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Abstract

Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex
constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been
attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments.
Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate,
vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the
connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we
present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the
connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that
faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this
way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species,
but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link
between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be
required to yield high biodiversity.
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Introduction

The impact of sexual reproduction on the rate of evolution

could stand as one of biology’s grand achievements [1–4]. Does

sex speed genetic divergence, speciation, and thus increase the

world’s diversity relative to asexual reproduction? An immediate

difficulty with any theory is how to define speciation in asexual

organisms, where Mayr’s Biological Species Concept [5] does not

easily apply [6,7]. Nevertheless, asexual organisms do diversify and

are assigned species names [8–12], and many observations and

experiments describe speciation in sexual as well as asexual

organisms. Much work emphasizes ecological divergence and

speciation [13–17], but we propose to step back and ask basic

questions about the dynamics of divergence and extinction, and

how it depends on sexual reproduction. Before we understand the

full impact of sex on evolution and diversity in an ecologically

complex world, we need to understand well the basic dynamics of

mutation, gene flow, drift and extinction underlying the process of

speciation.

Sex increases the rate of evolution [18–24], although evidence

of sex constraining genomic and epigenetic variation and slowing

down evolution also exists [25–27]. Given these contrasting

impacts of sex, the effects of reproduction mode on patterns of

diversification, extinction and consequent species diversity are

hard to predict, even without ecological opportunity. We here

pose a basic question to connect the dynamics of sexual and

asexual populations with biodiversity patterns: do sexually

reproducing populations have similar biodiversity patterns as

asexual populations in the absence of ecological differentiation,

given equal mutation and identical definitions of the genetic

divergence required for speciation? How do mutation, genetic

drift, ecological drift, and gene flow act in sexual, versus asexual,

populations to produce diversity?

Research on diversification of species often emphasizes the

process of genetic divergence, but extinction rates are also critical.

Even in the absence of selection, the dynamics of diversification

and diversity may thus be influenced by mutation, genetic drift,

sexual recombination, colonization, as well as population size and

its role in ecological drift and extinction [17]. Other than the

direct impact of sexual recombination on genetic divergence, are

other aspects of the dynamics of evolution the same in sexual and

asexual populations? We take here a theoretical approach to the

genetics of speciation [28–32] in the context of neutral biodiversity

theory [33]. Our goal is to model the emergence of new species

using explicit genetic rules on a backdrop of individuals whose

births and deaths determine abundances and extinction. This
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genetic model of speciation extends existing neutral models of

community diversity [34–44] so that speciation, extinction,

abundance, the population size of new species, and diversity

emerge from assumptions on genetic divergence, and genetic and

ecological drift. Modeling speciation as a neutral process is

unrealistic, but this simplification may serve as a useful null model

to compare speciation rate and species diversity in asexual vs.

sexual communities, minimizing the number of assumptions about

population-level patterns of speciation and extinction.

To understand the effect of reproductive mode on patterns of

diversification and species diversity, we need a model describing

the dynamics of genes within populations within a model of

populations within a community, and we need a definition of

speciation that applies to sexual and asexual populations [8,45].

Our definition of species is used in the context of a population

whose genomes diverge in a spatial landscape. In the model, a

community without deme structure and no ecological differenti-

ation [46] has Ne individuals, and the geographic distance

between each pair of individuals i and j is given by dij; D is the

geographic distance matrix containing all the dij values. All

individuals have identical and (essentially) infinite genomes of L
nucleotides at the outset (see ‘‘Material and Methods’’ and

‘‘Table 1’’ for a summary of the mathematical terms used in this

analysis). The genetic similarity, q, between each pair of

individuals i and j can be represented by a genetic similarity

matrix, Q~½qij�. At time 0, all elements are q~1:0, but there is a

constant mutation rate m per nucleotide per birth-death cycle, so

the community evolves divergence under the combined influences

of recombination in sexual populations or asexual reproduction,

but not both, mutation, migration, and genetic drift. We assume

asexual individuals are strictly asexuals, with no horizontal gene

transfer. In sexual populations, pairs mate and exchange sections

of their genomes. In both models, dispersal and colonization is

incorporated because offspring appear near their parents, and

mating is among neighbors.

The crucial, final feature needed to make this a model of

speciation is a minimum genetic similarity threshold, qmin [47,48]:

two individuals i and j for which qijvqmin are sufficiently different

to be called different species. In the sexual population, this means

those two individuals cannot mate; in the asexual community, it

has no impact on dynamics for the obvious reason that there is no

mating. In both cases, we imagine that a biologist observing these

two individuals would be inclined to describe them as different

species; in the sexual case, the same biologist would detect

sufficient genetic incompatibilities that offspring would be inviable

[49–53,53,54]. Defining critical divergence for a pair of individ-

uals, however, is not yet a species definition, because species

boundaries are a property of entire populations [31,53,55]. A

species is defined as a connected component in a evolutionary

graph: a group of individuals for which there is a path of genetic

compatibility connecting every pair (Fig. 1). This means that two

individuals in sexual populations can be conspecific while also

being incompatible, as long as they can exchange genes indirectly

through other conspecifics (a ring species [56]). Using this

definition, speciation will occur whenever the expected mean

genetic similarity of the matrix Q at equilibrium reaches Q�vqmin

[28,57]; intuitively, this is straightforward: with mutation too low,

so Q�wqmin, the community reaches an equilibrium similarity,

Q�, so speciation does not start (pp. 305, [57]).

In summary, the process of diversification starts with an initial

phase during which genetic similarity gradually declines toward an

equilibrium, Q�. Individuals become more and more divergent

from one another, particular those further away in space.

Author Summary

The role of sex in driving genetic variation and the speed
at which new species emerge has been debated for over a
century. There is experimental and theoretical evidence
that sex increases genetic variation and the speed at which
new species emerge, although evidence that sex reduces
variation and slows the formation of new species also
exists. Surprisingly, given the link between sex and genetic
variation, little work has been done on the impact of sex
on biodiversity. In the present theoretical study we show
that a faster evolutionary rate can decrease the abundance
of newly formed species and thus decrease long-term
biodiversity. This leads to the paradoxical result that sexual
reproduction can increase genetic variation but reduce
species diversity. These results suggest that reducing the
rate of appearance of genetic variation and the speed at
which new species emerge may increase biodiversity in
the long-term. This unexpected link between reproductive
mode, the speed of evolution and biodiversity suggests
that a high evolutionary rate may not be required to yield
a large number of species in natural ecosystems.

Table 1. Glossary of mathematical notation.

Notation Definition

dij Geographical distance between individual i

and j

D Geographic distance matrix containing all
the dij values

dmax Maximum geographical distance to find a
mating partner and dispersal

qij Genetic similarity between individual i and j

Q Genetic similarity matrix containing all the
pairwise similarity qij values

qmin Minimum genetic similarity above which i

and j belong to the same species

Q̂Q Mean genetic similarity of the matrix Q in
the transient

Q� Expected mean genetic similarity of matrix
Q at equilibrium

m Mutation rate per nucleotide per birth-
death cycle

Ne Effective population size

L Length of the genome

E½qkj� The expected genetic similarity between
the new offspring k and each individual j in
the population

f ij The fraction of identical sites between
individual i and j

Si
u

The uth site in the genome of individual i

n�sex The number of direct links in a chain of
inheritance before ancestor and
descendant are more different than the
genetic cut-off of species formation in
sexual populations

n�asex The number of direct links in a chain of
inheritance before ancestor and
descendant are more different than the
genetic cut-off of species formation in
asexual populations

doi:10.1371/journal.pcbi.1002414.t001

Sex, Evolutionary Rate and Biodiversity
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Eventually, two clusters are formed with the special property that

there is not a single individual in one that is compatible with any

individual in the second: they form two species (Fig. 1). This is

permanent, for once segregated, because given a very large

genome with L nucleotides, the universe of possible genome

configurations is so large relatively to population size that it is

essentially impossible for compatibility of genomes to become

reestablished. The divergence process continues until each of those

clusters divides further, and so on. Each speciation event leads to a

loss of divergence within species, followed again by increasing

divergence until another speciation event. Thus, genetic similarity

within species is blocked from ever falling (much) below qmin by

the speciation process. But there is still more to the dynamics of

diversification, due to extinction. Once we assume species

Figure 1. Diversification in spatial networks. Top left, In the initial stage all individuals, represented as black nodes, are reproductively
compatible corresponding to a completely connected graph. At this stage, distance edges, represented by the geographic distance matrix, D,
containing all the dij values, capture both geographical separation of each pair of individuals and viable edges. Top right and bottom left, Species
formation start in the transients (red circles, top right and dark red, red and orange, bottom left). A species is defined as a population whose genetic
similarity of each pair of individuals within the population is above a minimum genetic similarity threshold, qmin. For example, the genetic similarity
between each pair of individuals i and j, qij , within the population in red satisfies qijwqmin. At this stage all the individuals in the network are still
reproductively compatible. Formed species have different abundance (i.e, dark red (3), red (4) and orange (5). Bottom right, In the last stage,
individuals within each species are reproductively isolated to all other individuals in the population. For example, each pair of individuals i and j
within the species in red now satisfy qijwqmin and qikƒqmin for all the individuals k outside the population.
doi:10.1371/journal.pcbi.1002414.g001

Sex, Evolutionary Rate and Biodiversity
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formation, we must include ecological drift – random fluctuations

of species abundances within a fixed metacommunity size – as an

influence on dynamics, in addition to reproductive mode,

mutation, migration and genetic drift. Species may start rare, or

become rare due to drift, and then go extinct, and speciation

should eventually be balanced by extinction, exactly as the neutral

model of diversity describes [33].

We now examine this model in detail to ask whether sexual or

asexual populations (and metacommunities) give rise to faster

diversification or more species, considering the equilibrium, at

which speciation and extinction have reached a balance, as well

as the transient increase in diversity after a founding event. First,

a theoretical analysis of the divergence process leads to

important assertions about the speciation rate and how it relates

to the mutation rate in sexual versus asexual communities. The

full spatial model in which ecological drift controls the

equilibrium diversity requires simulations, and we ran models

with a wide variety of parameter combinations in order to

answer the main questions: 1) Do species appear faster in a

sexual or an asexual population? 2) Is species richness higher at

equilibrium in sexual or asexual communities? 3) Are species

abundances different, so does ecological drift play an important

role in the extinction rate?

Results

We first consider analytically the time course of differentiation

and speciation by considering the number of steps in a chain of

descendents until the threshold of genetic divergence is reached.

That is the stage at which a descendent is incompatible with a

founding ancestor: speciation can only happen after that. Consider

asexual populations and examine one individual A and its

descendants. Denote successive individuals A?A1?A2,…, An,

where Aiz1 is the offspring of Ai. We determine the number of

steps until a descendant is sufficiently different from A to be

incompatible, so qAAnvqmin. Genetic similarity between A and

A1 after the first offspring (following equation 18 in ‘‘Material and

Methods’’) is

qAA1~x1~e{2m, ð1Þ

where m is mutation rate; after n offspring, it is

qAAn~xn~e({2m)n: ð2Þ

The critical step, where qAAnvqmin, is therefore

n�asex~{
log (qmin)

2m
, ð3Þ

A curious mutation rate is the one which produces a new cluster or

species after the first offspring, so n�~1, a rate so high that

offspring are ‘‘hopeful monsters’’: different species from their

parents [58]. We call this ‘‘mutation-induced’’ speciation, but such

a model makes little biological sense.

The model produces species with a different mechanism with

much lower mutation rates: ‘‘fission-induced’’ speciation. Imagine

a chain of descendants A?A1?A2,…, An in which every

individual is alive. Ignoring the ‘‘hopeful monsters’’ of mutation-

induced speciation, the entire chain belongs to the same cluster or

species, even if A and An are distinct enough to be incompatible.

After enough time, however, intermediate steps in the chain die,

and eventually a subchain Ai?Aiz1?Aiz2,…, Aizm is entirely

dead. Once a subchain of m consecutive steps, with mwn�, dies,

the survivors in the chain become two separate species. Obviously,

at some point there is a single critical individual whose death

breaks the single cluster into two clusters – the last of the m
individuals in the subchain to die.

With fissioning of genetic clusters, new species need not be

singletons. Indeed, there is no upper limit on the abundance of a

new species (the parent population size is the upper limit).

Incipient population size should depend on n�, and thus the

minimum genetic similarity value, qmin, that defines a species, and

mutation rate (m): the higher n�, the more time it will take before

we have a new cluster formation. With higher n�, we thus

anticipate lower speciation rate, but lineages may have higher

incipient abundances and thus be less prone to extinction.

In an earlier work, we examined the dynamics of the number,

n�, in sexual populations in the absence of a limited geographical

distance for mating (dmax~1) [32]. The critical number of steps

where qAAnvqmin in a panmitic population with sexual repro-

duction is:

n�sex~
log(qmin)

{2mzlog qminz3ð Þ=4½ � , ð4Þ

The extra log term in the denominator compared to equation 3

reflects genetic difference between mated pairs, and thus genetic

dissimilarity between offspring and parents beyond mutation.

Equations 3 and 4 suggest that there should be a monotonic

relationship between n� and the speciation rate. New species will

form at the rate at which chains of length n� die. Comparing

equations 3 and 4, we observe that n�asexwn�sex in all cases, so

1=n�sexw1=n�asex. With sex, it takes fewer steps, n�, before a

descendent passes the critical genetic similarity, qmin, relative to its

ancestor and this should lead to a lower speciation rate in an

asexual metacommunity at a given mutation rate.

Simulations confirm this assertion. Soon after founding, the

metacommunity with sexual reproduction produces species more

rapidly at a given mutation rate, m, than the asexual case (Fig. 2a),

but lineages have lower abundances and thus are more prone to

extinction (Fig. 2b). This pattern has strong consequences for

species richness (Fig. 3). In the transient, at very high mutation

rate, the number of species collapsed in both models (Fig. 3b). At

equilibrium, quite surprisingly, the opposite held, and the asexual

model had higher number of species for low mutation rate values

(Fig. 3c). The sexual model was much less efficient at maintaining

species despite the higher rate of species formation. At

m[ 10{4,10{5
� �

, for instance, there are 1–3 species in simulations

with sex, compared to 2–10 species without sex (Fig. 3c). These

patterns remain the same after we compare the transient (Fig. 3d)

and the steady-state (Fig. 3e) regardless of the maximum

geographic distance for mating and dispersal, dmax.

This failure to maintain species richness in the sexual model

could only have been due to extinction: at a given diversity, the

sexual communities must have lost species at a higher rate than

asexual communities. This would happen if incipient species

abundances were more skewed in the sexual model. Fig. 4 shows

that this is indeed the case. In sexual communities, there were

more incipient species with low abundance in the transient (red

line, Fig. 4a) and at equilibrium (red line, Fig. 4b), very few highly

abundant species, and many rare species (Fig. 4c) relative to

asexual communities. This pattern remains qualitatively the same

in all pairwise comparisons between sexual and asexual meta-

communities with mv10{4 and dmax[ 1,0f g (Kolmorgorov-

Smirnov test, pv0:001).

Sex, Evolutionary Rate and Biodiversity
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Discussion

In the present paper, we have explored a landscape population

genetics model to understand the effect of reproductive mode on

speciation and extinction rate and the connection between the

abundance of new species and species richness. The approach uses

processes of individual organisms with large genomes – birth,

death, gene flow, mutation and genetic-ecological drift – to study

macroecological patterns of biodiversity [28–32]. It allows a

comparison of diversification rate and community diversity in

sexual vs. asexual communities without recourse to any assump-

tion about population-level patterns of speciation and extinction.

By modeling speciation explicitly, genetic assumptions about the

formation of species become necessary: in the present study, the

constant mutation rate and threshold of genetic similarity defining

the species boundary.

These assumptions allow us to derive quantitative relationships

between mutation rate, abundances, probability of extinction of

new species, and species richness. For example, the number of

species in a metacommunity increases monotonically with

mutation rate in both sexual and asexual populations. But

mutation alone cannot cause speciation, because the genetic

similarity defining species is also essential, entering in the

equations that drive the rate of species formation (i.e., 1=n�asex

and 1=n�sex). The quantitative nature of the relationship between

mutation rate, genetic similarity, and species formation is

understood with n�: incipient population size and species richness

are both functions of n�, and higher n� means more time between

speciation events but also higher incipient abundances and lower

extinction rate.

Surprisingly, sexual populations, with low n� value and thus a

high speciation rate, had greatly reduced species richness at

equilibrium, relative to the asexual populations with otherwise

similar processes. This highlights the importance of deriving the

processes connecting the rate of evolution and incipient abun-

dance – the number of individuals in newly formed clusters or

species – because they both impact speciation [35,59] and the

number of species that can coexist in metacommunities. Incipient

species abundance was highly variable in both sexual and asexual

populations, but especially so with sex. In the latter, newly formed

species were often singletons and thus rapidly went to extinction.

Most speciation events in nature are believed to have been

driven by divergent selection and drift is thought to play a very

small role [15,53]. But genetic and ecological drift can be strong

contributors during speciation, especially in the early stages [17].

We have shown that a higher evolutionary rate in sexual

populations does not guarantee more coexisting species, especially

in the long term, because higher evolutionary rate may imply a

lower abundance of new species and thus a higher extinction

probability. Thus, even if drift plays a small role in driving

differentiation and speciation, it can strongly influence the

extinction dynamics driven by the low abundance of the incipient

species in natural populations.

How robust are these results after the addition of selection and

ecological differentiation? Sexual organisms might have faster

rates of adapting to different ecological conditions [21–24,60],

because multiple beneficial mutations can spread simultaneously

in the population [20]. This can trigger higher abundance and

lower extinction probability in sexual populations because

speciation is not being driven by mutation but rather by

adaptations to ecological conditions. Sex can also constrain the

rate of adaptation to new conditions [25,26]. For example, it

removes major changes such as chromosomal rearrangements

[27], and in the process of finding a mate, it may increase the risk

to predation or higher exposition to sexually transmitted diseases

[61,62]. These processes may slow down the rates of evolution and

speciation which, according to our results, may not necessarily

decrease the number of species in the long term. Further research

that connects genetic and ecological drift with selection in constant

and fluctuating environments may shed light on the link between

reproductive mode, the rate of speciation, the abundance of new

species, extinction probability, and long term species richness

[17,63].

Figure 2. Speciation and incipient species abundance. a, Cumulative number of speciation events as a function of the number of generations
for the sexual (red, also used for b) and asexual populations (orange also used for b). b, Simulated abundance of the new species after each
speciation event. The plot represents the output from one replicate during the first 500 generations with mutation rate, m = 10{4, the minimum
genetic similarity value, qmin~0:97wQ� , and a maximum geographic distance for mating and dispersal, dmax = 1.
doi:10.1371/journal.pcbi.1002414.g002

Sex, Evolutionary Rate and Biodiversity
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A theory that covers the link between net diversification rates and

biodiversity patterns in both sexual and asexual taxa is still lacking

[17,21,64,65], and our approach joining population genetics models

with divergence criteria and macroecological patterns of biodiver-

sity may be a way forward. One important advance would be to

develop analytical relationships among the key parameters,

particular mutation rate and the strength of selection in the context

of several topologies of spatial networks, and subsequently spatial

heterogeneity [29,42,57,66,67]. On the genetic side, more precise

consideration of the mechanisms driving genome evolution,

specifically in the context of rates of self-compatibility and

outcrossing, might lead to different predictions about speciation

and diversity [10,68–72]. We believe that our results may help to

connect reproductive modes with the speciation rate in eco-

evolutionary graphs, and the effect of the incipient species

abundance on net diversification rate and extant diversity.

Figure 3. Speciation, extinction and biodiversity in spatial networks. a, Geographic distance between individual i and j, dij , is sampled from
a normal distribution, N (d̂d,s2). In this plot the mean, d̂d = 0.5, and the standard deviation, s2 = 0.35. b–c, Species richness as a function of mutation
rate, m, with maximum geographic distance values to find a mating partner and dispersal in the range, dmax[ 0,1f g for asexual (orange) and sexual
(red) populations in the transient (b) and last (c) stage. d–e, Species richness in the transient (d) and last (e) stage as a function of the maximum
geographic distance to find a mating partner and dispersal, dmax (‘‘Distance’’). The size of the circles represent the species richness at a given
mutation rate in the range, m (big circles) [ 8|10{5,10{3

� �
and m (small circles) [ 8:1|10{5,10{5

� �
. In this plot each replicate in the transients (d)

satisfies, qmin~0:98wQ̂Q = 0.97. Sexual populations have more species in the transients for a broad range of parameter values. Richness collapses for
high mutation rate values (see b), thus the high dispersion of species richness values in d. Asexual populations maintain higher biodiversity levels
than the sexual populations, especially for low mutation rate values (see c and e). Each replicate in the last stage (c and e) satisfies
qmin[ 0:97,0:90f gwQ� .
doi:10.1371/journal.pcbi.1002414.g003

Sex, Evolutionary Rate and Biodiversity
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Materials and Methods

The models
Models of DNA evolution based on simple base pair substitution

have a long history (i.e., the infinite sites model, [73,74]), and

several variants have been proposed [75]. More realistic extensions

of those models include deletion, insertion, duplication and

rearrangements of segments bases [70]. Recent models also take

into account, as in the neutral theory of biodiversity [33],

instantaneous speciation but with explicitly evolving genomes

(i.e., an identical copy of one root genome is made, each of the two

genomes gets a new successor species name, and they each evolve

independently thereafter, see [70]).

In the models explored, the reproductive mode describes a

population with evolving genomes. During asexual reproduction a

mother is randomly selected while in the sexual populations, in

addition to this randomly selected mother, potential mates are

identified from among those within the specified geographic

distance, dmax. In case there are no potential mates the mother

reproduces without a mate. This situation is especially relevant for

the extreme case, dmax = 0. In the sexual and asexual models the

offspring is then dispersed within the geographic distance, dmax,

and occupies the site of a randomly killed individual within the

area dmax. At the beginning of the simulation, all individuals are

reproductively compatible, corresponding to a completely con-

nected graph (Fig. 1). Genetic similarity among individuals in the

sexual and asexual model can be represented by an evolutionary

spatial graph in which nodes are individuals, distance edges

capture the geographical separation of each pair of individuals and

viable edges that connect individuals within the same species.

We here describe formally the derivation of equation 1 in the

main text for the asexual model. The dynamics of sexual

populations in the absence of dispersal limitation (dmax~1) has

been considered elsewhere and will not be derived here [32].

Individuals are haploid. The genome of each individual is

represented by a sequence of L sites, each nucleotide residing in

one of two states, {1 or z1. Each individual i in a population of

size J is represented as a vector: (Si
1,Si

2,:::,Si
L), where Si

u is the uth

site in the genome of individual i. The genetic similarity between

individual i and individual j can be defined as:

qij~
1

L

XL

u~1

Si
uSj

u, ð5Þ

with qij[½{1,1�. The genetic similarity in equation (5) can be

written in terms of the fraction of identical sites (fij)

qij~
1

L
Lf ij{L(1{f ij)
h i

~2fij{1: ð6Þ

and f ij is:

f ij~
1zqij

2
: ð7Þ

Each nucleotide in the offspring is inherited at random, thus

ignoring linkage between neighboring nucleotides, but with a small

Figure 4. Incipient species abundance and biodiversity. a, Mean incipient species size distribution after 104 replicates in the first stage for
sexual (red) and asexual (orange) populations at a given mutation, m = 10{4 . Each replicate satisfies, qmin~0:98wQ̂Q = 0.97, and a maximum
geographic distance for mating and dispersal, dmax = 0.5. b, Mean incipient species size distribution after 104 replicates in the last stage for sexual
(red) and asexual (orange) populations at a given mutation, m = 10{4 . Each replicate satisfies qmin~0:92wQ� and a maximum geographic distance for
mating, dmax = 0.5, and c, Mean species abundance distribution for sexual (red), and asexual (orange) populations at a given mutation rate, m = 10{4,
minimum genetic similarity, qmin~0:90wQ�, and a maximum geographic distance for mating and dispersal, dmax = 1.
doi:10.1371/journal.pcbi.1002414.g004
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probability of error determined by the mutation rate. Assuming that

the individual k inherited the nucleotide at site u from its parent G(k)
we need the probability that individual k will have exactly the same

nucleotide (i.e., z1 or {1) as G(k). We assume that the probability

of undergoing n mutations in site u is Poisson distributed:

Pk(n)~
e{mmn

n!
: ð8Þ

Each mutation switches the nucleotide (i.e., Sk
u?{Sk

u). Then the

probability of observing an even number of mutations, so that the

nucleotide at site u does not change the nucleotide is

P(SG
u ~Sk

u)~
X?
i~0

e{mm2i

(2i)!
~e{m

X?
i~0

m2i

(2i)!
~e{mcosh m: ð9Þ

The probability of an odd number of mutations, changing the

nucleotide, is

P(SG
u ~{Sk

u)~
X?
i~0

e{mm2iz1

(2iz1)!
~e{m

X?
i~0

m2iz1

(2iz1)!
~e{msinh m: ð10Þ

Note that we can have 0,1,2,:::,n mutations in site u of the new

offspring k, but because the mutation rate, m, is small, most of the

probability density is concentrated in the 0 and 1 point mutation

cases. The probabilities can be found by solving the system:

(P(SG
u ~Sk

u)){(P(SG
u ~{Sk

u))~e{mcosh m{e{msinh m~e{2m

(P(SG
u ~Sk

u))z(P(SG
u ~{Sk

u))~
P?
i~0

e{mmi

(i)! ~eme{m~1,

8><
>: ð11Þ

thus,

P(SG
u ~Sk

u)~
1

2
(1ze{2m),

P(SG
u ~{Sk

u)~
1

2
(1{e{2m):

8><
>: ð12Þ

This derivation is similar to those of Peliti, Serva, Higgs and Derrida

[28,76,77], but we consider here nucleotides instead of alleles.

In the asexual model, each individual k is generated by one

parent, G(k). The expected fraction of nucleotides in k shared with

each individual j in the population (E½fkj�) is, using equation 12,

E½fkj�~ fG(k)j(P(SG(k)
u ~Sk

u))z(1{fG(k)j)(P(SG(k)
u ~{Sk

u))
h i

:ð13Þ

Substituting 12 in 13 we have

E½fkj�~ fG(k)j 1

2
(1ze{2m)z(1{fG(k)j)

1

2
(1{e{2m)

� �
: ð14Þ

Substituting fG(k)j =
1zqG(k)j

2
from equation 7 then gives

E½fkj�~ 1

2

1zqG(k)j

2
ze{2m 1zqG(k)j

2

� �
z

�

1{qG(k)j

2
{e{2m 1{qG(k)j

2

� ��
,

ð15Þ

and after simplification we obtain

E½fkj�~ 1

2
1ze{2mqG(k)j
� 	

: ð16Þ

Substituting equation 16 into 6 leads to

E½qkj�~2E½fkj�{1~1ze{2mqG(k)j{1, ð17Þ

and from 17 we get

E½qkj�~e{2mqG(k)j,

E½qkk�~1,

(
ð18Þ

and equation 3 is derived from this expectation. We used this

equation to simulate the mean genetic similarity in the transients, Q̂Q
and we also used it to calculate the mean genetic similarity of the

matrix, Q, at steady-state for asexual populations, Q�~
1

(hz1)
,

where h~4Nem for small m and Ne is the effective number of

individuals in the population [28].

Simulations
Our simulation is a stochastic, individual-based, zero-sum birth-

death model of a sexual and asexual population with overlapping

generations. For the simulations reported in the paper, we

considered Ne haploid individuals where only one individual can

exist in each site. Simulations were carried out with an initial

population, Ne = 103 individuals, and this initial population size

remained constant throughout the simulations. Results for Figs. 3

and 4 were obtained after 104 replicates and 2:103 generations of a

single model run, where a generation is an update of Ne time

steps. Geographic distance between each pair of individuals i and

j, dij, was sampled from a normal distribution, N (d̂d,s2) and

negative values were discarded. Results were qualitatively the

same after varying s2[ 0:4,0:1f g. In the transients each replicate

stops after the mean of the genetic similarity matrix, Q̂Q, reached

the values, Q̂Q[ 0:97,0:95f g with all the replicates satisfying

qmin
wQ̂Q (Figs. 3b, 3d and 4a). In the last stage parameter values

were chosen to satisfy the mathematical condition required for

speciation, qmin
wQ� [28] (Figs. 3c, 3e and 4b–c). Steady-state was

verified by checking the constancy of the mean genetic similarity

value during the last 5|102 generations within each replicate

regardless the initial value of dmax. We explored a broad range of

parameter combinations with mutation rate, m[ 10{3,10{5
� �

, the

maximum geographic distance for mating and dispersal,

dmax[ 1,0f g, and two cut-off values to count species richness in

the transient and equilibrium dynamics: the minimum genetic

similarity value to define a species in the transients,

qmin[ 0:99,0:97f g, and the minimum genetic similarity value to

define a species at equilibrium qmin[ 0:97,0:75f g, respectively.
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