). Furthermore the combination of dabrafenib and trametinib showed less adverse events than the monotherapy with dabrafenib.

References