A Hybrid Model for Multimodal Brain Tumor Segmentation

Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio (2013). A Hybrid Model for Multimodal Brain Tumor Segmentation. NCI-MICCAI Challenge on Multimodal Brain Tumor Segmentation. Proceedings of NCI-MICCAI BRATS 2013, pp. 31-37. Nagoya: Miccai Society

Full text not available from this repository. (Request a copy)

We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas.
Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).

Item Type:

Conference or Workshop Item (Paper)


04 Faculty of Medicine > Department of Radiology, Neuroradiology and Nuclear Medicine (DRNN) > Institute of Diagnostic and Interventional Neuroradiology
04 Faculty of Medicine > Pre-clinic Human Medicine > Institute for Surgical Technology & Biomechanics ISTB [discontinued]

UniBE Contributor:

Meier, Raphael, Slotboom, Johannes, Wiest, Roland Gerhard Rudi


600 Technology > 610 Medicine & health
500 Science > 570 Life sciences; biology


Miccai Society




Martin Zbinden

Date Deposited:

25 Jun 2014 16:41

Last Modified:

02 Mar 2023 23:24

Related URLs:



Actions (login required)

Edit item Edit item
Provide Feedback