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Abstract The mean majority deficit in a two-tier voting system is a function of the partition
of the population. We derive a new square-root rule: For odd-numbered population sizes and
equipopulous units the mean majority deficit is maximal when the member size of the units
in the partition is close to the square root of the population size. Furthermore, within the
partitions into roughly equipopulous units, partitions with small even numbers of units or
small even-sized units yield high mean majority deficits. We discuss the implications for the
winner-takes-all system in the US Electoral College.

Keywords Two-tier voting system · Mean majority deficit · Voting power · Electoral
College · Sensitivity · Majoritarianism

1 Introduction

A vote is taken in a population—in a company, in a university, in a nation or in a federation
of states. A binary issue is on the table, say whether to adopt a certain strategy or not,
whether to elect one of two candidates for president, and so on. One may decide the issue by
means of a simple majority vote. As is well known (May 1952), simple majority voting is
uniquely characterized by a number of requirements that seem reasonable for many voting
systems. However, there may be historical or other reasons to organize the vote as a two-
tier vote. In a two-tier voting system, the population is split into smaller units. A vote is
taken in each unit, a representative of the unit will convey the outcome of the majority vote
in her unit to a board of representatives, and a vote in that board will decide the issue.
The latter procedure may have certain advantages. To name one such advantage, people
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may identify with their unit and may feel less alienated from the political process if their
vote is recorded at the level of their unit and if this vote carries weight at the level of the
board. But there is also a clear disadvantage. A two-tier voting system may yield a different
outcome from the outcome of the popular vote—a proposal may be accepted, say, although
a majority of the people voted against it. We say that there is a positive majority deficit iff
(if and only if) more than the majority of the people cast a vote that is different from the
outcome.

Such a positive majority deficit raises questions of legitimacy. How can a democratic
decision neglect the wishes of the majority of the people? This was precisely the problem
of the 2000 US presidential elections when Bush won even though Gore received 543,895
more votes than Bush in the popular vote.1 This number of excess votes is the majority
deficit. It is thus plausible to raise a majoritarian concern for voting rules. When discussing
the Council of the European Union, Felsenthal and Machover (2000: 18) put the concern
thus: “the rule used by the council should arguably come as close as possible to producing
outcomes that conform to the wishes of the majority of the entire electorate.”

The majoritarian concern may be explicated in different ways. One idea is to say that
a positive majority deficit should be avoided as often as possible, whatever its size might
be. In this case we should minimize the probability of a positive majority deficit. In this
spirit, Hinich et al. (1975) consider the probability of a positive majority deficit for a toy
model of the United States under which the US states are equipopulous. However, we find
it more plausible to assume that, if there is a positive majority deficit, then it is better for
it to be minimal. This leads to another explication of the majoritarian concern (Felsenthal
and Machover 2000: 23–25). The desideratum then is to minimize the mean majority deficit
(MMD), i.e., the expectation value of the majority deficit (see below for a more precise
definition). Thus, in this paper, we will study the MMD.

Two-tier voting encompasses a broad range of voting procedures and in principle there
are many characteristics we may want to vary to minimize the MMD. In this work, we
assume that we have a free hand in splitting up the population into units and stipulate that
the units should be equal-sized or almost equal-sized. We need to decide into how many
units we will split the population. We will monitor the MMD and ask: How does our choice
of the number of units affect the MMD?

For simplicity, we will keep other characteristics of the two-tier voting system fixed. In
most of our calculations, we will assume that there is simple-majority voting at both tiers
of the voting system—in the units and in the board of representatives. This choice is in fact
very good for minimizing the MMD.

For calculating expectation values, we will adopt the Bernoulli model as a probability
model, i.e., each voter is equally likely to vote one way or the other and there is probabilis-
tic independence between the votes. Our assessment of different partitions is thus a priori
because no empirical information enters. Beisbart and Bovens (2008) consider a posteriori
estimates of the mean majority deficit for the US Electoral College.

Much of the existing research literature takes a perspective that is different from ours.
Felsenthal and Machover (1998, Sect. 3.4) and Felsenthal and Machover (1999) assume that
the partition of the population is given. Units are in fact often pre-existing, e.g., in a fed-
eration of independent states such as the European Union. Felsenthal and Machover search
for a voting procedure for which the MMD is minimal under the Bernoulli model. They as-
sume that there is simple majority voting in the units and find for arbitrary partitions that the

1http://www.infoplease.com/ipa/A0876793.html (checked May 2011).
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MMD is minimal iff the representatives vote following a weighted voting rule under which
the weight of a unit is proportional to the square root of its population. This result is some-
times called the second square-root rule. Felsenthal and Machover (2000) study alternative
voting rules for the EU Council of Ministers in light of the MMD (and of a few other con-
cerns). Our work builds upon theoretical results summarized in Felsenthal and Machover
(1998), but our setting differs from theirs in two ways. First, we do not take the partition
into units as fixed. Second, our focus is on partitions with equipopulous units or almost
equipopulous units.

We will proceed as follows. We first explain the theoretical framework upon which
our results are based (Sect. 2). We then investigate how the MMD behaves for partitions
with exactly equipopulous units in Sect. 3. Subsequently we move to partitions with quasi-
equipopulous units, i.e., partitions in which the population number n is not divisible by the
number of units, m, but the partitions deviate only minimally from an equipopulous partition
(Sect. 4). In Sect. 5 we consider partitions that allow for larger deviations from equipopulous
units. We conclude with a discussion of the political relevance of our findings for the design
of two-tiered voting systems, in particular for the US Electoral College (Sect. 6).

2 Theoretical framework

In this section, we will briefly explain the theoretical framework in which we will obtain our
results. This section is kept as general as possible. More specific assumptions are adopted,
as the paper proceeds.

Consider a population of n voters. The population is split into m units, where 1 ≤ m ≤ n.
The units are numbered from j = 1 to j = m; for each j in this range, the j -th unit has
nj voters. We will later assume that the sizes of the populations are equal or almost equal.
Clearly,

∑m

j=1 nj = n.
A binary issue is on the table, call the options Yes and No. Each unit has one representa-

tive, and her vote is the outcome of a simple majority vote within her unit. The final outcome
of the vote is x iff more than one half of the representatives vote x for x = Yes, No in the
board of representatives. Such a voting system can be modeled in terms of a composite vot-
ing game (Felsenthal and Machover 1998, Def. 2.3.12 on p. 27). Note that there need not be
actual representatives that convey the votes of the units.

The majority deficit MD for a particular vote equals zero when the outcomes of the pop-
ular vote and the two-tier voting system coincide and it takes the positive value l when the
outcomes disagree and there is a margin of l voters. Here, the outcome of the popular vote
is the outcome that would arise under simple majority voting. The MMD is the expectation
value E[MD] of the majority deficit. That is, the MMD equals the sum of the products of the
probability that the majority deficit takes on the value MD times MD (Felsenthal and Ma-
chover 1998: 60). In this paper, we will assume the Bernoulli model as a probability model
in order to calculate expectation values. That is, the votes of the citizens are probabilistically
independent and each citizen has a probability of 0.5 of voting Yes.

Suppose now that m = 1 or that m = n. These are clearly limiting cases of two-tier voting
procedures, which just coincide with a popular vote or with simple majority voting. Hence,
the outcome of the vote necessarily reflects the majority of the votes; there is no threat of
a positive majority deficit, and the MMD equals 0. But suppose there are reasons to have a
non-trivial two-tier voting system, for which m is strictly between 1 and n. How does the
MMD behave, as m is being varied? What is the m-value that yields a maximal MMD and
is thus worst? That is the central question of this paper.

Author's personal copy
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Our results rest on a theorem in the literature about voting power. We follow Felsenthal
and Machover (1998: 60), who make reference to Dubey and Shapley (1979). Assuming the
Bernoulli model, the theorem relates E[MD] to sensitivity S, which is defined as the sum
of the non-normalized Banzhaf voting powers β ′

i for all voters i = 1, . . . , n (Felsenthal and
Machover 1998: 39). According to the theorem, E[MD] is a linear transform of S:

E[MD] = Sn − S

2
, (1)

where Sn is the sensitivity for simple majority voting with n voters and is a constant for
a given n. The theorem implies that maximizing sensitivity is equivalent to minimizing
E[MD]. Since the optimal value for E[MD] is zero, maximal sensitivity obtains for simple
majority voting when S equals Sn.

Let us now calculate the sensitivity S for our two-tier voting system. The voting power
of a single citizen is the probability that her vote is doubly pivotal. A vote of a single citizen
is doubly pivotal iff the outcome of the two-tier vote would have been different had the
vote been different. Double pivotality requires that the vote is pivotal in its unit and that the
representative of this very unit is pivotal in the board of representatives. Under the Bernoulli
model, the probability of double pivotality factors in the probability that the vote is pivotal
in its unit and that the respective representative is pivotal in the board. The probability that
a citizen’s vote is pivotal in a simple majority vote with k voters, Pk , is

Pk =
(

k − 1
[k/2]

)/
2k−1, (2)

where [k] is the largest integer l with l ≤ k and
( ·

·
)

is the binomial coefficient. The proba-
bility that a voter in unit j is pivotal in her unit (unit) thus equals

Pj (citizen → unit) =
(

(nj − 1)

[nj/2]
)/

2nj −1. (3)

Call the probability that a representative of unit j is pivotal in the board of representatives
(br) Pj (unit → br). In the special case in which the representatives vote by the way of
simple majority voting, this probability equals

Pj (unit → br) =
(

m − 1
[m/2]

)/
2m−1. (4)

Thus, the voting power of a voter from the j -th unit is

Pj (unit → br) ×
(

(nj − 1)

[nj/2]
)/

2nj −1 (5)

and the sensitivity equals

S =
m∑

j=1

nj × Pj (unit → br) ×
(

(nj − 1)

[nj/2]
)/

2nj −1. (6)

The sensitivity for the popular vote is n times Pn as defined in (2). The result is

Sn = n ×
(

n − 1
[n/2]

)/
2n−1. (7)
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From Felsenthal and Machover (1998: 56), we know that Sn approaches
√

2n/π for large n.
We will sometimes use this approximation. Not much hinges on that because our primary
concern—the m-dependence of E[MD]—is not affected by that approximation. Combining
(1) and (3)–(6), we can evaluate the mean majority deficit for every pair of n- and m-values.

3 The MMD for exactly equipopulous units

In this section, we assume that the population can be split into exactly m units with ex-
actly n/m people, each, where both m and n/m are integer-valued. Of course, for a given
number n, there will not be many ways to split the population in this way. In this case, each
citizen has the same voting power of

β ′ =
(

(n/m − 1)

[n/(2m)]
)

×
(

m − 1
[m/2]

)/(
2n/m−1 × 2m−1

)
(8)

and the sensitivity is n times this expression. The numerical value of the sensitivity measure
depends on what the [ ]-brackets yield, and this depends on whether n and m/n are even or
odd. The reason is as follows: Assume that k is even. In a simple majority vote with k voters,
at least (k/2 + 1) voters have to vote Yes for acceptance. When an additional voter is added
to yield an electorate of (k + 1) voters, it is still at least (k/2 + 1) voters that have to vote
Yes for acceptance. Thus, if normalized by population size k, the threshold of acceptance is
higher when k is even. This has an important consequence for the probability that a vote is
pivotal under simple majority voting. Generally, this probability decreases, as the population
size k becomes larger. However, when we move from an even k to (k+1), the mean majority
deficit stays constant. This will become important later in the paper.

We thus have to distinguish between several cases. It is first useful to discuss the cases in
which n is odd or even.

3.1 First case: odd n

If the population size is odd, the numbers of units and the numbers of voters within each
unit both have to be odd as well. As a consequence, the sensitivity is

S = n ×
(

n/m − 1
(n/m − 1)/2

)/
2n/m−1 ×

(
m − 1

(m − 1)/2

)/
2m−1. (9)

Strictly speaking, this result holds only for m and n/m being integers. But if we express the
binomials in terms of factorials and use the Gamma function as an extension of the factorial
(n! = �(n + 1)), we may think of the voting power and of E[MD] as functions that are
defined on the whole interval [1, n]. Call these functions the real-extended voting power
and the real-extended E[MD]. We will more generally say that a function is real-extended
if its domain is extended from a range of natural numbers to a range of real numbers by
replacing factorials using the Gamma function.

In Fig. 1, we show the real-extended E[MD] for three different values of n as a function
of m.

The curves for the different n-values have similar shapes: They start at 0, increase as m

increases, reach a maximum and decrease to zero again. For each curve, the maximum is
located at m = √

n. The same holds for other values of n, even for n-values that cannot be
thought of as the square of an integer.

Author's personal copy
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Fig. 1 The real-extended mean
majority deficit E[MD] for
two-tier voting systems with
n = 49 (short-dashed); 81
(long-dashed); 121 (solid) voters
as a function of the number of the
units m

How can we understand this result? We have not been able to prove analytically that, for
any n, the curve representing the MMD follows the shape that can be seen in Fig. 1. But we
can provide some analytic results that help us understand and generalize what we observe
in Fig. 1.

Due to (1), the real-extended E[MD] is a linear transform of sensitivity, which, in our
case, is n times the probability of double pivotality.2 Thus, the real-extended E[MD] is a
linear transform of the voting power of a citizen. This probability can be written as a product
of the following form:

g(m) × g(n/m), (F)

where g is some differentiable function (cf. (8)). Consequently, the value of the sensitivity
and thus of the MMD does not change when we set m at m′ = n/m. The reason is that it
does not matter whether we have m units of n/m people each, or n/m units of m people
each. In both cases, the probability that a citizen is doubly pivotal is the same product of
two probabilities that a voter is pivotal in simple majority voting, once in an electorate of m

people, and once in an electorate of n/m people. (This is also true in case n is even.)
The derivative of (F) equals

g′(m) × g(n/m) − n

m2
g(m) × g′(n/m). (10)

It is easy to see that this derivative is zero at m = √
n and that, if the derivative has a certain

sign in the interval [√n,
√

n + ε] for some positive ε, it has the opposite sign in the interval
[√n−ε,

√
n]. This shows that the probability of double pivotality and thus the real-extended

E[MD] has an extremal value at m = √
n (unless it is a straight line in some range around

m = √
n). By plotting the second derivative of the real-extended E[MD] at m = √

n for a
broad range of values of n, we observe that the extremal value is a maximum.3

But that does not yet settle the question as to how E[MD] behaves as a function of m

because there may be other minima or maxima. In particular, we cannot yet infer that the

2Strictly speaking, we mean the real-extended probability of pivotality, the real-extended sensitivity, but for
simplicity we will sometimes drop the “real-extended”.
3Using Rolle’s Theorem, one can show more generally that any function h for which h(m) = h(m/n) has a
zero derivative at m = √

n.

Author's personal copy



Public Choice (2013) 154:75–94 81

maximum that we have found is a global one in the interval [1,m]. In Appendix 1 we use
approximations to strengthen our results.

Our main result from this subsection—viz. that the MMD becomes maximal for the
square root of n—may be named a ‘square-root rule’. In the literature, a number of square-
root rules have been found so far. We clarify the significance of our result by comparing it
to three other square-root rules in voting theory.

The so-called first square-root rule concerns Banzhaf voting power in a two-tier voting
system with units that are large in population, but not necessarily equipopulous. According
to the first square-root rule, the voting powers of the people are equalized if the weights
of the units in the board of representatives are set proportional to the square roots of the
population sizes (see Felsenthal and Machover 1998: 66–68 for a statement of the rule and
further references, e.g., Penrose 1946 and Banzhaf 1965; see Felsenthal and Machover 2000
and Žyczkowski and Słomczyński 2004 for recent applications to the Council of Ministers
in the European Union). Clearly, our result differs from the first square-root rule since we
are not here concerned with equalizing voting power.

The second square-root rule has already been mentioned; it states that the MMD is min-
imal in a two-tier voting system with sufficiently large units iff the weights for units in the
board of representatives are proportional to the square roots of the population sizes (see
Felsenthal and Machover 1998: 74–75 for a discussion). Although the second square-root
rule and our result both concern the MMD, there are significant differences. Whereas the
second square-root rule aims to determine the weights for a voting system with fixed units
of various sizes in order to minimize the MMD, our result concerns a partition into equipop-
ulous units that maximizes the MMD.

Recently, a third square-root rule has been proven by Edelman (2004, see also Edelman
2005 for further discussion). Edelman considers two-tier voting systems under which a voter
has several votes that may be cast independently. Since these voting systems are markedly
different from the voting systems that we investigate, there is no connection between our
results and Edelman’s square-root rule.

Note, however, that care is required in interpreting our results. In our figures and argu-
ments, we take E[MD] to be a continuous function of m. But, ultimately, m can only take
integer values, and the continuous curves are only extrapolations. Moreover, m has to be
chosen in such a way that n/m is an integer. Suppose now that somebody wants to split an
even-sized population into exactly equipopulous units, while maximizing the MMD (which
is, of course, not recommended). Our results suggest that there should be m = √

n units, but√
n will in general not be an integer, and so splitting the population into

√
n units is not an

option. Instead, to maximize the MMD, one would have to choose the m-value m∗ that is a
divisor of n and that is closest to

√
n. And of course n/m∗ yields the same maximal MMD.

3.2 Second case: even n

Let us now consider the case of even population sizes. If we partition the population into
exactly m units, m may be even or odd. Thus, the following three sub-cases arise:

2a. n even, m even and n/m odd. This covers the special case of m = n. From (8) we obtain
the following expression for the voting power of an arbitrary citizen in this subcase

β ′ =
(

m − 1
m/2

)

×
(

n/m − 1
(n/m − 1)/2

)

× 1

2m−12n/m−1
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Fig. 2 The real-extended
E[MD] for even n and the
sub-cases 2a (m even and n/m

odd), 2b (m odd and n/m even)
and 2c (m even and n/m even).
The dots denote the divisors of
n = 100 and the corresponding
values of E[MD]

2b. n even, m odd and n/m even. This covers the special case of m = 1. The voting power
of a citizen is now

β ′ =
(

m − 1
(m − 1)/2

)

×
(

n/m − 1
n/2m

)

× 1

2m−12n/m−1

2c. n even, m even and n/m even. The voting power of a citizen is now

β ′ =
(

m − 1
m/2

)

×
(

n/m − 1
n/2m

)

× 1

2m−12n/m−1
.

Note that sub-cases 2a and 2b will occur only for every even n, while sub-case 2c will
only occur for n-values that are multiples of 4. Note also that the expressions for voting
power are slightly different.

From the probability of double pivotality, E[MD] can easily be calculated for each sub-
case using (1) and (3)–(6). Accordingly, we obtain a slightly different expression for E[MD]
for each sub-case. Each of these formulae can be real-extended. Call the real-extensions of
E[MD] for the three sub-cases fa(m), fb(m) and fc(m), respectively. Strictly speaking,
these functions also depend on the value of n, but for simplicity of notation, we drop the n.
We plot the real-extensions for n = 100 in Fig. 2.

Because of the alternative sub-cases, the maximal MMD can not be derived by analyzing
one real-extension. But looking at the blacks dots, which refer to the partitions into equipop-
ulous units, we learn that the MMD is maximal iff there are two units or the units have two
people, each.

Let us now provide some general results. First, in case (c), the probability of double
pivotality is a product of the following form:

g(m) × g

(
n

m

)

. (F)

Following our reasoning above, we can infer that fc(m) has a zero derivative at m = √
n.

This time, it is apparently a minimum, at least for the examples that we have considered.
The definitions of the first two curves imply that they stand in the following relation:

fa(m) = fb

(
n

m

)

. (11)
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This means that it does not matter whether we partition the population into m or into n/m

units—the E[MD] is the same for both cases. An immediate consequence is that fa(m) and
fb(m) intersect with each other at m = √

n. So that point is once again important, but this
time not because it is a maximum.

The next question is whether there is a general conclusion regarding the value of m for
which the E[MD] is worst (i.e., maximal). We observe that, for each n and each m, fc(m)

always lies above the curves for fa(m) and fb(m). It can in fact easily be shown analytically
that, for 4 ≤ m ≤ n/4, fc(m) is higher than the curves for fa(m) and fb(m).4 We will
now assume that this is so in the whole relevant range of m-values. We can thus infer the
following:

a. If n is a multiple of 4, the third curve fc(m) is relevant. Because of our observation, the
maximal E[MD] must lie on this curve or below it—the curve is an upper bound for the
maximal E[MD]. This curve has a minimum at m = √

n. Therefore, the further we move
away from m = √

n, the larger is fc(m). Now the furthest we can get from that point
with a permitted m-value (m being a divisor of n), is m = 2 or m = n/2. Since n is a
multiple of 4, we know that E[MD] coincides with the curve at this point. Thus, m = 2
or m = n/2 provide the maximal E[MD].

b. If n is not a multiple of 4, fc(m) is not relevant, and we have to work with the other two
curves. We have found that, for a number of suitable values of n, the curves for fa(m) and
fb(m) always have shapes similar to those in Fig. 2. We conclude that m = 2 or m = n/2
provide the maximal E[MD] in case n is not a multiple of 4.

Combining these results, we can formulate a rule that holds for all even n: If n is even,
then the maximal E[MD] is located at m = 2 and m = n/2.

How can we explain the validity of this rule? For a vote with two people, simple majority
voting effectively requires a unanimous Yes if the outcome is to be Yes. Thus, if a two-tier
voting system has units of two people each, then there are quite a lot of possible voting
profiles under which the outcome is No, although the majority of the people voted Yes. This
effect will make a considerable contribution to the MMD.

As is well-known, simple majority voting with an even number of voters is not a proper
voting game (see Felsenthal and Machover 1998: 11 for the definition of a proper voting
game). Accordingly, neutrality is violated (cf. May 1952), and, under the Bernoulli model,
the outcomes Yes and No are not equally likely. The same is true for our two-tier voting
systems with even n. A possible criticism is thus that the two-tier voting systems that we
investigate for even n do not make much sense.

The problem can be avoided if we replace simple majority voting with the following
voting system: The result of the vote is the same as under simple majority voting unless
there is a tie. Whenever there is a tie—whenever there are as many Yes-votes as No-votes—
a fair coin is flipped, and the outcome is Yes (No) with a probability of 0.5 (0.5). From a
theoretical point of view, such a voting system is described as a lottery of voting games
(Laruelle and Valenciano 2004: 418).

Let us therefore consider our two-tier voting system and replace each simple majority
vote with an even number of voters by a lottery of voting games as described above. That is,
both at the level of the units and at the level of the board of representatives, simple majority

4To show this, one has to consider the pertinent expressions for the probability of double pivotality, to take
their logarithms and to exploit the fact that the logarithm of the gamma function is a convex function for
arguments no smaller than 2.
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Fig. 3 The E[MD] as a function
of m for n = 99 (crosses) and
n = 100 (circles) for
quasi-equipopulous units

votes with even numbers of voters are replaced in that way. The result can again be described
as a lottery of voting games.

In Appendix 2 we analyze such a voting system. We show that the value of the MMD
does not at all differ from the results that we have obtained for even numbers of voters. Our
results obtained so far for even numbers of votes are thus not artefacts that can arise only for
improper voting games.

4 Partitions into units that do not have exactly the same size

So far, we have only considered partitions with units that are exactly equipopulous. But if
the population size n is a prime number, there will be no way to obtain such a partition. And
even in case n is not prime, there will not be many ways to partition the population into
exactly equipopulous units. We therefore consider partitions with units that are not exactly
equipopulous, but that display only minimal deviations from equipopulous units.

Start with a population of n people. For any integer m = 1, . . . , n, we can construct a
partition such that all units have between [n/m] to ([n/m]+1) people, where [j ] is again the
largest integer smaller than or equal to j . For n = 10 and m = 4, for instance, we partition
the population into two units with two voters each, and two units with three voters each.
Given values of m and n, the distribution of the population sizes of the units is uniquely
fixed. Let us call these partitions quasi-equipopulous.5

In case the units are not equipopulous, the question arises as to how we assign weights
to representatives of each unit. We will consider two methods—either we continue to assign
equal weights to the representatives, or we assign weights to the representatives such that
the MMD is minimized.

Let us first consider the first method. Although the units are no longer equipopulous, their
representatives are assigned equal weights. Results for n = 99 and n = 100 can be seen in
Fig. 3. We have obtained similar results for other values of n.

We observe that the curves are similar for neighboring values of n. This should not come
as a surprise, for how can one additional voter make a tremendous difference for minimizing

5In our usage of the term, we will allow that a quasi-equipopulous partition is exactly equipopulous in special
cases.
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the MMD if n is very large? For small numbers of units, m, the MMD jumps back and forth.
The pattern here is roughly as follows: For even values of m, the MMD is comparatively
large, whereas it is comparatively small for odd values of m. For larger m-values, the MMD
decreases or increases between more pronounced extremal values. Local maxima of the
MMD arise for partitions in which there are (almost) equipopulous units with even values
of n/m. For instance, there is a maximum at m = 50, where n/m = 2 for (almost) every
unit. Minima arise for partitions in which there are (almost) equipopulous units with odd
numbers of n/m. For instance, there is a minimum at m = 33, where n/m = 3 for (almost)
every unit. For m > n/2, the MMD decreases and approaches zero, as m increases—the
more units there are with one voter each, the smaller is the MMD, since we approach the
popular vote. The general moral is clear. In the design of boards of representatives, small
even-sized boards and small even-sized units yield high MMDs; small odd-sized boards and
small odd-sized units yield low MMDs. These results are not affected if simple majority
votes with even numbers of votes are replaced by lotteries of voting games as indicated
above.

But why does a small even-sized number of units yield a high MMD? As we have men-
tioned above, in a population with k voters, the probability of pivotality under simple ma-
jority voting stays the same when we start with an even k and move to (k + 1). Suppose
now that our population has n = 99 people and is split into m = 4 units. That is, we have 4
units with about 25 voters, each. Assume now, we re-partition the population into 5 units.
We know that the voting power of a representative in the board will not change, as we move
from 4 to 5 representatives. However, the units are significantly smaller under m = 5 than
they were under m = 4. As a result, the probability that a citizen is pivotal in her unit will
increase. Consequently, the voting power of each citizen, which is a product of the voting
power of her representative and the probability that she is pivotal in her unit, will increase.
So will the sensitivity, and, hence, the MMD will decrease. This decrease is particularly
significant if m is small because, in this case, the probability that a citizen is pivotal in her
unit will grow more significantly than if m is larger. This explains why a small number of
even-sized units are fairly bad and why the MMD jumps back and forth for small values
of m.

How do the results in Fig. 3 relate to our earlier results for exactly equipopulous units?
In the left panel of Fig. 4, we show the results for n = 99 and the real-extended curve for
equipopulous units. We use thick dots to mark the MMD at m-values for which we have
exactly equipopulous units. Of course, each dot lies on a curve of a real-extended MMD for
equipopulous units. Everywhere else, the real-extension yields a lower bound on the MMD
for quasi-equipopulous units.

In the right panel of Fig. 4, we show the results for n = 100 and the real-extensions for
the three sub-cases that we distinguished in Sect. 2. The real-extension of the curve for an
even number of equipopulous even-numbered units is now an upper bound on the values of
the MMD for the quasi-populous units.

Let us now consider the second method of assigning weights to the units. The idea is to
find a voting rule in the board of representatives such that the MMD is minimized. Equiv-
alently, we want to have a rule that maximizes sensitivity (cf. (1)). To find such a rule, we
take the partition as given and the rule of the board as variable so that we may change it to
maximize sensitivity. The sensitivity can be written as a weighted sum of the voting powers
of the representatives,

S =
m∑

j=1

nj × P (citizen → unit j) × P (unit j → br) =
m∑

j=1

cj (nj ) × P (unit j → br). (12)
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Fig. 4 The E[MD] as a function of m for n = 99 (left panel) and n = 100 (right panel) for quasi-equipopu-
lous units (crosses). The solid lines denote the real-extensions from Sect. 2

Fig. 5 The MMD as a function
of m for n = 20 for
quasi-equipopulous units.
Crosses: first method; circles:
second method. Note that the
methods agree (at least to a good
approximation) almost
everywhere

Here the second equation is used to define the real numbers cj (nj ). As Beisbart and Bovens
(2007) show in their Theorem 1, sensitivity is maximized under the following rule in the
board: Each unit is assigned a weight proportional to cj (nj ) and there is acceptance iff the
sum of the weights of the Yes-votes exceeds half of the sum of all weights. Accordingly, in
our second method, we will assign each unit a weight that is proportional to cj (nj ).

Results for n = 20 can be seen in Fig. 5.6 We observe that there are almost no differences
between our second and our first method. The reason is as follows. Note first that the new
weights cj (nj ) are not far from equal weights because the units are almost equal-sized. Fur-
ther, often slight changes in voting weights do not change the voting power. As an example,
consider n = 20 and m = 3. If there is equal representation of the units in the board, i.e., if
each representative has the same weight, a representative is pivotal iff the other two repre-
sentatives cast different votes. Consider now the case in which each representative j is given
a weight proportional to cj (nj ). In our case, each cj (nj )-value will roughly be proportional
to

√
nj .7 That is, the cj (nj )-values will be proportional to

√
7 (twice) and to

√
6 (once),

6For obtaining these results, we used a Mathematica package “Banzhaf” available under http://library.
wolfram.com/infocenter/MathSource/3592 (checked May 2011).
7We are here using an approximation according to which the probability of pivotality in simple majority
voting with k voters is proportional to the inverse square root of k (Felsenthal and Machover 1998: 56).
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respectively. As a consequence, a representative is still pivotal iff the other representatives
cast different votes. Thus, the probability of pivotality is not affected, as we switch to our
second method, and neither is sensitivity.

Similar results as those that we have obtained here are also to be expected for larger
values of n, at least if m is smaller than

√
n. We will therefore not consider our second

method any further.
Altogether, we draw the following conclusions for quasi-equipopulous units. Indepen-

dently of whether n is even or odd, we obtain curves with several local maxima. Local
maxima arise if m or n/m are even. The worst possible case—the case in which the MMD
has a global maximum—seems to be around m = 2 and m = n/2.

5 Larger deviations from equipopulous units

Quasi-equipopulous units will not be an option in many applications.8 For instance, in the
United States it would be extremely difficult to ensure quasi-equipopulous districts. Con-
gressional districts or similar units will always follow geographical boundaries. Conse-
quently, as people move, the population sizes change. Districts may be reshaped from time
to time, but it is completely unrealistic to reshape districts following the moves of single
families. This raises the question how the MMD behaves as a function of the number of
units if larger deviations from equipopulous units are allowed.

Inspired by the example of the United States, we delimit ourselves to very large popu-
lations and fairly small numbers of units. We furthermore assume that there is equal repre-
sentation in the board of representatives. That is, although the sizes of the units may differ
significantly, each representative has the same weight. This restriction may be justified by
appealing to practical concerns. It may simply be too difficult to monitor the sizes of the
units and to adjust the weights accordingly.

We start again from (1) and (8). However, to simplify things, we will consistently ap-
proximate the probability that a voter (be it a citizen or a representative) is pivotal under
simple majority voting with k voters by

√
2/πk, unless k is smaller than 1,000 (in which

case no approximation for the probability of pivotality is used).
When we allow for larger deviations from equipopulous units, an m-value does not

uniquely fix the partition any more. We will therefore average over many partitions for each
value of m. Assume now that m is fixed at some integer value. Under each partition into
m units, unit j has a population of nj = (1 + εj ) × n/m, where εj is a random variable. It
quantifies the relative deviation from the average size of the units. Of course, summing over
the εj must produce zero. Different random numbers yield different realizations of a par-
tition into m units. For each random variable εj , we assume equiprobability in the interval
[−0.2,0.2] and draw random numbers independently. We then renormalize the populations
to make sure that the sum constraint is fulfilled. Of course, in this way, the sizes of the units
will mostly not be integer-valued. This is not a problem, though, as the units are always
assumed to be large, in which case the probability of pivotality can well be approximated
using by

√
2/πk for k voters. This yields a good real-extension, which does not much vary

as a function of the number of voters k.
In Fig. 6, we assume that n = 100,000,000 (this number provides a rough approximation

of the number of voters in the United States) and show the average MMD. Each average
arises from thousand random realizations of a partition with m units. We focus on the most
interesting case of a relatively small number m of units.

8We are here following a suggestion made by a referee to whom we are grateful.
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Fig. 6 The average MMD for
larger deviations from
equipopulous units

In the figure we see two branches, which rapidly approach a constant function. The reason
is as follows If m is larger than, say 100, but smaller than n/100 = 1,000,000, both the
probability that a voter is pivotal in her unit and the probability that her representative is
pivotal in the board can well be approximated by the inverse square root of the size of the
respective electorate. In this limit, the sensitivity for a partition is

S =
m∑

j=1

(
n

m
(1 + εj )

)

×
√

2

πm
×

√
2

πn(1 + εj )/m
.

If we assume that each εj is zero, we obtain an MMD that does not depend on m any more:

E[MD] = 0.5 ×
(

Sn − m × n

m
×

√
2

πm
×

√
2m

πn

)

= 0.5 × √
n ×

(√
2

π
− 2

π

)

.

If the εj -values are allowed to differ from zero, the average MMD is a bit larger, but there is
still no m-dependence, or only a very weak one.

The two branches for small values of m approach the (almost) straight line for large
m-values from above and below, respectively. The upper branch corresponds to even values
of m, the lower to odd values of m. Given our earlier results, it should not be surprising that
odd values of m tend to be better than even values.

In Fig. 6, we show only the average values of the MMD. That is, each point arises by
averaging over 100 realizations of the random numbers. We have also quantified the fluctu-
ations; they are very small. In the graph, the size of the error bar would not often exceed the
size of the symbol. We obtain relatively large fluctuations for small values of m. The root
mean square fluctuations are never larger than 4.

Our result yields a clear recommendation for a partition into a number of units that is odd
and the smaller this number, the better.

6 Discussion

To discuss the political relevance of our findings, let us first provide a brief summary of our
results.
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We have investigated how the mean majority deficit behaves for a two-tiered voting sys-
tem when the population of n voters is split into different numbers of more or less equipop-
ulous constitutive units. We have assumed binary votes and the Bernoulli probability model.
Within each unit, there is a simple majority vote. The votes of the units are amalgamated
using simple majority voting or a weighted voting rule that is in a certain sense optimal (see
Sect. 4). Clearly, the mean majority deficit is minimal (viz. zero) if there is one unit or if
there are as many units as there are people. Our focus is thus on numbers of units in between
these extremes and our concern is to steer away from the maximal mean majority deficit.
If the units are exactly equipopulous, our results depend significantly on whether the size
of the total population is an odd or an even number (Sect. 3). For odd population sizes, we
obtain a new square-root rule. The mean majority deficit can naturally be extrapolated using
a function that has its maximum at the square root of the total population size. For even
population sizes, two units or units with two numbers of voters are worst. If the units are not
necessarily exactly equipopulous, but close, the mean majority deficit is also maximal for
partitions with two units or with a large number of units that have two voters each (Sect. 4).
Finally, if we allow for larger fluctuations in the population sizes, small even numbers of
units continue to be bad for minimizing the mean majority deficit (Sect. 5).

Our results are clearly relevant for the institutional design in companies, organizations
or federations. Proposals are voted on within each unit and a representative on the board
will then cast a vote in accordance with the majority vote within his or her unit. Now if
the board decision is out of line with the popular vote then this threatens the legitimacy of
democratic decision-making. This is the majoritarian concern (see Felsenthal and Machover
2000: 23–25). So what kinds of partitions are more and less subject to the threat of high
MMDs, assuming equipopulous (or close to equipopulous) units? The lesson is roughly that
small even-sized units and small even-sized boards tend to be more pernicious, whereas
small odd-sized units and small odd-sized boards tend to be more attractive on strictly ma-
joritarian grounds. Note, however, that, for a moderate number of units—i.e., a number of
units that is not close to zero but not much greater than the square root of the total population
size—the MMD is constrained within very narrow bounds and, hence, there is not too much
discrimination possible on majoritarian grounds.

The majoritarian concern is one amongst others in designing a partition. There is also
a motivational concern. Voters feel more engaged in the process of decision-making when
they can vote within a unit with which they feel a sense of allegiance and when there is a
public record of these votes. In a one-tier or population-wide vote they may feel alienated
from the process and the turnout may be low. Furthermore there is a deliberational concern.
Voting in a board is often informed by deliberation in that very board and we may want
to secure that the groups are neither too small nor too large to enable meaningful delibera-
tion. Motivational and deliberational concerns need to be balanced against the majoritarian
concern in designing two-tiered voting systems.

Let us now consider a special application, viz. the US Electoral College (EC). Opposi-
tion against the EC tends to flare up after election in which a president was elected with a
majority deficit. This was the case in the 2000 election when Bush was elected, while Gore
received more votes than Bush. There is some sentiment that the winner-takes-all is to blame
for majority deficits. In response, we have witnessed the Presidential Electors Initiative in
California in which each elector would cast a vote in accordance with the majority vote
in her district and two electors would cast a vote in accordance with the majority vote in
the state. In Why the Electoral College is Bad for America, Edwards (2004: 36–38) argues
against the winner-takes-all system because it does not distinguish between large and small
majorities and this is what causes majority deficits. This is easy to see—if Bush gets the
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majority of EC votes from states in which he has a small majority and Gore gets a minor-
ity of EC votes from states in which he has a large majority then it is clear how Gore can
lose the election even with a majority of the popular vote. Edwards then provides a list of
early statesmen who all supported some version of the district plan under which smaller,
but roughly equipopulous districts each have one representative.9 But no such plan became
law. The more powerful state parties in each state supported the winner-takes-all system
‘precisely because it distorted the popular will and allowed them to reap the benefits of the
state’s electoral votes (Edwards 2004: 38)’. Now the reasoning that Edwards attributes to
the state parties presupposes that a district plan is more respectful of the popular will. One
interpretation is that a vote is somehow closer to the popular vote if majorities are registered
at the level of the district—i.e. closer to the people—rather than at the level of the state. But
does this argument hold? Is it the case that subdividing the unit at which the popular vote is
registered is more respectful of the popular vote?

If it is generally true that subdividing units yields results that are typically more respectful
of the popular vote, this should also hold under the assumption of equipopulous states. The
argument would then not be that we are reducing the MMD by moving from unequal-sized
states to equal-sized districts. The argument would rather be that we would reduce the MMD
by moving closer to the people when we move from larger states to smaller districts. If
‘getting closer to the people’ by moving from states to districts is meant to lower the MMD
then it should do so for unequal-sized as well as for equal-sized states.

Our results show that this is not so. In the US Electoral College, the winner-takes-all
system operates with 50 states and the District of Columbia, whereas a system with con-
gressional districts operates with 435 districts. Under the assumption of equal-sized units,
the mean majority deficit is smaller for 51 states than it is for 435 districts. To show this we
use the method from Sect. 5. That is, we assume a total voter turnout of n = 122,295,345, as
we witnessed in the US presidential elections in 2004,10 and split the United States into 51
or 435 units. In each case, we allow for random fluctuations of the population sizes within
the units and calculate the average MMD. We obtain an average E[MD] = 880 for 51 states,
and an average E[MD] = 896 for 435 districts.11 We obtain similar results if we use the
second method from Sect. 4: The MMD increases by about 16 when we move from 51 to
435 units. Thus, splitting up the federation into reasonably-sized smaller units to avoid the
misgivings about winner-takes-all in large states may have certain advantages (e.g., it may
address motivational concerns), but it worsens the expectation that votes will be marred
by majority deficits and hence should not be defended as a safeguard for the legitimacy of
democratic institutions in this respect.

Admittedly, the increase in the MMD is small, as we move from a partition into 51 states
to a partition into 435 districts. Nevertheless, our results show clearly that it is wrong to
expect that the MMD generally goes down, as we increase the number of units in this range
of m-values.

But what if we start from (50 + 1) unequal-sized states and would move to a system with
roughly equal-sized districts? This reflects the political reality in the United States. How

9See Miller (2009, Sect. 5) for varieties of such plans.
10Voter turnout taken from www.fec.gov/pubrec/fe2004/tables.pdf.
11Note that this is not the pure district plan (Miller 2009: 360–361) under which each state has as many
equal-sized districts as it has electors, adding up to 538 districts. But if we carry out our calculations with
538 equal-sized districts with fluctuations in the population (for which we obtain an MMD of 899) we should
obtain a good approximation of the MMD for the pure district plan. We do not consider the modified district
plan under which each congressional district has an elector whose vote registers the majority vote in the
district and each state has two electors whose votes register the majority vote in the state (ibid.).
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does this affect the mean majority deficit? If we assume that the electors of each state are
determined by a winner-takes-all rule (which in reality they are not in Maine and Nebraska),
we obtain a MMD of about 1057.12 Thus, the present system is worse than either a partition
into 51 equal-sized states or a partition into 435 equal-sized districts. The reason seems
to be that large fluctuations in the numbers of people per unit tend to increase the MMD
(note that the fluctuations in the population sizes of the US states are much larger than those
considered in Sect. 5). We have not been able to derive any analytical generalizations about
shifts from unequal-sized units to equal-sized subunits so far, but we hope to come back to
this question in our future research.

In conclusion, a move from the present system to a district system would reduce the
MMD. But this is not because recording votes at the district level rather than at the state
level is somehow closer to the people. That reasoning is fallacious. District-based systems
are advantageous compared to the present system not because the constitutive units in the
district-based system are smaller but rather because the constitutive units in the present
system, i.e., the states are of highly unequal sizes.
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Appendix 1: Further analytical arguments concerning equipopulous units

In this appendix we consider exactly equipopulous units and assume that the size of the
population n is odd. Our aim is to strengthen our results concerning the maximization of
E[MD]. Our starting point is provided by (1) and (9). Above we have already shown that
the first derivative of E[MD] is zero at m = √

n. But we have not yet shown that E[MD]
reaches its maximum at this point. For further analytical argument, we consider approxima-
tions of E[MD]. E[MD] contains binomials and, hence, factorials. Accordingly, the real-
extended E[MD] contains Gamma functions. As is well known, a Gamma function may be
approximated by what is sometimes called the Stirling series. The Stirling series starts with
(see Morse and Feshbach 1953: 443):

k! = �(k + 1) ≈ √
2πkek ln(k)−k

(

1 + 1

12k
+ · · ·

)

.

However, this series does not converge (see, e.g., Havil 2003: 86–88). Care is therefore
required in using this series for approximations.

We consider tentatively a few approximations by keeping the first r addends in the
bracket of the Stirling series. We consider r = 1 and r = 2. For r = 1, we obtain Stirling’s
formula:

k! ≈ √
2πkek ln(k)−k. (a.1)

Stirling’s formula is commonly used to approximate a binomial distribution by a Gaussian.

12Here we have again assumed total voter turnout of n = 122,295,345. These votes are distributed to
the states using VAP data of 2003 taken from http://www.census.gov/Press-Release/www/releases/CB04-
36TABLE1.pdf. For the calculation we used the program under http://www.math.temple.edu/cow/bpi.html.
Cf. Beisbart and Bovens (2008).
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Fig. 7 The exact result (solid
line), the approximation A1
(short-dashed) and A2
(long-dashed)

For r = 2, we obtain what we call the improved Stirling’s formula

k! ≈ √
2πkek ln(k)−k

(

1 + 1

12k

)

. (a.2)

Equation (1) for the mean majority deficit contains factorials of (m − 1), (m − 1)/2,
(n/m−1) and (n/m−1)/2 because of (8). We obtain two approximations for the mean ma-
jority deficit by consistently replacing the factorials by the approximations (a.1) and (a.2),
respectively; call them (A1) and (A2). Both approximations are only good for m � 1 and
n/m � 1, which is the middle range of our graphs.

The results for both approximations for n = 121 are shown in Fig. 7, where the short-
dashed line represents the approximation for r = 1, whereas the long-dashed line represents
the approximation for r = 2. Note first that both curves have a maximum at m = √

n. It can
in fact be shown that every approximation from the Stirling series has a zero derivative at
this place; the reason is that each Stirling series approximation for the probability of double
pivotality can be written in the form (F) as defined after (9).

We can see in Fig. 7 that the first approximation is not close to the analytic results, though
it reaches its maximum for the same value of m, whereas the second approximation is close
to the analytic results for a sufficiently broad range of intermediate m-values.

Both approximations help us to constrain the shape of the curve. The derivative of A1
with respect to m reads

5n
n − m2

π
√

m(n − m)3/2(m − 1)3/2
.

In the interval (1, n), this derivative equals zero for exactly one value of m, viz. for m = √
n,

and we can see immediately that the derivative changes its sign from positive to negative,
as m increases and crosses

√
n. As a consequence, A1 predicts exactly one maximum of

the mean majority deficit in (1, n), with a location at m = √
n. This is the result we were

trying to establish. Still, arguing from A1 alone is problematic, since A1 does not match the
analytic curve very well.

A2 is more difficult to investigate. In the interval (1, n), its derivative has three zeroes,
one of them at m = √

n. One can prove that, for n ≥ 6, the second derivative at m = √
n is

negative such that we have a maximum. It follows that, for n ≥ 6, the other zeroes of the
derivative cannot be local maxima.
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To sum up, our analytical arguments from Sect. 2 have already shown that the real-
extended E[MD] has a zero derivative at m = √

n. The approximations indicate that this
point is a maximum.

Appendix 2: Lotteries of voting games

We consider a two-tier voting system of the following type. The vote of each unit (or of
its representative) is fixed in the following way: If more than one half of the votes in the
unit are Yes (No), the vote of the unit is Yes (No). If there is a tie in the unit, a fair coin
is flipped. Likewise, the final outcome of the vote is Yes (No) if more than one half of the
representatives vote Yes (No). If there is a draw in the board of representatives, a fair coin is
flipped. Since there cannot be draws in votes with odd numbers of votes, the coin-flipping
mechanism is implemented only in a unit or in the board of representatives if its number of
votes is even.

Consider now the vote in some unit or in the board of representatives. Suppose that there
are k votes, where k is even. Now effectively what the coin flip does in the case of a tie
is to pick the voting rule or voting game that is operative for this particular vote. If the
flip effects a Yes-vote, then effectively the quota is set at k/2 (i.e., k/2 or more votes are
needed for a Yes outcome) and the voting game Mk,k/2 is operative in the terms of Felsenthal
and Machover (1998: 26). If the flip effects a No-vote, then effectively the quota is set at
(k/2+1) and the voting game Mk,(k/2+1) is operative. Since the quotas k/2 and (k/2+1) do
not make a difference when there is no tie, we may also describe the vote in our unit/board
as follows: First a coin is flipped that fixes the threshold of acceptance for this particular
vote; second, a vote is taken following a voting rule with this very quota. In this sense we
may speak of a lottery over voting games (see Laruelle and Valenciano 2004).

Our two-tier voting system in which each simple majority vote with an even number
of votes has been replaced by a lottery can now be thought of as one big lottery of voting
games. In a first step, a number of coins are flipped in order to fix the quotas at various places
in the two-tier voting system. Second, a vote is taken following the two-tiered voting rules
that arise. The MMD of this big lottery of voting games can now be calculated by adding up
the MMDs for each of the voting systems that may result from flipping the coins with the
appropriate probabilistic weights. We will now show that each voting system that may result
from flipping the coins has the same MMD as our original voting game. It follows that the
results for the MMD are not different from our results that we have obtained in Sect. 3.1.

For each voting system that may result from flipping the coins, we can still apply (1) and
add up the powers of the citizens’ votes for obtaining sensitivity, and the voting power for
each voter is still the product of P (citizen → unit) and P (unit → br). The voting systems
that may result from the coin flips differ only in that sometimes other thresholds are selected
in some units and/or the board of representatives. It turns out that the values of P (citizen →
unit) and P (unit → br) both are the same independently of what the thresholds are in the
case of an even number of votes at one or both levels. The reason is that the chances of
a vote being pivotal are equal under Mk,k/2 and under Mk,(k/2+1). Following (3), they are
( k−1

k/2−1

)
/2k−1 and

( k−1
k/2

)
/2k−1, which are equivalent.
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