
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
4
9
0
9
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
8
.
4
.
2
0
2
4

OR Spectrum (2002) 24: 251–279

c© Springer-Verlag 2002

Advanced production scheduling
for batch plants in process industries�

Klaus Neumann, Christoph Schwindt, and Norbert Trautmann

Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe,
76128 Karlsruhe, Germany
(e-mail:{neumann,schwindt,trautmann}@wior.uni-karlsruhe.de)

Abstract. An Advanced Planning System (APS) offers support at all planning
levels along the supply chain while observing limited resources. We consider an
APS for process industries (e.g. chemical and pharmaceutical industries) consisting
of the modules network design (for long–term decisions), supply network planning
(for medium–term decisions), and detailed production scheduling (for short–term
decisions). For each module, we outline the decision problem, discuss the specifics
of process industries, and review state–of–the–art solution approaches. For the
module detailed production scheduling, a new solution approach is proposed in
the case of batch production, which can solve much larger practical problems than
the methods known thus far. The new approach decomposes detailed production
scheduling for batch production into batching and batch scheduling. The batching
problem converts the primary requirements for products into individual batches,
where the workload is to be minimized. We formulate the batching problem as
a nonlinear mixed–integer program and transform it into a linear mixed–binary
program of moderate size, which can be solved by standard software. The batch
scheduling problem allocates the batches to scarce resources such as processing
units, workers, and intermediate storage facilities, where some regular objective
function like the makespan is to be minimized. The batch scheduling problem
is modelled as a resource–constrained project scheduling problem, which can be
solved by an efficient truncated branch–and–bound algorithm developed recently.
The performance of the new solution procedures for batching and batch scheduling
is demonstrated by solving several instances of a case study fromprocess industries.
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1 Introduction

In process industries, e.g. chemical or pharmaceutical industries, final products are
typically produced through several successive chemical or physical transformation
processes (also calledtasks) suchasheating, filtration, or packaging.A task requires
different types of production resources: aprocessing unit(e.g. a reactor or filter) and
storage facilitiesfor input and output products (e.g. tanks or silos). All resources
are available in limited capacity only.

Different software vendors such as SAP, AspenTech, i2 Technologies, or J.D.
Edwards offer Advanced Planning Systems (APS) that support all planning sec-
tions along the supply chain while observing limited resources. In this paper, we
concentrate on the production section of the supply chain. Long–term decisions are
made in thenetwork designphase, where plant locations are determined and pro-
duction systems are configured. Mid–term decisions are made in thesupply network
planningphase, which provides the primary requirements for the final products to
be produced at individual plants on the basis ofdemand planningdata. The short–
term allocation of individual production resources over time to the production of
the primary requirements is performed during thedetailed production scheduling
phase.

The purpose of this paper is to present a new solution approach to the detailed
production scheduling phase. At first we put the detailed production scheduling
phase into the framework of an APS. Based on a generic architecture of an APS,
we state the decision problems arising in the network design, supply network plan-
ning, and detailed production scheduling phases, discuss the specifics of process
industries, and briefly review state–of–the–art solution approaches.

The new approach to detailed production scheduling is discussed in the main
part of the paper. The approach is tailored to the minimization of some regular
objective function (i.e. a function nondecreasing in the start times of operations)
like makespan or mean tardiness in the case of batch production, where all material
flows are discontinuous. The basic idea is to decompose the detailed production
scheduling problem into a batching and a batch scheduling problem.Batching
converts the primary requirements for products into individual batches. Abatch
combines a task and a production quantity. The time needed for processing the
batch is independent of the production quantity. The objective of batching is to
minimize the workload, i.e. the total amount of work to be performed on the pro-
cessing units. Constraints result from given bounds on batch sizes and proportions
of input and output products, storage capacities, perishable products, and the given
primary requirements. We formulate the batching problem as a nonlinear mixed–
integer program, which is subsequently transformed into a linear mixed–binary
program. The processing of a batch is called anoperation. Batch schedulingal-
locates scarce resources like processing units, workers, and intermediate storage
facilities to the operations arising from the batching step such that the regular objec-
tive function of detailed production scheduling is minimized. We model the batch
scheduling problem as a resource–constrained project scheduling problem, where
an operation corresponds to an activity of the project. Perishable products give rise
to minimum and maximum time lags between activities. Each processing unit rep-
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resents a renewable resource of unit capacity with sequence–dependent cleaning
times. Alternative processing units are modelled by alternative execution modes
for the activities. Storage facilities represent so–called cumulative resources. After
a detailed description of the project scheduling model, we show how to solve the
project scheduling problem using a truncated branch–and–bound algorithm. The
basic idea of this algorithm is to relax the (hard) resource constraints and to replace
them by a disjunction of additional precedence constraints between activities.

The detailed production scheduling problem and the specifics of process indus-
tries are explained by an example from chemical industry. This example is part of
a case study presented by Westenberger and Kallrath (1995) and will be calledWK
examplein what follows. In the WK example, we consider a batch production plant
producing five different final products. The problem is to find a feasible production
schedule with minimum makespan for given primary requirements. We compare
the decomposition approach proposed in this paper with the best solution approach
known from literature so far by solving several instances that result from varying
the primary requirements.

The remainder of this paper is organized as follows: Section 2 is concerned
with the architecture of APS for process industries, the individual modules, and the
information flow between different modules. Section 3 illustrates the detailed pro-
duction scheduling problem in chemical industry using the WK example. The de-
composition of detailed production scheduling into batching and batch scheduling
is explained in Section 4. The latter subproblems and respective solution methods
are discussed in Sections 5 and 6. Section 7 provides the results of the experimental
performance analysis. In Section 8 we show how to integrate further constraints
such as renewable resources of capacity greater than one (several identical pro-
cessing units or manpower), calendars, or campaigns into the batch scheduling
procedure. Section 9 is devoted to concluding remarks and directions for further
research.

2 Components of Advanced Planning Systems

Advanced Planning Systems offer support for long–term, mid–term, and short–
term planning of the supply chain, which consists of the sections procurement,
production, distribution, andsales. In contrast to enterprise resourceplanning (ERP)
systems like SAP R/3, limited availability of resources is taken into account in all
planning phases. A monolithic supply chain planning is impracticable due to the
complexity and size of the individual decision problems. Furthermore, the different
planning horizons motivate a division into long–term, mid–term, and short–term
planning. This is the reason why Advanced Planning is generally decomposed into
planning modules where the interdependencies between the modules have to be
respected.

Figure 1 shows the structure of a generic APS (cf. Meyr et al., 2000) consisting
of modules for the phases network design, demand planning, supply network plan-
ning, detailed production scheduling, distribution & transport planning, demand
fulfillment & available to promise (ATP), and inventory management. This struc-
ture reflects the common hierarchy of planning tasks that is implemented in the
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Fig. 1.Structure of an APS

APS offered by different software vendors such as SAP, AspenTech, i2 Technolo-
gies, or J.D. Edwards. Each box in Figure 1 corresponds to a module of the APS.
The arcs between boxes represent information flows between the modules. In what
follows, we concentrate on the production section in the supply chain consisting
of the modules network design, supply network planning, and detailed production
scheduling. We briefly discuss each module and state the corresponding decision
problem, where we place special emphasis on specific requirements arising in pro-
cess industries. The shorter the planning horizon, the greater is the impact of those
specifics on the planning tasks.

Basic concepts of APS and the architecture of commercial APS are presented
in Knolmayer et al. (2002) and Stadtler and Kilger (2000). For special requirements
of process industries we refer to Applequist et al. (1997), Honkomp et al. (2000),
and Pinto and Grossmann (1998).

2.1 Network design

Networkdesign is concernedwith thephysical structureof the supply chain and thus
dealswithplanning locationsof plantsandwarehousesorother storage facilitiesand
with designing the layout of the individual plants. Typically, the planning horizon
ranges from three to ten years.

The facility location problemcan be described as follows (cf. Tsiakis et al.,
2001). We consider a network comprising possible locations for plants and ware-
houses, fixed locations of customer zones, and transportation facilities between
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individual locations (e.g. road networks, shipping lanes, sea routes, and air corri-
dors). Long–term forecasts for potential sales of product groups in the customer
zones are given. The objective is to determine the number, locations, and capaci-
ties of plants and warehouses such that the total annualized cost of the network is
minimized. The cost comprises infrastructure cost related to establishing a plant or
a warehouse at a certain location, production cost at plants, material handling cost
at warehouses, and transportation cost. Binary decision variables indicate whether
a warehouse or a plant is built at a certain location, whether a plant supplies a
warehouse, or whether a warehouse is assigned to a customer zone. For each plant
and each warehouse, a continuous decision variable is introduced representing the
respective production or storage capacity. Different types of constraints have to
be observed: Network structure constraints say that a link between a plant and a
warehouse or a warehouse and a customer zone can exist only if the corresponding
warehouses and plants are built. In addition, a flow of material can take place only
if the corresponding link is established. Furthermore, so–called single sourcing
constraints (cf. Holmberg et al., 1999) may be imposed, according to which a cus-
tomer zone must be assigned to a single warehouse. Material balance constraints
ensure that the production rates at the individual plants must coincide with the
flow of the products from the plants to the warehouses, and that the amount of a
product received by a customer zone matches the corresponding demand. Further
constraints arise from lower and upper bounds on production, storage, and trans-
portation capacities. Solution approaches to the facility location problem known
from literature are based on formulations as linear mixed–integer programs com-
bined with heuristic methods, standard solvers and problem decomposition, e.g.
Benders’ decomposition. For an overview of recent literature, we refer to Tsiakis et
al. (2001) and Vidal and Goetschalckx (1997). Issues of network design and plant
configurations are also treated in Kallrath (2002b).

Thelayout design problemis solved for each plant individually and involves the
spatial arrangement of processing units and intermediate storage facilities. If the
plant under consideration consists of a single floor, a typical problem is to divide
the given set of equipment into groups of units that reflect the partitions created by
aisles or corridors such that the intersection flowcost areminimized. Jayakumar and
Reklaitis (1994) show how to model this problem as a graph partitioning problem
and present a corresponding heuristic solution procedure. Constraints arise from
process sequences, preferred directions of material flow, as well as safety and other
restrictions. If the plant consists of multiple floors, the analogous problem is to
divide the given set of equipment into subsets and additionally assign each of the
subsets to a single level. In this case, the cost associated with the flow between two
processing units or storage facilities depends on the distance in between and may
be different for horizontal, downward, and upward flow. Jayakumar and Reklaitis
(1996) formulate this problem as a nonlinear integer program and convert it to a
linear mixed–integer program. For a detailed literature review on chemical plant
layout problems, we review to Jayakumar and Reklaitis (1994, 1996).

In process industries, network design includes, for each processing unit, the
decision whether it is operated in continuous, semi–continuous, or batch production
mode. Plants operating in continuous production mode are dedicated to one product
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group, e.g. refineries in oil industry. In semi–continuous production mode, the
input products are loaded continuously into the processing unit and the output
products arise discontinuously or vice versa. Batch production mode is typical
of chemical or pharmaceutical industries if small amounts of a large number of
products are required, which corresponds to the increasing trend to low–volume
production of speciality goods in customer–specific packaging. In what follows,
we will concentrate on process industries operating in batch production mode. The
different products are processedonmulti–purposeequipment,where theproduction
plant is configured according to the required final products. Before processing
the next set of final products, the plant has to be reconfigured. This requires the
termination of all operations.

Network design is based on long–term changes in the product program, sales
figures, and production technologies. Thus, main input factors are long–term fore-
casts for potential sales of product groups in specific regions, which result from the
demand planning module. Advanced Planning Systems perform demand plan-
ning in three steps (cf. Wagner, 2000): First, statistical forecasting captures the
main characteristics of time series of the past and creates forecasts using time–
series analysis and causal models (cf. Silver et al., 1998). Second, information is
added to the time series that had not been taken into account within statistical fore-
casting, e.g. life cycles of product groups (cf. Wright and Goodwin, 1998). Third,
collaboration between different functional areas (sales, production, procurement)
is supported in order to get a consensus on the forecast.

2.2 Supply network planning

The goal of supply network planning is an efficient utilization of the production
and storage capacities determined by the network design. The planning horizon has
to cover at least one seasonal cycle to be able to balance all demand peaks. It is
divided into weekly or monthlytime buckets. Due to changes in input data, supply
network planning is incrementally updated, e.g. in weeks or months, in order to
take updated information like actual inventory profiles, capacity usages, and new
demand data into consideration. Because of the problem size, it is often necessary
to concentrate on bottleneck resources.

The decision variables of supply network planning are purchasing, production,
and transportation quantities of final products, and the amount of additionally re-
quired capacities (e.g. overtime) in individual time buckets. The objective is to
minimize the cost of production, transportation, and inventory holding, cost for
delayed or cancelled fulfillment of customer orders, and cost for additional capac-
ities. Constraints arise from given delivery times for customer orders, perishability
of products, production, storage and transportation capacities, calendars, and lower
and upper bounds on batch sizes. Supply network planning settles capacity bottle-
necks by producing in earlier or later periods, at alternative sites or in alternative
production modes, by working overtime, by buying products from external suppli-
ers, or by late or cancelled delivery.

Solution approaches to supply network planning problems known from litera-
ture are based on formulations as mixed–integer programs, cf. e.g. Kallrath (1999,
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2000), Oxe (1997), and Timpe and Kallrath (2000). Kallrath (1999) describes a
model that includes the determination of so–calledcampaigns. A campaign consists
of several batches of the same task that must be executed consecutively. Typically
only campaigns of a minimum size can be produced. Between different campaigns,
a sequence–dependent setup–time has to be considered. The problem of scheduling
campaigns in distributed chemical batch plants is studied in Berning et al. (2002).
For a survey on campaign planning in chemical industry we refer to Papageorgiou
and Pantelides (1996). Grunow et al. (2002) present a three-stage decomposition
approach to campaign planning and scheduling.

If only one plant is considered, supply network planning is similar to classical
master production scheduling (MPS) with capacity constraints (cf. Nahmias, 1997).
Note that certain features like cancelling delivery are not considered in MPS.

Supply network planning is based on weekly or monthly forecasts for at most
one year including fixed customer orders, the effects of mid–term marketing events,
and promotions on sales. This information has to be considered in the statistical
forecasting step of demand planning. The customer orders are registered in the
demand fulfillment & ATP module, which also determines a first due date for
each order (cf. Kilger and Schneeweiss, 2000). Further input factors of supply
network planning are the plant configuration, i.e. the plant layout, and the plant
locations. Both are determined in the network design module.

The results of supply network planning are inputs to other modules.Detailed
production schedulingis based on primary requirements for final products and on
production capacities (remember that the production capacities for the time buckets
result from supply network planning).Distribution & transportation planning
refers to the distribution quantities computed.

2.3 Detailed production scheduling

Detailed production scheduling deals with the short–term allocation of resources
over time to the production of the primary requirements determined by supply
network planning. Thus, the problem is to explode the primary requirements into
batches and to schedule those batches on scarce resources. The secondary require-
ments for raw materials arising from the batches determined are then reported to
the inventory management, where appropriate lot sizes for purchasing are to be
found.

Detailed production scheduling is performed individually for each plant. The
planning horizon corresponds to the bucket size of supply network planning. The
goal is to compute a feasible production plan that minimizes a regular objective
function (i.e. a function nondecreasing in the start times of operations). The ob-
jective of makespan minimization is particularly important in the context of batch
production mode in order to enable flexible responses to demand changes, espe-
cially if the whole plant has to be reconfigured before producing another set of final
products. Another regular objective function that is often considered in practice is
the mean tardiness with respect to given due dates for the delivery of customer–
ordered final products.
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Batches are processed onmulti–purpose processing units, which can operate
several kinds of tasks. At some production levels, there may be alternative process-
ing units. In general, the processing time depends on the particular processing unit
used. Recall, however, that in batch production mode the execution time of a task
is independent of the respective batch size. For each task, a lower and an upper
bound on the respective batch size are given. The minimum batch size generally
arises from a minimum filling level, whereas the maximum batch size coincides
with the capacity of the corresponding processing unit. A special feature of process
industries is the need for cleaning processing units in order to guarantee purity of
products. The cleaning times often depend on the sequence of batches and the qual-
ity of the products to be produced. In certain applications, a processing unit must
also be cleaned when no other batch is started immediately after the completion of
the preceding batch. At any point in time, at most one batch or cleaning operation
can be executed on one and the same processing unit.

Each task consumes and produces different products. In batch production mode,
the input of a task is consumed at its start and the output arises at its completion.
Certain intermediate products can be buffered instorage facilitiesof given capacity.
Other intermediate products are perishable and cannot be stored and thus must be
consumed without any delay. In that case, producing tasks must be assigned to
consuming tasks such that no perishable product is in stock at any time.

The storage facilities and processing units of a batch plant are linked by diver-
gent, convergent, or cyclic material flows. Accordingly, recipes are analytic (e.g.
in basic materials industry), synthetic (e.g. in pharmaceutical industry), or cyclic
(e.g. if catalysts are present). For details we refer to Loos (1997). For each task, the
number of executions and the production quantities have to be chosen such that the
quantity produced of each product is sufficient to match its gross requirement. Note
that in the case of cyclic material flows, some residual of the products belonging
to a cycle cannot be used for production. Proportions of input and output goods of
tasks are often fixed. However, the input and output proportions of a task may also
vary within given bounds, that is, the output can be allotted to different products
according to the specific demand situation.

Most solutionproceduresknown from literaturearebasedon formulationsof the
detailed production scheduling problem as a time–indexed mixed–integer program
depending on the time grid chosen, see e.g. Blömer and G̈unther (1998, 2000),
Burkard et al. (1998), Kondili et al. (1993), Pinto and Grossmann (1995, 1998),
and Shah (1998). For a literature review we refer to Blömer and G̈unther (1998)
and Shah (1998). Grunow et al. (2002) and Timpe (2002) successfully apply hybrid
approaches involving mixed–integer and constraint programming.

3 A case study from chemical industry

Based on an existing plant, Westenberger and Kallrath (1995) have presented a
case study dealing with detailed production scheduling in chemical industry. Here,
we consider the third out of six “tasks” (see Kallrath, 2002a) where addition-
ally the cleaning times are included. The data of the case study and a bibliogra-
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Fig. 2.Production flow of WK example

phy of papers referring to the WK example are available athttp://www.wior.uni-
karlsruhe.de/neumann/forschung/wk95/wk95.html.

Figure 2 illustrates the production flowof theWKexample,which consists of 15
storage facilities for the storable productsP1, . . . , P5, P7, P8, P9, P12, P14, . . . ,
P19 and 9 multi–purpose processing units (reactors)R1 toR9. A representation of
the production flow as astate–task–networkcan be found in Bl̈omer and G̈unther
(2000). Intermediate productsP6, P10, P11, andP13 cannot be stocked. The
storage facilities and processing units are linked by divergent, convergent, or cyclic
material flows. There are primary requirements of 30, 30, 40, 20, and 40 units
for the final productsP15 to P19 that arise from supply network planning. The
primary requirements have to be produced within 6 days with 24 hours of working
time each. The problem is to explode the primary requirements into batches and to
schedule these batches on the scarce production resources such that the makespan
is minimized.

At some production levels, there are alternative processing units, e.g.R6 and
R7. Table 1 summarizes lower and upper bounds on batch sizes, processing and
cleaning times for processing units, and the materials consumed and produced by
each task. The time unit is one hour. Recall that all processing times are independent
of the respective batch sizes. Each task uses one processing unit. In Figure 2,
the processing units are labelled with the tasks executed on them. The tasks are
numbered according to increasing quality of output products, i.e., cleaning of a
processing unit after the completion of a task becomes necessary if one passes to
a task with a higher number or if there is no task on the processing unit which is
started immediately after the completion of the preceding one.

Each task consumes and produces materials as given in Table 1. Tasks 2 and 3
produce two output products each and task 15 consumes two input products. The
respective proportions of the output products are shown in Figure 2. The output
proportions of task 2 are variable.100x% of the total output is allotted to product
P3 and the remaining part to productP4, wherex can vary between0.2 and0.7.

For storable products, the inventory is bounded from above (cf. Table 2). Suffi-
cient capacity is available to store the required raw materialP1 and final products
P15 to P19. There is sufficient initial stock ofP1, and there is no initial stock of
P15 toP19. At each point in time, the inventories of productsP1 toP19 must be
nonnegative.
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Table 1.Task settings of WK example

Task Batch sizeAlternative pro-Alternative pro-CleaningMaterials Materials
[min, max] cessing units cessing times times consumedproduced

1 [3,10] R1 2 1 P1 P2
2 [5,20] R2 4 2 P2 P3, P4
3 [4,10] R3 2 1 P4 P2, P5
4 [4,10] R4 4 2 P3 P6
5 [4,10] R4 4 2 P3 P7
6 [4,10] R4 4 2 P5 P8
7 [4,10] R4 4 2 P5 P9
8 [4,10] R5 6 3 P3 P10
9 [4,10] R5 6 3 P5 P11
10 [3,7] R6 / R7 4 / 5 2 / 2.5 P7 P12
11 [3,7] R6 / R7 5 / 6 2.5 / 3 P8 P13
12 [3,7] R6 / R7 6 / 6 3 / 3 P9 P14
13 [4,12] R8 / R9 4 / 6 2 / 3 P10 P15
14 [4,12] R8 / R9 4 / 6 2 / 3 P11 P16
15 [4,12] R8 4 2 P6, P12 P17
16 [4,12] R8 / R9 6 / 6 3 / 3 P13 P18
17 [4,12] R8 / R9 6 / 6 3 / 3 P14 P19

Table 2.Bounds on inventories of WK example

P1 P2 P3 P4 P5 P7 P8 P9 P12 P14 P15 P16 P17 P18 P19
Initial stock ∞ 20 20 0 20 0 0 0 0 0 0 0 0 0 0
Max. stock ∞ 30 30 15 30 10 10 10 10 10 ∞ ∞ ∞ ∞ ∞

4 Decomposition of detailed production scheduling

In contrast to long–term and mid–term planning, short–term planning has to take
into account a large number of constraints that are specific of process industries.
That is why detailed production scheduling requires tailor–made models and so-
lution procedures. The particular feature of our approach for detailed production
scheduling is the decomposition into abatching problem(BP) and abatch schedul-
ing problem(BSP). Batching provides the number and sizes of batches for all
tasks, and the subsequent batch scheduling assigns a processing unit and an exe-
cution time interval to each batch. In Section 5, we show how to model (BP) as
a nonlinear mixed–integer program and how to transform it into a linear mixed–
integer program of moderate size that can be solved using standard software, e.g.
CPLEX or XPRESS–MP. The essential decision variables of (BSP) represent the
start times of the operations. Efficient solution procedures for resource–constrained
project scheduling can be used for solving large instances of (BSP), see Section 6.
A similar decomposition approach has been used by Brucker and Hurink (2000)
for solving a special case of detailed production scheduling.



Advanced production scheduling for batch plants in process industries 261

The number of decision variables of the time–indexed MIP models for detailed
production scheduling from literature depends on the time grid chosen and is not
polynomial in the number of operations. This is the reason why, in contrast to our
approach, only relatively small instances can be solved by the latter models.

Obviously, thematerial flowestablishesa causal relationship between thebatch-
ing and batch scheduling problems (BP) and (BSP). This means that the optimal
start times of operations depend on the optimal number and sizes of batches and
vice versa. Consequently, when solving at first (BP) and then the corresponding
(BSP) we are not assured to obtain an optimal solution to the original detailed pro-
duction scheduling problem. Due to the limited capacity of intermediate storages,
the decomposition method may even fail in finding any feasible solution. As will
be shown in the performance analysis of Section 7, the decomposition nevertheless
proves useful for heuristically solving problem instances of practical size.

5 Batching

Batching deals with converting the primary requirements for products into sets of
batches for each task. The goal is to minimize the workload to be scheduled. Con-
straints result from given bounds on batch sizes and the number of task executions
and from limited storage capacities. In Section 5.1, we present a nonlinear mixed–
integer formulation of the batching problem, a preliminary version of which can
be found in Neumann et al. (2001a). In Section 5.2, we transform that nonlinear
program into a linear mixed–binary program of polynomially related size.

5.1 Formulation as a nonlinear mixed–integer program

Let T be the set of all tasks and letβτ be the batch size andετ be the number of
batches for taskτ ∈ T executedwithin the given planning horizon[0, d] for detailed
production scheduling. Thus,βτετ is the amount produced by taskτ . Prescribed
minimum and maximum batch sizesβ

τ
andβτ , respectively, for taskτ provide the

constraints

β
τ

≤ βτ ≤ βτ (τ ∈ T ) (1)

Let Uτ be the set of alternative processing units on which taskτ can be carried
out andpτk be the processing time of taskτ on processing unitk ∈ Uτ . Then
ετ :=

∑
k∈Uτ

d/pτk is an upper bound on the number of executions of tasksτ , and
we have the constraints

0 ≤ ετ ≤ ετ

ετ ∈ ZZ

}
(τ ∈ T ) (2)

A task may have several input and output products, e.g., task 2 in the WK
example (cf. Section 3). For taskτ ∈ T , let ατπ > 0 be the proportion of output
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productπ and−ατπ > 0 be the proportion of input productπ. If π is neither input
nor output product of taskτ , we setατπ := 0. Obviously,∑

π∈P+
τ

ατπ = −
∑

π∈P−
τ

ατπ = 1 (τ ∈ T ) (3)

whereP+
τ andP−

τ are the sets of output and input products, respectively, of task
τ . Letατπ andατπ be given lower and upper bounds onατπ. Then

ατπ ≤ ατπ ≤ ατπ (τ ∈ T , π ∈ Pτ ) (4)

wherePτ := P+
τ ∪ P−

τ is the set of products which are either input or output of
taskτ . If ατπ is fixed, we haveατπ = ατπ.

Next, we consider inventory constraints. For a productπ ∈ Pτ , ατπβτετ or
−ατπβτετ is the total amount ofπ produced or consumed, respectively, by task
τ . Let ρπ be the given primary requirement minus the initial stock for productπ.
Consider a recycled productπ which belongs to a cycle in the product structure and
is the output product of a taskτ inside the cycle and of a different taskτ ′ outside
the cycle, e.g., productP2 in the WK example (see Fig. 2). In that case the amount
of productπ recycled after the last execution of taskτ necessarily remains on stock
because it is not consumed. To guarantee that a sufficient quantity of productπ
is available as input of consuming tasksτ ′′ ∈ T −

π , ρπ has to be enlarged by the
maximum residual stock ofπ. To meet all primary requirements, it then has to hold
that∑

τ∈Tπ

ατπβτετ ≥ ρπ (π ∈ P) (5)

whereTπ is the set of tasks producing or consuming productπ andP = ∪τ∈T Pτ

is the set of all products.
∑

τ∈Tπ
ατπβτετ − ρπ is the final inventory of productπ

after satisfying the primary and secondary requirements. This final inventory must
not exceed the given capacityσπ of the storage facility forπ. That is,∑

τ∈Tπ

ατπβτετ ≤ ρπ + σπ (π ∈ P) (6)

If productπ cannot be stored, thenσπ := 0.
The last constraints refer to perishable products, which cannot be stored. Let

T +
π andT −

π be the sets of tasks producing and consuming, respectively, product
π. We assume that for a perishable productπ, the amount produced by a batch of
a taskτ ∈ T +

π must equal the amount consumed by a batch of any taskτ ′ ∈ T −
π ,

that is,

ατπβτ = −ατ ′πβτ ′ (π ∈ Pp, (τ, τ ′) ∈ T +
π ×T −

π ) (7)

wherePp is the set of perishable products. This means that in contrast to the formu-
lation by Neumann et al. (2001), we do not consider solutions to the batching prob-
lem where batches of several tasksτ ∈ T +

π and batches of several tasksτ ′ ∈ T −
π

are matched in such a way that the total amount of productπ produced equals the
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total amount consumed. The reason why we restrict ourselves to the one–to–one
correspondence (7) between tasksτ ∈ T +

π andτ ′ ∈ T +
π is that otherwise, the com-

pletion of several batches producingπ and the start of several batches consuming
π would have to occur simultaneously. The latter requirement would considerably
reduce the set of feasible solutions to the corresponding batch scheduling problem.
Moreover, in practice the implementation of schedules where several operations
must becompletedsimultaneously is generally impossible because already small
differences between predicted and realized processing times lead to infeasibility.

Let pτ :=
∑

k∈Uτ
pτk/|Uτ | be the mean processing time of taskτ on any of

the alternative processing units. To minimize the workload, the objective function
to be minimized is chosen to be the total mean processing time

∑
τ∈T pτετ (recall

that the processing time of a batch is independent of the batch size). The batching
problem then takes the form

Min.
∑
τ∈T

pτετ

s.t. (1) to (7)

 (BP)

(BP) represents a nonlinear mixed–integer program with the integral decision
variablesετ and the continuous decision variablesβτ andατπ (τ ∈ T , π ∈ Pτ ).
Next we show the NP–hardness of batching problem (BP).

Proposition.The feasibility problem for (BP) is NP–hard even ifPp = ∅,σπ = ∞
for all π ∈ P, andετ = ∞, β

τ
= βτ for all τ ∈ T .

Proof.We provide a polynomial transformation from 3–PARTITION (cf. Garey
and Johnson, 1979). LetB ∈ IN be a bound and letA be a set of3ν elementsλ with
associated sizess(λ) ∈ IN such thatB/4 < s(λ) < B/2 and

∑
λ∈A s(λ) = νB.

The question is whether or notA can be partitioned intoν setsA1, . . . , Aν such
that

∑
λ∈Aµ

s(λ) = B for all µ = 1, . . . , ν.
For eachλ ∈ A, we introduce a raw materialπλ with initial stocks(λ), and

each indexµ = 1, . . . , ν is assigned to a final productπµ with primary requirement
B. For each raw materialπλ and each final productπµ, we define one taskτλµ

3νs(3ν)

λs(λ)

2s(2)

1s(1)

ν B

µ B

1 B
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Fig. 3.Batching problem of the proof to the Proposition
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transformingπλ into πµ with β
λµ

= βλµ = s(λ) (see Fig. 3). Because of the
scarcity of raw materials, at most one batch of tasksτλµ can be executed for each
λ ∈ A. Since the cumulative requirementsνB for all final products equal the total
inventory

∑
λ∈A s(λ) of all raw materials, exactly one batch consuming product

πλ is executed for eachλ ∈ A, say, a batch of taskτλµ. There is a feasible batching
precisely if

∑
λ∈A s(λ)ετλµ

= B holds for allµ = 1, . . . , ν. Assuming thatλ ∈ Aµ

if and only if ετλµ
= 1, this condition is met exactly if the 3–PARTITION instance

is a yes–instance.
�
It can easily be shown that the feasible region belonging to the continuous

relaxation of problem (BP) is generally nonconvex. Thus, the computation of an
optimal solution to (BP) is not only intractable from the complexity point of view
but even worse, it poses a serious algorithmic problem. Thus in the following
subsection, we develop a formulation of the batching problem as an equivalent
linear mixed–binary program. The number of binary variables in the latter problem
equals the upper bound

∑
τ∈T ετ on the number of batches which can be carried

out within the planning horizon.

5.2 Formulation as a linear mixed–binary program

To obtain an equivalent linear formulation of (BP), we first introduce the continuous
variables

ξτπ = ατπβτ (τ ∈ T , π ∈ Pτ )

representing the negative amount of productπ consumed or the amount of product
π produced, respectively, by a batch of taskτ . Since the batch size of a task equals
the sum of all input quantities, we have

βτ =
∑

π∈P+
τ

ξτπ (τ ∈ T )

Thus, the lower and upper bound constraints (4) on proportionsατπ can be written
as

ατπ

∑
π′∈P+

τ

ξτπ′ ≤ ξτπ ≤ ατπ

∑
π′∈P+

τ

ξτπ′ (τ ∈ T , π ∈ Pτ ) (8)

The equations∑
π′∈P+

τ

ξτπ′ = −
∑

π′∈P−
τ

ξτπ′ (τ ∈ T ) (9)

correspond to the mass balance constraints (3), and the batch size constraints (1)
now read

β
τ

≤
∑

π∈P+
τ

ξτπ ≤ βτ (τ ∈ T ) (10)
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Similarly, the batch size coupling conditions (7) for perishable products can be
formulated as

ξτπ = −ξτ ′π (π ∈ Pp, (τ, τ ′) ∈ T +
π ×T −

π ) (11)

In order to eliminate the nonlinear termατπβτετ = ξτπετ occurring in the
inventory constraints (5) and (6), we replaceξτπετ with the sum ofετ continuous
variablesξµ

τπ (µ = 1, . . . , ετ ), where

ξµ
τπ =

{
ξτπ, if µ ≤ ετ

0, otherwise

The numberετ of batches for taskτ is represented by the sum ofετ binary variables
θµ

τ (µ = 1, . . . , ετ ), which equal one exactly ifµ ≤ ετ , that is,

θµ
τ =

{
1, if

∑
π∈P+

τ
ξµ
τπ > 0

0, otherwise

The linking between variablesξµ
τπ andθµ

τ can be achieved as follows ifπ is output
product of taskτ (i.e.,ξτπ > 0):

0 ≤ ξµ
τπ ≤ ξτπ

ξτπ − (1 − θµ
τ )ατπβτ ≤ ξµ

τπ ≤ ατπβτθ
µ
τ

}
(τ ∈ T , π ∈ P+

τ ,

µ = 1, . . . , ετ )
(12)

If ξµ
τπ > 0, then ξµ

τπ ≤ ατπβτθ
µ
τ implies θµ

τ > 0. For ξµ
τπ = 0, inequal-

ity ξτπ − (1 − θµ
τ )ατπβτ ≤ ξµ

τπ providesθµ
τ = 0. θµ

τ = 1 and inequality
ξτπ − (1 − θµ

τ )ατπβτ ≤ ξµ
τπ imply ξµ

τπ = ξτπ. For θµ
τ = 0, it follows from

ξµ
τπ ≤ ατπβτθ

µ
τ thatξµ

τπ = 0. Hence, constraints (12) provide the equivalences

θµ
τ = 1 ⇔ ξµ

τπ > 0 ⇔ ξµ
τπ = ξτπ

Constraints (13) show the analogous conditions for tasksτ and input productsπ
(i.e.,ξτπ < 0):

ξτπ ≤ ξµ
τπ ≤ 0

ατπβτθ
µ
τ ≤ ξµ

τπ ≤ ξτπ − (1 − θµ
τ )ατπβτ

}
(τ ∈ T , π ∈ P−

τ ,

µ = 1, . . . , ετ )
(13)

The linear ordering

θ1
τ ≥ θ2

τ ≥ · · · ≥ θετ
τ (τ ∈ T ) (14)

of the binary variablesθµ
τ associated with one and the same taskτ ensures that

precisely the firstετ binary variablesθ1
τ , . . . , θ

ετ
τ equal one. The latter condition is

not necessary for reducing the nonlinear mixed–integer program (BP) to a linear
mixed–binary program. However, it reduces the size of the feasible region consid-
erably without loss of generality.

Now we are ready to formulate the inventory constraints (5) and (6) as linear
inequalities:

ρπ ≤
∑

τ∈Tπ

ετ∑
µ=1

ξµ
τπ ≤ ρπ + σπ (π ∈ P) (15)
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The mixed–binary programming formulation of the batching problem is then as
follows:

Min.
∑
τ∈T

pτ

ετ∑
µ=1

θµ
τ

s.t. (8) to (15)
θµ

τ ∈ {0, 1} (τ ∈ T , µ = 1, . . . , ετ )

 (B̃P)

(B̃P) represents a linear mixed–binary program with continuous decision variables
ξτπ (τ ∈ T , π ∈ Pτ ), ξµ

τπ (τ ∈ T , π ∈ Pτ , µ = 1, . . . , ετ ), and binary decision
variablesθµ

τ (τ ∈ T , µ = 1, . . . , ετ ).
The batching problem (̃BP) belonging to the WK example (cf. Section 3) with

876 continuous and 768 binary variables has been solved to optimality within
4 seconds using CPLEX 6.0 on an 800 MHz Pentium personal computer. The
corresponding optimal solution gives rise to 78 operations to be scheduled on the
processing units in the batch scheduling step.

6 Batch scheduling

In this section, we deal with scheduling the processing of the batches, i.e. the
operations.Recall that eachbatch is givenby thecorresponding taskτ , thebatchsize
βτ , and the proportionsατπ. Scheduling means that the start time of each operation
and the processing unit on which it is to be carried out have to be determined. The
objective is to minimize a regular objective function, where temporal and resource
constraints have to be taken into account. In Sections 6.1 and 6.2, we show how
the batch scheduling problem can be modelled as a resource–constrained project
scheduling problem. In Section 6.3 we are concerned with a solution procedure
which exploits concepts of resource–constrained project scheduling. Preliminary
versions of the latter procedure have been devised by Schwindt and Trautmann
(2000) and Neumann et al. (2001a).

6.1 Batch scheduling and project scheduling

We briefly discuss some basic concepts from project scheduling related to our batch
scheduling problem. For more details we refer to Brucker et al. (1999) or Neumann
et al. (2001b). Suppose thatn operations1, . . . , n have to be scheduled. We addi-
tionally introduce two dummy operations 0 andn + 1 representing the beginning
and termination, respectively, of the production process, which is regarded as a
project. Ṽ := {1, . . . , n} is the set ofreal operations, andV := {0, 1, . . . , n + 1}
is the set of all operations. In project scheduling, the termactivity is often used
instead of operation. In our problem of detailed production scheduling, we have
n =

∑
τ∈T ετ and Ṽ = ∪τ∈T Vτ , whereVτ with |Vτ | = ετ is the set of all

operations or batches of taskτ .
LetSi ≥ 0 be thestart timeof operationi. In particular, we setS0 := 0 and we

haveSn+1 ≤ d, whereSn+1 coincides with the makespan.S = (Si)i∈V is called
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a schedule. Theprocessing timeof operationi is denoted bypi and thecleaning
timeafter operationi by ci. In particular,p0 = pn+1 = 0 andc0 = cn+1 = 0.

In project scheduling,temporal constraintsfor operations of the typeSj ≥
Si + dij ((i, j) ∈ E) with E ⊆ V ×V are generally prescribed. Ifdij ≥ 0, then
dmin

ij := dij represents aminimum time lagbetween the start of operationsi and
j. If dij < 0, thendmax

ji := −dij is amaximum time lagbetween the start of
operationsj andi. In particular, the maximum time lagdmax

0,n+1 = d = −dn+1,0

guarantees that inequalitySn+1 ≤ d is satisfied. Moreover, the following time lags
between real operationsi, j ∈ Ṽ may occur in detailed production scheduling,
whereτ(i) denotes the task corresponding to operationi ∈ Ṽ .

(a) Operationj has towait for thecompletionofoperationibecausebothoperations
are carried out on the same processing unit or because an output product ofτ(i)
represents an input product ofτ(j). Then we setdmin

ij := pi. If the processing
unit has to be cleaned before processing operationj, we havedmin

ij := pi + ci.
(b) Operationj cannot be completed until the start of some operationi frees some

storage space required for an output product ofτ(j). We setdmax
ji := pj .

(c) Operationi provides a perishable product that has to be consumed without
delay by some operationj. Then we setdmin

ij := dmax
ij := pi.

The time lags discussed in (a) and (b) will be introduced in the course of the
solution procedure presented in Section 6.3.

It is well–known that anactivity–on–node project networkN with node setV ,
arc setE, and arc weightsdij can uniquely be assigned to the project in question
(see Neumann and Schwindt, 1997). If there is no path inN from node 0 to node
i ∈ V , i /= 0, with nonnegative length, we add an arc(0, i) with weightd0i = 0. If
there is no path inN from nodei ∈ V , i /= n + 1, to noden + 1 whose length is
at leastpi + ci, we introduce an arc(i, n + 1) with weightdi,n+1 = pi + ci. The
latter arcs ensure that all operations and cleanings are completed by timeSn+1.
For simplicity, for the arc set and network enlarged in this way, we again use the
symbolsE andN , respectively.

A scheduleS that satisfies

S0 = 0
Sj ≥ Si + dij ((i, j) ∈ E)

}
(16)

is calledtime–feasible. It is well–known that a time–feasible schedule exists exactly
if N does not contain any cycle of positive length.

6.2 Resource–constrained project scheduling

We now turn to the different resources. First, we deal withprocessing units. Each
processing unit represents arenewable resourceof capacity 1. LetRρ be the set of
all renewable resources andRρ

i be the set of those alternative renewable resources
on which operationi can be carried out. Note thatRρ

i = Uτ for all i ∈ Vτ . In project
scheduling, a pair(i, k) with k ∈ Rρ

i corresponds to an alternativeexecution mode
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of operationi (cf. e.g. De Reyck and Herroelen, 1999; Drexl et al., 1997; Heilmann,
2001). Fori ∈ Ṽ andk ∈ Rρ

i , let

xik :=
{

1, if operationi is carried out on resourcek
0, otherwise

Then we have

xik ∈ {0, 1} (i ∈ Ṽ , k ∈ Rρ
i )∑

k∈Rρ
i

xik = 1 (i ∈ Ṽ )

 (17)

because each real operationi must be carried out on exactly one of the alterna-
tive processing units for taskτ(i). Note that a processing unit can operate several
different tasks (but only one at a time). Thus, we may haveRρ

i ∩ Rρ
j /= ∅ and

xik = xjk = 1 for k ∈ Rρ
i ∩ Rρ

j , even ifτ(i) /= τ(j). We speak of anassignment

x of processing units to operations if for alli ∈ Ṽ andk ∈ Rρ
i , the binary variables

xik are specified. An assignmentx satisfying (17) is calledcomplete.
Since a task and thus all of its operations can be carried out on more than one

alternative processing unit, the processing and cleaning times generally depend on
the processing unit selected. Letpτk be again the processing time of taskτ andcτk

be the cleaning time after performing taskτ on processing unitk. Then

pi(x) :=
∑

k∈Rρ
i

pτ(i),kxik and

ci(x) :=
∑

k∈Rρ
i

cτ(i),kxik

represent the processing time and cleaning time, respectively, for operationi ∈ Ṽ
on the processing unit selected. Recall thatpi = ci = 0 for i = 0, n+1. We assume
that the inequalitycτk ≤ pτ ′k + cτ ′k is satisfied for allτ, τ ′ with k ∈ Uτ ∩ Uτ ′ ,
which says that the time needed for cleaning processing unitk after an execution
of some taskτ does not exceed the processing time of any taskτ ′ on k plus the
cleaning time ofk afterτ ′. Since the weightdij of arc(i, j) ∈ E in project network
N may depend onpi, pj , or ci (see Section 6.1) and the latter quantities generally
depend on assignmentx, we rewrite constraints (16) as

S0 = 0
Sj ≥ Si + dij(x) ((i, j) ∈ E)

}
(18)

The cleaning of processing units generally depends on the sequence of oper-
ations to be performed. LetPk ⊆ Ṽ × Ṽ denote the set of operation pairs(i, j)
for which passing fromi to j requires a cleaning of processing unitk. For the WK
example from Section 3, we havePk = {(i, j) | k ∈ Rρ

i ∩ Rρ
j , τ(j) > τ(i)}. We

suppose that relationPk isnegatively transitive, i.e.,(h, j) ∈ Pk implies(h, i) ∈ Pk

or (i, j) ∈ Pk for all i ∈ Ṽ . The latter condition means that when the transition
from operationh to operationj requires a cleaning, then the cleaning ofk between
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h andj cannot be avoided by processing an intermediate operationi. Furthermore,
we assume that in order to guarantee purity of products a processing unit must also
be cleaned between operationsi and j with (i, j) /∈ Pk if there is an idle time
between the completion ofi and the start ofj, i.e.,Sj > Si + pi(x). To formulate
the conditions necessitating a cleaning, we introduce the following relation in the
setṼ of real operations given a processing unitk, a scheduleS, and an assignment
x:

Ok(S, x) := {(i, j) ∈ Ṽ ×Ṽ | i /= j, k ∈ Rρ
i ∩ Rρ

j , Si ≤ Sj , xik = xjk = 1}
It holds that(i, j) ∈ Ok(S, x) if Sj ≥ Si and both operationsi andj are carried
out on processing unitk. Moreover, we define

Ck(S, x) :={(i, j) ∈ Ok(S, x) | (i, j) ∈ Pk or Sj > Si + pi(x)}
Ck(S, x) :=Ok(S, x) \ Ck(S, x)

Ck(S, t) is the set of all pairs(i, j) for which resourcek has to be cleaned if
operationj is carried out after operationi. Ck(S, t) is the set of all pairs(i, j)
where operationj has to be started immediately after the completion of operation
i. A scheduleS is then calledprocess–feasiblewith respect to assignmentx if

Sj ≥ Si + pi(x) + ci(x), if (i, j) ∈ Ck(S, x)
Sj = Si + pi(x), if (i, j) ∈ Ck(S, x)

}
(k ∈ Rρ) (19)

Second, we deal withstorage facilities, which represent so–calledcumulative
resources(cf. Neumann and Schwindt, 1999). For each nonperishable productπ ∈
P \ Pp, there is one cumulative resource keeping its inventory. LetRγ be the set
of all cumulative resources. For eachk ∈ Rγ , there are a prescribed minimum
inventoryRk (safety stock) and a given maximum inventoryRk (storage capacity).
Each operationi ∈ V has a demandrik for resourcek ∈ Rγ . If rik ≥ 0, the
inventory of resourcek is replenished byrik units at timeSi + pi(x). If rik < 0,
the inventory is depleted by−rik units at timeSi. Let π be the product stocked
in storage facilityk. ThenRk = 0, Rk = σπ, andrik = ατ(i),πβτ(i) for i ∈ Ṽ .
Moreover,r0k represents the initial stock of productπ andrn+1,k = 0.

Let V +
k := {i ∈ V | rik > 0} andV −

k := {i ∈ V | rik < 0} be the sets
of operations replenishing and depleting, respectively, the inventory ofk ∈ Rγ .
Given scheduleS and assignmentx,

Ak(S, x, t) := {i ∈ V +
k | Si + pi(x) ≤ t} ∪ {i ∈ V −

k | Si ≤ t}
is called theactive setof activities replenishing or depleting resourcek ∈ Rγ by
timet ∈ [0, d]. ScheduleS is said to bestorage–feasiblewith respect to assignment
x if

Rk ≤
∑

i∈Ak(S,x,t)

rik ≤ Rk (k ∈ Rγ , 0 ≤ t ≤ d) (20)

Clearly, there exists a storage–feasible schedule only ifRk ≤ ∑
i∈V rik ≤ Rk for

all k ∈ Rγ (cf. Neumann and Schwindt, 1999).
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A schedule which is time–, process–, and storage–feasible with respect to some
assignmentx is calledfeasiblewith respect tox. A pair (S, x) is called afeasible
solution if x is a complete assignment and ifS is feasible with respect tox. The
batch scheduling problem consists of finding a feasible solution that minimizes a
regular objective functionf and can be formulated as follows:

Min. f(S)
s.t. (17) to (20)

}
(BSP)

The decision variables of batch scheduling problem (BSP) are the continuous
variablesSi (i ∈ V ) and the binary variablesxik (i ∈ Ṽ , k ∈ Rρ). By trans-
formation from the flow shop problemF ||Cmax it can easily be shown that the
feasibility problem for (BSP) is NP–hard. Next, we briefly sketch the generation
scheme of a branch–and–bound algorithm for solving the resource–constrained
project scheduling problem (BSP).

6.3 Solving the batch scheduling problem

Theconstraints thatmake thebatchschedulingproblem(BSP) intractablearise from
the scarcity of renewable and cumulative resources. By relaxing the corresponding
constraints (17), (19), and (20) we obtain atemporal scheduling problem, where
dij(x) in (18) is replaced withdij = min{dij(x) | x satisfies(17)} (i.e., for each
arc(i, j) ∈ E, we replace the mode-dependent arc weightdij(x) by the minimum
weightdij of (i, j) with respect to all complete mode assignments). The temporal
scheduling problem represents a longest path problem in the (single-mode) project
networkN with arc weightsdij and can be solved by standard network algorithms
(cf. Ahuja et al., 1993). Since the temporal scheduling problem is a relaxation of
problem (BSP), the longest path length from node 0 to noden + 1 in N provides
a lower bound on the minimum makespan of feasible schedules.

An optimal solution to this relaxation may be infeasible for (BSP) due to two
reasons: (i) there may be operationsi ∈ Ṽ for which no renewable resourcek ∈ Rρ

i

has been selected so far and thus equation (17) is violated, or (ii) one of the resource
constraints (19) or (20)maynot bemet.Whenchecking inequalities (20),we replace
pi(x) in the definition of active setAk(S, x, t) with min{pi(x) | x satisfies(17)}.
In case (i), we select somek ∈ Rρ

i for processingi and replaceRρ
i with {k}. This

means that from now on for any assignmentx satisfying (17) we havexik = 1 and
xik′ = 0 for all k′ ∈ Rρ

i \ {k}. In case (ii), violations of the resource constraints
can be avoided by introducing appropriate time lags between some operations and
adding the corresponding arcs to project networkN .

By assigning renewable resources to the execution of operations and adding
time lags, we obtain a new problem of type (BSP) with a tighter relaxation be-
longing to a reduced set of complete assignments and an expanded project network
again denoted byN . The selection of renewable resources and the addition of time
lags is continued until assignmentx is complete and the solution to the temporal
scheduling problem provides a feasible scheduleS or until the temporal schedul-
ing problem is unsolvable becauseN contains a cycle of positive length. Figure 4
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FOR i = 1, . . . , n DO
IF |Rρ

i | > 1 THEN set xik := 0 for all k ∈ Rρ
i ;

ELSE set xik := 1 for all k ∈ Rρ
i ;

END (∗ FOR ∗)
REPEAT

Compute longest path lengths �0i from 0 to all nodes i ∈ V in the (expanded)
project network N ;
IF N contains cycle of positive length THEN terminate;
ELSE set schedule S := (�0i)n+1

i=0 ;
Scan {S1, S1 + p1, . . . , Sn, Sn + pn} for the earliest point in time t for which
constraints (19) or (20) are not satisfied;
IF there is such a time t THEN select appropriate arc (i, j) with weight dij(x)
and add (i, j) to (expanded) project network N ;
ELSE (∗ S is feasible with respect to x ∗)

Scan {S1, . . . , Sn} for the earliest point in time t at which some operation i
with |Rρ

i | > 1 is started;
IF there is such a time t THEN select some renewable resource k ∈ Rρ

i and
set xik := 1, Rρ

i := {k};
ELSE RETURN (S, x); (∗ (S, x) is feasible solution ∗)

END (∗ IF ∗)
END (∗ REPEAT ∗)

Fig. 4.Generation scheme for batch scheduling

shows a generation scheme of a branch–and–bound algorithm, where violations of
the resource constraints (19) and (20) are resolved in chronological order and a re-
newable resource is selected each time scheduleS satisfies the resource constraints
(19) or (20) with respect to current assignmentx. The complete branch–and–bound
algorithm is obtained from the generation scheme by first, branching over the arcs
(i, j) to be added toN and the renewable resourcesk ∈ Rρ

i to be selected for
processing the real activitiesi ∈ Ṽ and second, fathoming enumeration nodes for
which the longest path length inN is not less than the makespan of the best schedule
found.

We now consider in more detail how to determine appropriate time lags for
resolving resource conflicts. Let us assume that scheduleS is not process–feasible
with respect tox. Then there exist pairs(i, j) ∈ Ok(S, x) such that

(a) (i, j) ∈ Pk andSj < Si + pi(x) + ci(x), or
(b) (i, j) /∈ Pk andSj < Si + pi(x), or
(c) (i, j) /∈ Pk andSi + pi(x) < Sj < Si + pi(x) + ci(x).

We first assume that(j, i) ∈ Pk. Case (a), where(i, j) ∈ Pk, can be dealt with
by considering the two alternatives depicted in Figure 5a, where the shaded boxes
correspond to cleanings between operationsi andj. First, we may introduce the
minimum time lagdmin

ij (x) := pi(x) + ci(x) delaying operationj up to the point
in time where the cleaning of resourcek is terminated. Second, the conflict can
be settled by adding the minimum time lagdmin

ji (x) := pj(x) + cj(x) saying that
operationi cannot be started before operationj has been completed (note that in this
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Fig. 5.How to resolve process–infeasibility

case, cleaning ofk is also necessary). We now consider the case where(i, j) /∈ Pk.
Case (b) can be handled by interchanging the roles of operationsi andj: The two
alternatives consist of introducing the minimum time lagsdmin

ij (x) := pi(x) or
dmin

ji (x) := pj(x)+cj(x) (seeFig.5b).Theconditionsof case (c) say that there isan
idle time between the completion of operationi and the start of operationj which is
not sufficiently large for cleaningk (see Fig. 5c). Then the first alternative is to delay
j up to theendof the cleaningafter theexecutionofi, i.e.,dmin

ij (x) := pi(x)+ci(x).
Analogously,imay be delayed up to the end of the cleaning after the execution ofj,
i.e.,dmin

ji (x) := pj(x)+cj(x). A third alternative consists of avoiding the cleaning
ofk beforej startsby introducing themaximumtime lagdmax

ij (x) := pi(x). Finally,
the cleaning ofk betweeni andj can also be avoided by delaying some operation
h with k ∈ Rρ

h, Sh < Si + pi(x), (i, h) /∈ Pk, (h, j) /∈ Pk, andph(x) < ci(x) up
to the completion of operationi, i.e.,dmin

ih := pi(x).
If (j, i) /∈ Pk, no cleaning is required when passing fromj to i, i.e., minimum

time lagdmin
ji in cases (a), (b), and (c) is equal topj(x).

The cumulative-resource constraints (20) are violated if the inventory of some
product falls below zero or exceeds the storage capacity. At first, we consider the
case where at some timet ≥ 0 the inventory of a productπ kept in cumulative
resourcek is negative. We choose an operationi with Si + pi(x) > t andrik > 0
and an operationj with Sj ≤ t andrjk < 0 (cf. Fig. 6a). We then delay the start
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Fig. 6.How to resolve storage–infeasibility

of operationj (i.e. the depletion ofk) up to the completion of operationi (i.e. the
replenishment ofk) by introducing the minimum time lagdmin

ij (x) := pi(x). The
case where at timet ≥ 0 the inventory ofπ exceeds the capacity ofk is illustrated in
Figure 6b. We select an operationi with Si > t andrik < 0 and an operationj with
Sj + pj(x) ≤ t andrjk > 0. The completion of operationj (i.e. the replenishment
of k) is delayed up to the start of operationi (i.e. the depletion ofk) by introducing
the maximum time lagdmax

ji (x) := pj(x).
A branch–and–bound algorithm based on the above generation scheme has

been implemented in C under MS–Visual C++ 6.0. The batch scheduling problem
with 78 operations resulting from an optimal solution to batching problem (B̃P) for
the WK example has been approximately solved using abeam searchprocedure,
that is, a truncated version of the branch–and–bound algorithm. The basic idea
of beam search is to select, at each enumeration node, a given number of most
promising child nodes for further branching and to fathom the remaining child
nodes (cf. Pinedo, 1995). On a Pentium personal computer with 800 MHz clock
pulse operating under MS Windows 2000, we have obtained a feasible solution
with a makespan of 88 units of time within an imposed running time limit of 56
seconds. Thus, including the 4 seconds for solving (B̃P), approximately solving the
entire detailed production scheduling problem has taken one minute of computing
time. The solution found is the best known thus far for the WK example.

7 Experimental performance analysis

In this section, we are going to test the decomposition approach using 22 instances
which have been generated by varying the primary requirements for the final prod-
ucts of the WK example. This test set has been used by Blömer and G̈unther (1998)
as well as Bl̈omer (1999) for evaluating different solution procedures which are
based on a monolithic mixed–integer linear programming formulation of the de-
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tailed production scheduling problem. We compare our decomposition approach
(denoted by B+BS) with the most effective of those methods, the so–called time
grid heuristic (TGH). In the performance analysis by Blömer (1999), the cleaning
times of tasks 1 to 12 have been assumed to be equal to the respective processing
times. Furthermore, the initial stock of productsP2, P3, andP5 has been chosen
to be equal to 10. For comparison purposes, we have used the modified cleaning
times and initial stocks as well.

For each instance,wehave imposeda running time limit of oneminute toB+BS,
have solved the corresponding batching problem to optimality using CPLEX 6.0,
and have allotted the remaining computation time to the beam search procedure for
the batch scheduling problem. For each instance, Table 3 shows the makespans and
CPU times belonging to methods TGH and B+BS. Column “Best makespan” refers
to the best feasible solution which could be obtained by some of the heuristics based
on mixed–integer linear programming (the data for those procedures have been
communicated by G̈unther, 1999). An asterisk after the makespan for the method
B+BS indicates that either a solution proven to be optimal has been found or the
best solution known thus far could be improved. The last two columns compare
the makespans belonging to methods TGH and B+BS in the case where cleaning
of processing units is ignored.

The results displayed in Table 3 indicate that in comparison with the time grid
heuristic, the decomposition method generally (for 21 out of 22 instances) finds a
better solutionwithinamarkedly shorter amount of time. Inparticular, the results for
the four largest instances19 to22show that, compared to themonolithicapproaches,
procedure B+BS scales quite well. It is worth noting that all batching problems
could be solved to optimality, where the computation times vary from 2 seconds
(instance 1) to 31 seconds (instance 11). The heuristics based on mixed–integer
linear programming perform considerably better when cleanings are neglected.
However, the decomposition method still finds solutions of comparable quality
within a shorter amount of time.

The good performance of the decomposition method is mainly due to the strong
correlation between the workload to be scheduled (i.e., the objective function of
the batching problem) and the makespan that can be achieved in the course of
batch scheduling. The makespan can generally be decreased only by reducing the
workload to be processed in anactive chainof the schedule found consisting of
critical operations whose delay would lead to an increase in the makespan. As a
rule, the percentage of critical operations grows as the utilization of the processing
units increases. That is why we guess that the scarcer the renewable resources and
thus the harder the instances are, the smaller is the loss of accuracy when using the
decomposition method.

8 Supplements

The following additional features, which frequently occur when coping with real–
world problems, have been integrated into the beam search procedure for batch
scheduling:
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Table 3.Computational results

In- Primary TGH TGH Best B+BS B+BS TGH B+BS
stance requirements msa timeb ms ms timec msd msd

1 (20,20,20,0,0) 36 1110 36 36∗ 3 30 30
2 (20,20,0,20,0) 42 2247 38 38∗ 13 34 35
3 (20,20,0,0,20) 42 2487 38 38∗ 17 34 34
4 (20,0,20,20,0) 48 1550 38 39 60 35 33
5 (20,0,20,0,20) 44 1778 36 41 60 34 32
6 (20,0,0,20,20) 48 3605 48 43∗ 60 41 42
7 (0,20,20,20,0) 52 2587 42 38∗ 60 35 36
8 (0,20,20,0,20) 48 3123 42 39∗ 60 36 36
9 (0,20,0,20,20) 54 3607 54 53∗ 60 44 45
10 (0,0,20,20,20) 60 3607 56 50∗ 60 41 42
11 (10,10,20,20,30) 68 3605 66 66 60 48 53
12 (30,20,20,10,10) 60 3605 52 52 60 42 40
13 (10,20,30,20,10) 64 3604 61 50∗ 60 47 46
14 (18,18,18,18,18) 66 3606 66 57∗ 60 48 48
15 (15,15,30,30,45) 148 3622 112 114 60 78 72
16 (45,30,30,15,15) 124 3628 76 80 60 58 62
17 (15,30,45,30,15) 112 3621 88 91 60 71 69
18 (27,27,27,27,27) 124 3631 88 91 60 72 73
19 (20,20,40,40,60) 208 5152 208 135∗ 60 100 92
20 (60,40,40,20,20) 184 3638 184 100∗ 60 70 74
21 (20,40,60,40,20) 184 3643 124 112∗ 60 82 85
22 (36,36,36,36,36) 214 3635 172 134∗ 60 88 88

a Makespan.
b CPU time in seconds on a Pentium–266 PC including memory freeing, enumer-

ation stopped after one hour if feasible solution could be found.
c CPU time in seconds on a Pentium–800 PC, stopped after one minute.
d Without cleanings.

(a) Besides processing units alsoworkersare needed for processing tasks, e.g. for
operating a processing unit or checking the quality of an intermediate product.
Workers with the same skills are grouped to a pool that is modelled as a renew-
able resourcewhosecapacityequals thenumberofworkers in thecorresponding
pool. For the case where the number of available workers is not constant over
time, we refer to Schwindt and Trautmann (2000). Möhring and Uetz (2001)
have applied resource–constrained project scheduling models and methods to
the problem of scheduling tasks with time–varying manpower demand.

(b) If severalidentical processing unitsare available, those processing units can
also be grouped to a pool and modelled as a renewable resource. The process–
feasibility of a schedule can then be checked by solving an assignment problem.
The basic idea is to examine whether the operationsi ∈ Ṽ can be assigned
to the individual processing unitsk ∈ Rρ

k such that constraints (19) are ful-
filled. Grouping identical processing units considerably reduces the number of
alternative modes of the activities and thus offers advantages in computation
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performance, especially for large instances. For details we refer to Schwindt
and Trautmann (2000), who deal with the case of identical processing units that
do not require cleaning after idle times.

(c) Break calendarsprovide time intervals (breaks) where some resources are not
available. Some activities may be interrupted during a break, others must not
be interrupted. The corresponding temporal scheduling problem can be solved
efficiently by a polynomial longest path algorithm of type label correcting,
where start and completion times of activities are appropriately delayed until
all calendar constraints are met (cf. Neumann et al., 2001b; Trautmann, 2001b).

(d) A quarantine timeq ≥ 0 says that a product can be consumedq units of time
after its production at the earliest. Ashelf life times ≥ 0 implies that a product
must be consumeds units of time after its production at the latest. Since one and
the same product may be produced by several operations and may be consumed
by several operations, it is generally not possible to model quarantine and
shelf life times by minimum and maximum time lags between producing and
consuming operations. Schwindt and Trautmann (2002) show how to integrate
quarantine and shelf life times into the batch scheduling model discussed in
Section 6 using fictitious cumulative resources and fictitious activities.

(e) Campaignsare used for grouping operations belonging to similar products in
order to reduce cleaning times. Once the first operation of a campaign has been
started, it is not allowed to start any operation not belonging to the campaign
on any processing unit used until the last operation of the campaign on this
processing unit has been completed. This leads to an additional type of resource
conflicts. For details we refer to Trautmann (2001a).

9 Conclusions

An Advanced Planning System has been considered comprising the modules net-
work design, supply network planning, and detailed production scheduling. The
decision problems related to the first two modules have been sketched briefly. The
module of detailed production scheduling has been discussed in detail for batch
production in process industries. A new approach to solving the corresponding
optimization problem has been proposed, which consists of decomposing the prob-
lem into batching and batch scheduling. The batching problem can be reduced to
a linear mixed–binary program of moderate size and solved by standard software.
The batch scheduling problem can be modelled as a resource–constrained project
scheduling problem and solved by an efficient beam search procedure. The new
approach is markedly superior to the monolithic solution methods known thus far.
This is also demonstrated by an experimental performance analysis based on a case
study from chemical industry.

Important areas of future research are, for example, the development of an it-
erative solution procedure for detailed production scheduling, where the batching
and the batch scheduling problems are solved alternately, and of efficient decom-
position methods for (approximately) solving very large instances with thousands
of operations. Moreover, new solution methods for the module of supply network
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planning should be developed whose performance is comparable to that of the new
approach to detailed production scheduling presented.
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FJ (eds) Models, methods and decision support in management, pp 211–226. Physica,
Heidelberg

Neumann K, Schwindt C, Zimmermann J (2001b) Project scheduling with time windows
and scarce resources. Lecture Notes in Economics and Mathematical Systems, Vol 508.
Springer, Berlin Heidelberg New York

Oxe G (1997) Reducing overcapacity in chemical plants by linear programming. European
Journal of Operational Research 97:337–347

Papageorgiou LG, Pantelides CC (1996) Optimal campaign planning/scheduling of multi-
purpose batch/semicontinuous plants. 1. Mathematical formulation. Industrial & Engi-
neering Chemical Research 35:488–509

Pinedo M (1995) Scheduling: theory, algorithms and systems. Prentice Hall, Englewood
Cliffs

Pinto M, Grossmann IE (1995) A continuous mixed integer linear programming model for
short term scheduling of multistage batch plants. Industrial & Engineering Chemical
Research 34:3037–3051

Pinto M, Grossmann IE (1998) Assignment and sequencing models for the scheduling of
process systems. Annals of Operations Research 81:443–466

Schwindt C, Trautmann N (2000) Batch scheduling in process industries: An application of
resource–constrained project scheduling. OR Spektrum 22:501–524

Schwindt C, Trautmann N (2002) Storage problems in batch scheduling. In: Chamoni P,
Leisten R, Martin A, Minnemann J, Stadtler H (eds) Operations Research Proceedings
2001, pp 213–217. Springer, Berlin Heidelberg New York



Advanced production scheduling for batch plants in process industries 279

Shah N (1998) Single- and multisite planning and scheduling: current status and future chal-
lenges. In: Pekny J, Blau GE (eds) Foundations of computer–aided process operations,
pp 75–90. Amer. Inst. Chem. Eng., New York

Silver EA, Pyke DF, Peterson R (1998) Inventory management and production planning and
scheduling. Wiley, New York

Stadtler H, Kilger C (2000) Supply chain management and advanced planning. Springer,
Berlin Heidelberg New York

Timpe C (2002) Solving planning and scheduling problems with combined integer and
constraint programming. OR Spectrum 24, No. 4 (to appear)

Timpe C, Kallrath J (2000) Optimal planning in large–site production networks. European
Journal of Operational Research 126:422-435

TrautmannN (2001a)Anlagenbelegungsplanung in derProzessindustrie.Gabler,Wiesbaden
Trautmann N (2001b) Calendars in project scheduling. In: Fleischmann B, Lasch R, Derigs

U,DomschkeW,RiederU (eds)OperationsResearchProceedings2000.Springer,Berlin
Heidelberg New York

Tsiakis P, Shah N, Pantelides CC (2001) Design of multi–echelon supply chain networks
under demand uncertainty. Industrial & Engineering Chemical Research 40:3585–3604

VidalCJ,GoetschalckxM (1997)Strategic production–distributionmodels: A critical review
with emphasis onglobal supply chainmodels. EuropeanJournal ofOperationalResearch
98:1–18

WagnerM (2000)Demandplanning. In: StadtlerH,KilgerC (eds)Supply chainmanagement
and advanced planning, pp 97–115. Springer, Berlin Heidelberg New York

Westenberger H, Kallrath J (1995) Formulation of a job shop problem in process industry.
Unpublished working paper, Bayer AG, Leverkusen, and BASF AG, Ludwigshafen

Wright G, Goodwin P (1998) Forecasting with judgment. Wiley, New York


	1

