Statistical Analysis of Data from Sensitive Question Techniques

Ben Jann

University of Bern, jann@soz.unibe.ch

Minikonferenz des quantitativen Methodenzentrums der Universität Leipzig zum Thema "Asking Sensitive Questions: Theory and Data Collection Methods"

7.-9. Juni 2012

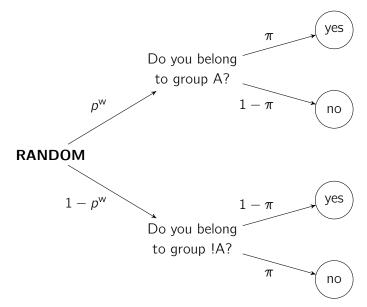
Outline

- Introduction
- Prevalence estimators for various RRT schemes
- Generalized regression estimators for RRT
- Cheating correction in RRT
- Analysis of Item Count Data

Introduction

- Various special techniques have been proposed to collect data for sensitive questions.
- The basic idea of these techniques is to anonymize answers by adding noise to the data (e.g. replacing some of the answers by random answers, aggregating answers from several questions)
- As long as the properties of the misclassification procedure are known, the statistical distribution of the sensitive question can be recovered.
- Some of these techniques are
 - ► Randomized Responde Technique (RRT) in various variants
 - ★ Warner, unrelated question, forced-response, Mangat, Kuk, Crosswise Model, . . .
 - ► Item Count Technique (ICT) a.k.a. List Experiment

Warner's RRT (Warner 1965)



Warner's RRT (Warner 1965)

- "Group A" is the sensitive group, i.e. belongig to group A is equivalent to answering "yes" to the sensitive question (SQ = 1).
- Point estimate for $\pi = Pr($ "belongs to group A") = Pr(SQ = 1)?

$$\Pr(\text{``yes''}) = \lambda = p^{w}\pi + (1-p^{w})(1-\pi)$$

$$\pi = \frac{\lambda + p^{\mathsf{w}} - 1}{2p^{\mathsf{w}} - 1}, \quad p^{\mathsf{w}} \neq 0.5$$

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} y_i \quad \text{where} \quad y_i = \begin{cases} 1 & \text{if "yes"} \\ 0 & \text{if "no"} \end{cases}$$
$$\hat{\pi} = \frac{\hat{\lambda} + p^{\mathsf{w}} - 1}{2p^{\mathsf{w}} - 1}$$

Warner's RRT (Warner 1965)

Sampling variance of $\hat{\pi}$?

Delta method:

$$\operatorname{Var}{f(x)} = \left(\frac{df(x)}{dx}\right)^2 \operatorname{Var}(x)$$

if f(x) is a linear transformation.

$$f(\hat{\lambda}) = \frac{\hat{\lambda} + p^{w} - 1}{2p^{w} - 1} \quad \Rightarrow \quad f' = \frac{1}{2p^{w} - 1}$$
$$\widehat{\operatorname{Var}}(\hat{\lambda}) = \frac{\hat{\lambda}(1 - \hat{\lambda})}{n}$$

$$\widehat{\mathsf{Var}}(\widehat{\pi}) = \frac{\widehat{\lambda}(1-\widehat{\lambda})}{n(2p^{\mathsf{w}}-1)^2} = \frac{\widehat{\pi}(1-\widehat{\pi})}{n} + \frac{p^{\mathsf{w}}(1-p^{\mathsf{w}})}{n(2p^{\mathsf{w}}-1)^2}$$

Crosswise Model (Yu et al. 2008)

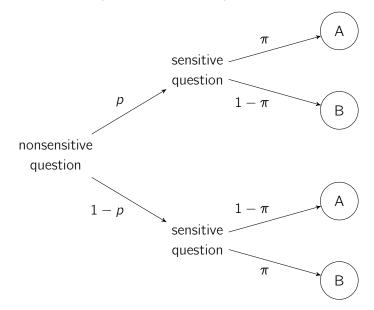
- Ask a sensitive question and a nonsensitive question and let the respondent indicate whether ...
 - A the answers to the questions are the same (both "yes" or both "no")
 - B the answers are different (one "yes", the other "no")

nonsensitive question

		no	yes
sensitive question	no	Α	В
	yes	В	Α

- Assumtion: The two questions are uncorrelated.
- p = Pr("yes") of the nonsensitive question must not be 0.5.

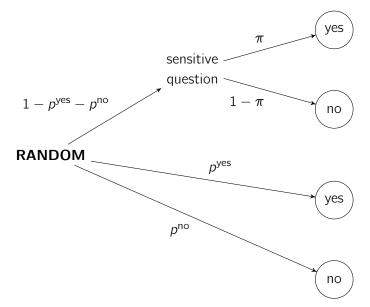
Crosswise Model (Yu et al. 2008)



Crosswise Model (Yu et al. 2008)

• The Crosswise Model is formally equivalent to Warner's RRT with $p^{w} = p$.

Forced Response RRT (Boruch 1971)



Forced Response RRT (Boruch 1971)

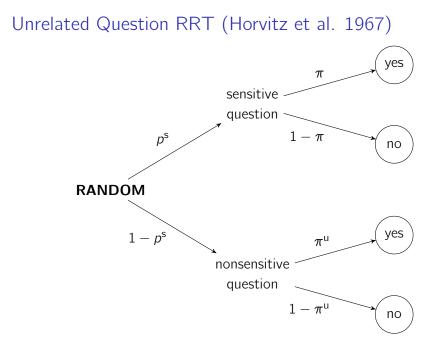
$$\mathsf{Pr}(ext{``yes''}) = \lambda = (1 - p^{\mathsf{yes}} - p^{\mathsf{no}})\pi + p^{\mathsf{yes}}$$

Hence

$$\hat{\pi} = \frac{\hat{\lambda} - p^{\text{yes}}}{1 - p^{\text{yes}} - p^{\text{no}}}$$

and

$$\widehat{\operatorname{Var}}(\widehat{\pi}) = \frac{\widehat{\lambda}(1-\widehat{\lambda})}{n(1-p^{\operatorname{yes}}-p^{\operatorname{no}})^2}$$



Unrelated Question RRT (Horvitz et al. 1967)

$$\Pr("yes") = \lambda = p^{s}\pi + (1 - p^{s})\pi^{u}$$

$$p^{\mathrm{s}} = 1 - p^{\mathrm{yes}} - p^{\mathrm{no}}$$
, $\pi^{\mathrm{u}} = rac{p^{\mathrm{yes}}}{p^{\mathrm{yes}} + p^{\mathrm{no}}}$

then

$$\begin{split} \lambda &= (1 - p^{\text{yes}} - p^{\text{no}})\pi + (1 - (1 - p^{\text{yes}} - p^{\text{no}}))\frac{p^{\text{yes}}}{p^{\text{yes}} + p^{\text{no}}} \\ &= (1 - p^{\text{yes}} - p^{\text{no}})\pi + p^{\text{yes}} \end{split}$$

Ben Jann (University of Bern)

Unrelated Question RRT (Horvitz et al. 1967)

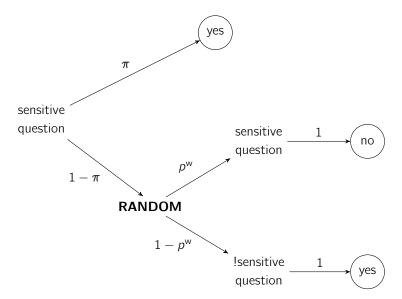
• Hence, if π^{u} is known, the Unrelated Question RRT is formally equivalent the Forced Response RRT with

$$p^{\text{yes}} = (1 - p^{\text{s}})\pi^{\text{u}}, \quad p^{\text{no}} = (1 - p^{\text{s}})(1 - \pi^{\text{u}})$$

- If π^{u} is unkown, it has to be estimated from a control sample. This does not change the formula for the point estimate, but it has consequences for the sampling variance (increase). Use bootstrap for variance estimation in this case.
- Alternatively, here's the variance formula (assuming that π^u is estimated using an independent sample):

$$\hat{\pi} = \frac{1}{p^{\mathsf{s}}} \hat{\lambda} - \frac{1 - p^{\mathsf{s}}}{p^{\mathsf{s}}} \hat{\pi}^{\mathsf{u}} \Rightarrow \widehat{\mathsf{Var}}(\hat{\pi}) = \left(\frac{1}{p^{\mathsf{s}}}\right)^2 \widehat{\mathsf{Var}}(\hat{\lambda}) + \left(\frac{1 - p^{\mathsf{s}}}{p^{\mathsf{s}}}\right)^2 \widehat{\mathsf{Var}}(\hat{\pi}^{\mathsf{u}})$$

Mangat's RRT (Mangat 1994)



Mangat's RRT (Mangat 1994)

$$\mathsf{Pr}(ext{``red''}) = \lambda = \pi p_1 + (1 - \pi) p_2$$

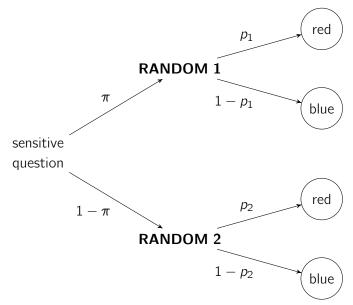
Hence

$$\hat{\pi} = \frac{\hat{\lambda} - p_2}{p_1 - p_2}, \quad p_1 \neq p_2$$

and

$$\widehat{\operatorname{Var}}(\hat{\pi}) = \frac{\hat{\lambda}(1-\hat{\lambda})}{n(p_1-p_2)^2}$$

Kuk's RRT (Kuk 1990)



Kuk's RRT (Kuk 1990)

$$\mathsf{Pr}(\text{``yes''}) = \lambda = \pi + (1 - \pi)(1 - p^{\mathsf{w}})$$

Hence

$$\hat{\pi} = rac{\hat{\lambda} +
ho^{\mathsf{w}} - 1}{
ho^{\mathsf{w}}}$$

and

$$\widehat{\text{Var}}(\hat{\pi}) = \frac{\hat{\lambda}(1-\hat{\lambda})}{n(p^{w})^{2}} = \frac{\hat{\pi}(1-\hat{\pi})}{n} + \frac{(1-\hat{\pi})(1-p^{w})}{np^{w}}$$

Let

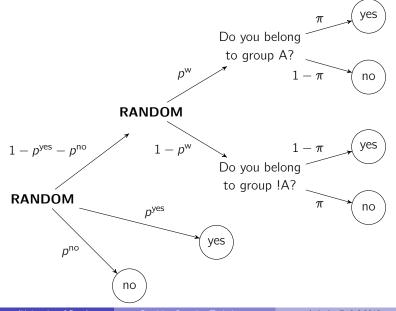
- Y_i response ($Y_i = 1$ if "yes" in RRT or "A" in CM, else $Y_i = 0$)
- λ_i probability of $Y_i = 1$
- π_i (unknown) prevalence of sensitive item
- p_i^{W} probability of the non-negated question in Warner's RRT (prevalence of nonsensitive item in CM)
- p_i^{yes} probability of a forced "yes"
- p_i^{no} probability of a forced "no"

• Then

$$\lambda_i = (1 - p_i^{\text{yes}} - p_i^{\text{no}})p_i^{\text{w}}\pi_i + (1 - p_i^{\text{yes}} - p_i^{\text{no}})(1 - p_i^{\text{w}})(1 - \pi_i) + p_i^{\text{yes}}$$

and hence

$$\pi_i = \frac{\lambda_i - (1 - p_i^{\text{yes}} - p_i^{\text{no}})(1 - p_i^{\text{w}}) - p_i^{\text{yes}}}{(2p_i^{\text{w}} - 1)(1 - p_i^{\text{yes}} - p_i^{\text{no}})}$$



Ben Jann (University of Bern)

Leipzig, 7.-9.6.2012 20 / 42

- By parametrizing π_i we can formulate regression models.
- For example, assuming $\pi_i = X'_i\beta$, we can estimate β by applying least squares regression to a transformed response variable

$$\tilde{Y}_{i} = \frac{Y_{i} - (1 - p_{i}^{\text{yes}} - p_{i}^{\text{no}})(1 - p_{i}^{\text{w}}) - p_{i}^{\text{yes}}}{(2p_{i}^{\text{w}} - 1)(1 - p_{i}^{\text{yes}} - p_{i}^{\text{no}})}$$

• This is because

$$E(SQ = 1|X_i) = \frac{E(Y_i|X_i) - (1 - p_i^{\text{yes}} - p_i^{\text{no}})(1 - p_i^{\text{w}}) - p_i^{\text{yes}}}{(2p_i^{\text{w}} - 1)(1 - p_i^{\text{yes}} - p_i^{\text{no}})}$$

- More resonable might be to assume a functional form such as $\ln(\pi_i/(1-\pi_i)) = X'_i\beta$ (logit), i.e. $\pi_i = e^{X'_i\beta}/(1+e^{X'_i\beta})$.
- In this case, we can derive the log likelihood as

$$\ln L = \sum_{i=1}^{n} [Y_i \ln(\lambda_i) + (1 - Y_i) \ln(1 - \lambda_i)]$$

=
$$\sum_{i=1}^{n} [Y_i \ln(R_i) + (1 - Y_i) \ln(S_i) - \ln(1 + e^{X_i \beta})]$$

with

$$R_{i} = c_{i} + q_{i}e^{X_{i}'\beta} \qquad c_{i} = (1 - p_{i}^{\text{yes}} - p_{i}^{\text{no}})(1 - p_{i}^{\text{w}}) + p_{i}^{\text{yes}}$$

$$S_{i} = (1 - c_{i}) + (1 - q_{i})e^{X_{i}'\beta} \qquad q_{i} = (1 - p_{i}^{\text{yes}} - p_{i}^{\text{no}})p_{i}^{\text{w}} + p_{i}^{\text{yes}}$$

and estimate β using maximum likelihood methods.

Ben Jann (University of Bern)

Two Stata commands

• Least-squares estimation with $\pi_i = X'_i \beta$ (Jann 2008):

• Maximum likelihood estimation with $\pi_i = e^{X'_i\beta}/(1 + e^{X'_i\beta})$ (Jann 2005):

• rrlogit may make more sense in terms of functional form. However, rrreg is more robust, especially if there is noncompliance with the RRT procedure.

. use gr/rrt07

(Sensitive Questions Online Survey 2007)

. fre grp

grp — Experimental group

		Freq.	Percent	Valid	Cum.
Valid	1 direct 2 manual coin toss 3 electronic coin toss 4 banknote with phone 5 banknote without phone 6 phone number	609 169 188 227 190 202	38.42 10.66 11.86 14.32 11.99 12.74	38.42 10.66 11.86 14.32 11.99 12.74	38.42 49.09 60.95 75.27 87.26 100.00
	Total	1585	100.00	100.00	

[.] generate rrt = inrange(grp,2,6)

. regress keepchange if rrt==0

Source	SS	df	М	S		Number of obs =	608
Model Residual	0 149.748355	0 607	.24670	2397		1	0.00 0.0000 0.0000
Total	149.748355	607	.24670	2397		J 1	. 49669
keepchange	Coef.	Std.	Err.	t	P> t	[95% Conf. Int	erval]
_cons	.5608553	.0201	1435	27.84	0.000	.5212959 .6	004147

Ben Jann (University of Bern)

Sensitive Question Technique

. rrreg keepch	nange if rrt=	=1, pyes(0.5))			
Randomized rea	sponse regress	sion		Number	r of obs =	927
				F((0, 926) =	0.00
				Prob >	> F =	
				R-squa	ared =	0.0000
				Adj R-	-squared =	0.0000
				Root N	MSE =	0.8046
keepchange	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_cons	. 5943905	.0264269	22.49	0.000	.542527	.646254

Pr(non-negated question) = 1 Pr(surrogate "yes") = 0.5 Pr(surrogate "no") = 0

	generate	pyes	=	<pre>cond(rrt==1,</pre>	0.5,	0)
·	generate	pyes	-	cond(fft1,	0.5,	

. rrreg keepchange rrt, pyes(pyes)

Randomized response regression

Numbe	er of	obs	=	1535
F(1,	1533)	=	0.84
Prob	> F		=	0.3581
R-squ	lared		=	0.0006
Adj F	l-squa	ared	=	-0.0001
Root	MSE		=	0.6991

keepchange	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rrt	.0335352	.0364839	0.92	0.358	0380285	.1050989
_cons	.5608553	.0283522	19.78	0.000	.505242	.6164685

Pr(non-negated question) = 1 Pr(surrogate "yes") = pyes Pr(surrogate "no") = 0

. rrreg keepchange rrt highschool, pyes(pyes) Randomized response regression

Number of obs	=	1535
F(2, 1532)	=	4.53
Prob > F	=	0.0110
R-squared	=	0.0059
Adj R-squared	=	0.0046
Root MSE	=	0.6975

keepchange	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rrt	.0347934	.0364012	0.96	0.339	036608	.1061948
highschool	.1055695	.0368606	2.86	0.004	.0332669	.1778721
_cons	.4936589	.0367501	13.43	0.000	.4215731	.5657446

Pr(non-negated question) = 1 Pr(surrogate "yes") = pyes Pr(surrogate "no") = 0

- . generate rrtXhs = rrt*highschool
- . rrreg keepchange rrt highschool rrtXhs, pyes(pyes)

Randomized res	ponse regression			Number F(3, Prob >	, 153	s = 31) = =	1535 3.32 0.0193
				R-squar Adj R-s Root MS	red squared	= 1 = =	0.0065 0.0045 0.6975
keepchange	Coef. St	d. Err.	t	P> t	[95%	Conf.	Interval]

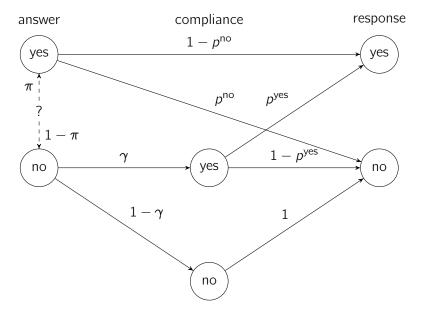
keepchange	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
rrt	.0799137	.0599938	1.33	0.183	0377651	.1975924
highschool	.1489237	.058808	2.53	0.011	.033571	.2642765
rrtXhs	071412	.0754755	-0.95	0.344	2194583	.0766344
_cons	.4660633	.0469181	9.93	0.000	.3740329	.5580938

Pr(non-negated question) = 1 Pr(surrogate "yes") = pyes Pr(surrogate "no") = 0

A little bit of magic: Cheating correction in RRT

- In many RRT designs, the "self-protective no" bias can occur.
- In these designs, some of the respondents are instructed to answer "yes" by the randomization device, even though the sensitive item does not apply to them.
- There is evidence that these respondents often deviate from the instructions and answer "no".
- Such non-compliance introduces a large bias to RRT estimates. It is noteworthy that this bias does not come from respondents who did commit the sensitive behavior and want to conceal it. It comes from respondents who did not and don't want it to look like they did.
- In a standard design, it is not possible to account for such "cheaters". However, if the RRT design parameters are variied, this variation can be used to identify the proportion of cheaters and correct the estimates.

A little bit of magic: Cheating correction in RRT



A little bit of magic: Cheating correction in RRT

- Assumptions:
 - ▶ There is random variation in *p*^{yes} and *p*^{no} between respondents.
 - π and γ do not depend on p^{yes} and p^{no} (which may be justified if the variation in p is small)
 - Respondents do not say "yes" if instructed to say "no" by the randomization device.
- π and γ can then be estimated using the following log likelihood:

$$\ln L = \sum_{i=1}^{n} Y_i \ln(\ell_i) + (1 - Y_i) \ln(1 - \ell_i)$$

with

$$\ell_i = \pi_i (1 - p_i^{no} - \gamma p_i^{yes}) + \gamma p_i^{yes}$$

A little bit of magic: Analysis

```
program define rrcheat_lf
    args lnf theta1 cheat
    local p1 $rrcheat_pyes
    local p2 $rrcheat_pno
    quietly replace `lnf' = cond($ML_y1, ///
        ln(`theta1´ * (1 - `p2´ - (1-`cheat´)*`p1´) + (1-`cheat´)*`p1´), ///
        ln(1 - (`theta1´ * (1 - `p2´ - (1-`cheat´)*`p1´) + (1-`cheat´)*`p1´)))
end
forv i = 1/5 \{
    local depvar: word `i´ of $sqvar
    global rrcheat_pyes pyesQ`i'
    global rrcheat_pno pnoQ`i´
    ml model lf rrcheat_lf (`depvar´: `depvar´ = ) /cheat if RRT==1
    ml maximize
    eststo `depvar'
}
esttab, nonumb nostar mti se b(1) transform(100*@ 100) ///
    eqlab(none) coef(main:_cons "RRT adjusted" cheat:_cons "Cheaters")
```

A little bit of magic: Results

сору	notes	drugs	partial	severe
17.9 (6.5)	12.0 (6.1)	16.7 (5.6)	14.3 (6.6)	6.7 (5.9)
-9.5 (36.1)	-3.6 (31.9)	88.9 (36.9)	54.3 (40.1)	36.1 (31.8)
2855	2855	2849	2105	2104
	17.9 (6.5) -9.5 (36.1)	$\begin{array}{cccc} 17.9 & 12.0 \\ (6.5) & (6.1) \\ -9.5 & -3.6 \\ (36.1) & (31.9) \end{array}$	17.9 12.0 16.7 (6.5) (6.1) (5.6) -9.5 -3.6 88.9 (36.1) (31.9) (36.9)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Standard errors in parentheses

Unadjusted results for comparison:

	сору	notes	drugs	partial	severe
DQ	17.5	8.8	3.4	2.5	1.5
	(1.2)	(0.9)	(0.6)	(0.6)	(0.5)
RRT	19.6	12.7	0.6	4.2	-0.6
	(1.2)	(1.1)	(1.0)	(1.2)	(1.1)
СМ	27.2	15.0	9.9	8.2	3.0
	(2.0)	(1.9)	(1.9)	(2.1)	(2.0)

Ben Jann (University of Bern)

• Item Count Design (Droitcour et al. 1991):

group A (short list)	group B (long list)
nonsensitive item 1	nonsensitive item 1
nonsensitive item 2	nonsensitive item 2
nonsensitive item 3	nonsensitive item 3
	sensitive item

- How many items do apply to you?
- Two randomized groups, one with the short list, one with the long list (single list design).

Estimate of the probability of the sensitive item π = Pr(SQ = 1)?
Mean difference between the two groups:

$$\hat{\pi} = \bar{y}^{\mathsf{LL}} - \bar{y}^{\mathsf{SL}} = \frac{1}{n^{\mathsf{B}}} \sum_{i \in \mathsf{B}} y_i - \frac{1}{n^{\mathsf{A}}} \sum_{i \in \mathsf{A}} y_i$$

• Variance of $\hat{\pi}$?

$$\operatorname{Var}(\hat{\pi}) = \operatorname{Var}(\bar{y}^{\mathsf{LL}}) + \operatorname{Var}(\bar{y}^{\mathsf{SL}})$$

- Double list design:
 - Both groups answer to two sets of items. In one group, the sensitive item is paired with the first set of nonsensitive items, in the other group the sensitive item is paired with the second set of nonsensitive items.

Set 1:	group A	group B	
	nonsensitive item 1	nonsensitive item 1	
	nonsensitive item 2	nonsensitive item 2	
	nonsensitive item 3	nonsensitive item 3	
		sensitive item	
Set 2:	group A	group B	
Set 2:	group A nonsensitive item 4	group B nonsensitive item 4	
Set 2:	• •	5 .	
Set 2:	nonsensitive item 4	nonsensitive item 4	

$$\hat{\pi}_{1} = \bar{y}^{\text{LL1}} - \bar{y}^{\text{SL1}}, \quad \hat{\pi}_{2} = \bar{y}^{\text{LL2}} - \bar{y}^{\text{SL2}}$$

$$\hat{\pi} = \frac{\hat{\pi}_{1} + \hat{\pi}_{2}}{2} = \frac{(\bar{y}^{\text{LL1}} - \bar{y}^{\text{SL1}}) + (\bar{y}^{\text{LL2}} - \bar{y}^{\text{SL2}})}{2}$$

$$= \frac{(\bar{y}^{\text{LL1}} - \bar{y}^{\text{SL2}}) + (\bar{y}^{\text{LL2}} - \bar{y}^{\text{SL1}})}{2}$$

$$= \frac{\frac{1}{n^{\text{B}}} \sum_{i \in \text{B}} (y_{1i} - y_{2i}) + \frac{1}{n^{\text{A}}} \sum_{i \in \text{A}} (y_{2i} - y_{1i})}{2}}{2}$$

$$Var(\hat{\pi}) = \frac{Var(\hat{\pi}_{1}) + Var(\hat{\pi}_{2}) - 2Cov(\hat{\pi}_{1}, \hat{\pi}_{2})}{4}$$
$$= \frac{Var(\bar{y}^{LL1} - \bar{y}^{SL2}) + Var(\bar{y}^{LL2} - \bar{y}^{SL1})}{4}$$

Ben Jann (University of Bern)

- Regression model for single list design:
 - Estimate β by applying least-squares regression (with robust standard errors) to

$$Y_i = (LL_i \cdot X_i)'\beta + X'_i\gamma + \epsilon_i$$

(For more sophisticated approaches see Glynn 2010, Imai 2010, Blair and Imai 2012.)

- Regression model for single list design:
 - Approach 1: estimate separate models (as above) for Y₁ and Y₂, combine estimates using suest to obtain joint variance matrix, compute average coefficients using lincom
 - Approach 2: estimate a system of equations (e.g. using sureg) for Y₁ and Y₂ with the contraint that the coefficients are the same

Conclusions

- Suitable methods for basic analysis of data from sensitive question techniques (SQT) are easy to derive.
- Canned software exists for various RRT designs.
- Outlook
 - Add support for Mangat's RRT, Kuk's RRT,
 - Canned software for Item Count Data
 - The presented methods treat the SQT-data as the dependent variable. What if SQT-variables are used as predictors?
 - Correlations among SQT-variables? Analysis of multiple SQT-items?
 - More sophisticated designs/methods for cheating correction?

References I

- Blair, G., K. Imai. 2012. Statistical Analysis of List Experiments. *Political Analysis* 20(1): 47–77.
- Boruch, R.F. 1971. Assuring Confidentiality of Responses in Social Research: A Note on Strategies. *The American Sociologist* 6(4): 308-311.
- Coutts, E., B. Jann. 2011. Sensitive Questions in Online Surveys: Experimental Results for the Randomized Response Technique (RRT) and the Unmatched Count Technique (UCT). *Sociological Methods & Research* 40(1): 169–193.
- Droitcour, J., R.A. Caspar, M.L. Hubbard, T.L. Parsely, W. Vischer, T.M. Ezzati. 1991. The item count technique as a method of indirect questioning: A review of its development and a case study application. Pp. 185-210 in: P. Biemer, R.M. Groves, L.E. Lyberg, N.A. Mathiowetz, S. Sudman (eds.), Measurement errors in surveys. New York: Wiley.
- Glynn, A.N. 2010. What Can We Learn with Statistical Truth Serum? Design and Analysis of the List Experiment. Harvard University.

References II

- Höginger, M., B. Jann, A. Diekmann. 2012. Sensitive Questions in Online Surveys: An Experimental Comparison of the Randomized Response Technique and the Crosswise Model. ETH Zurich and University of Bern.
- Horvitz, D.G., B.V. Shah, W.R. Simmons. 1967. The unrelated question randomized response model. Pp. 65-72 in: Proceedings in the Social Science Section. Baltimore: American Statistical Association.
- Imai, K. 2011. Multivariate regression analysis for the item count technique. Journal of the American Statistical Association 106:407–16.
- Jann, B. 2005. rrlogit: Stata module to estimate logistic regression for randomized response data. Statistical Software Components S456203, Boston College Department of Economics, revised 12 May 2011. Available from http://ideas.repec.org/c/boc/bocode/s456203.html
- Jann, B. 2008. rrreg: Stata module to estimate linear probability model for randomized response data. Statistical Software Components S456962, Boston College Department of Economics, revised 12 May 2011. Available from http://ideas.repec.org/c/boc/bocode/s456962.html

References III

- Kuk, A.Y.C. 1990. Asking sensitive questions indirectly. *Biometrika* 77(2): 436-438.
- Mangat, N.S. 1994. An Improved Randomized Response Strategy. *Journal of the Royal Statistical Society. Series B (Methodological)* 56(1): 93–95.
- Warner, S.L. 1965. Randomized-response: A survey technique for eliminating evasive answer bias. *Journal of the American Statistical Association* 60(309):63–69.
- Yu, J.-W., G.-L. Tian, M.-L. Tang. 2008. Two new models for survey sampling with sensitive characteristic: design and analysis. *Metrika* 67(3):251–263.